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1. I NTRODUCTION

The following result is known in the literature as Ostrowski’s inequality [1].

Theorem 1.1. Let f : [a, b] → R be a differentiable mapping on(a, b) with the property that
|f ′ (t)| ≤ M for all t ∈ (a, b) . Then

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) M,

for all x ∈ [a, b] . The constant1
4

is best possible in the sense that it cannot be replaced by a
smaller constant.

In [2], the author has proved the following Ostrowski type inequality.

Theorem 1.2.Letf : [a, b] → R be continuous on[a, b] with a > 0 and differentiable on(a, b) .
Letp ∈ R\ {0} and assume that

Kp (f ′) := sup
u∈(a,b)

{
u1−p |f ′ (u)|

}
< ∞.
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2 S.S. DRAGOMIR

Then we have the inequality

(1.2)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ Kp (f ′)

|p| (b− a)

×


2xp (x− A) + (b− x) Lp

p (b, x)− (x− a) Lp
p (x, a) if p ∈ (0,∞) ;

(x− a) Lp
p (x, a)− (b− x) Lp

p (b, x)− 2xp (x− A) if p ∈ (−∞,−1) ∪ (−1, 0)

(x− a) L−1 (x, a)− (b− x) L−1 (b, x)− 2
x

(x− A) if p = −1,

for anyx ∈ (a, b) , where fora 6= b,

A = A (a, b) :=
a + b

2
, is the arithmetic mean,

Lp = Lp (a, b) =

[
bp+1 − ap+1

(p + 1) (b− a)

] 1
p

, is thep− logarithmic meanp ∈ R\ {−1, 0} ,

and

L = L (a, b) :=
b− a

ln b− ln a
is the logarithmic mean.

Another result of this type obtained in the same paper is:

Theorem 1.3. Let f : [a, b] → R be continuous on[a, b] (with a > 0) and differentiable on
(a, b) . If

P (f ′) := sup
u∈(a,b)

|uf ′ (x)| < ∞,

then we have the inequality

(1.3)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ P (f ′)

b− a

[
ln

[
[I (x, b)]b−x

[I (a, x)]x−a

]
+ 2 (x− A) ln x

]
for anyx ∈ (a, b) , where fora 6= b

I = I (a, b) :=
1

e

(
bb

aa

) 1
b−a

, is the identric mean.

If some local information around the pointx ∈ (a, b) is available, then we may state the
following result as well [2].

Theorem 1.4. Let f : [a, b] → R be continuous on[a, b] and differentiable on(a, b) . Let
p ∈ (0,∞) and assume, for a givenx ∈ (a, b) , we have that

Mp (x) := sup
u∈(a,b)

{
|x− u|1−p |f ′ (u)|

}
< ∞.

Then we have the inequality

(1.4)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ 1

p (p + 1) (b− a)

[
(x− a)p+1 + (b− x)p+1]Mp (x) .

For recent results in connection to Ostrowski’s inequality see the papers [3],[4] and the mono-
graph [5].

The main aim of this paper is to provide some complementary results, where instead of using
Cauchy mean value theorem, we use Pompeiu mean Value Theorem to evaluate the integral
mean of an absolutely continuous function. Applications for quadrature rules and particular
instances of functions are given as well.
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OSTROWSKITYPE INEQUALITES 3

2. POMPEIU ’ S M EAN VALUE THEOREM

In 1946, Pompeiu [6] derived a variant of Lagrange’s mean value theorem, now known as
Pompeiu’s mean value theorem(see also [7, p. 83]).

Theorem 2.1.For every real valued functionf differentiable on an interval[a, b] not containing
0 and for all pairsx1 6= x2 in [a, b] , there exists a pointξ in (x1, x2) such that

(2.1)
x1f (x2)− x2f (x1)

x1 − x2

= f (ξ)− ξf ′ (ξ) .

Proof. Define a real valued functionF on the interval
[

1
b
, 1

a

]
by

(2.2) F (t) = tf

(
1

t

)
.

Sincef is differentiable on
(

1
b
, 1

a

)
and

(2.3) F ′ (t) = f

(
1

t

)
− 1

t
f ′
(

1

t

)
,

then applying the mean value theorem toF on the interval[x, y] ⊂
[

1
b
, 1

a

]
we get

(2.4)
F (x)− F (y)

x− y
= F ′ (η)

for someη ∈ (x, y) .
Let x2 = 1

x
, x1 = 1

y
andξ = 1

η
. Then, sinceη ∈ (x, y) , we have

x1 < ξ < x2.

Now, using (2.2) and (2.3) on (2.4), we have

xf
(

1
x

)
− yf

(
1
y

)
x− y

= f

(
1

η

)
− 1

η
f ′
(

1

η

)
,

that is
x1f (x2)− x2f (x1)

x1 − x2

= f (ξ)− ξf ′ (ξ) .

This completes the proof of the theorem. �

Remark 2.2. Following [7, p. 84 – 85], we will mention here a geometrical interpretation
of Pompeiu’s theorem. The equation of the secant line joining the points(x1, f (x1)) and
(x2, f (x2)) is given by

y = f (x1) +
f (x2)− f (x1)

x2 − x1

(x− x1) .

This line intersects they−axis at the point(0, y) , wherey is

y = f (x1) +
f (x2)− f (x1)

x2 − x1

(0− x1)

=
x1f (x2)− x2f (x1)

x1 − x2

.

The equation of the tangent line at the point(ξ, f (ξ)) is

y = (x− ξ) f ′ (ξ) + f (ξ) .
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4 S.S. DRAGOMIR

The tangent line intersects they−axis at the point(0, y) , where

y = −ξf ′ (ξ) + f (ξ) .

Hence, the geometric meaning of Pompeiu’s mean value theorem is that the tangent of the point
(ξ, f (ξ)) intersects on they−axis at the same point as the secant line connecting the points
(x1, f (x1)) and(x2, f (x2)) .

3. EVALUATING THE I NTEGRAL M EAN

The following result holds.

Theorem 3.1. Let f : [a, b] → R be continuous on[a, b] and differentiable on(a, b) with [a, b]
not containing0. Then for anyx ∈ [a, b] , we have the inequality

(3.1)

∣∣∣∣a + b

2
· f (x)

x
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ b− a

|x|

1

4
+

(
x− a+b

2

b− a

)2
 ‖f − `f ′‖∞ ,

where` (t) = t, t ∈ [a, b] .
The constant1

4
is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. Applying Pompeiu’s mean value theorem, for anyx, t ∈ [a, b] , there is aξ betweenx
andt such that

tf (x)− xf (t) = [f (ξ)− ξf ′ (ξ)] (t− x)

giving

|tf (x)− xf (t)| ≤ sup
ξ∈[a,b]

|f (ξ)− ξf ′ (ξ)| |x− t|(3.2)

= ‖f − `f ′‖∞ |x− t|
for anyt, x ∈ [a, b] .

Integrating overt ∈ [a, b] , we get∣∣∣∣f (x)

∫ b

a

tdt− x

∫ b

a

f (t) dt

∣∣∣∣ ≤ ‖f − `f ′‖∞
∫ b

a

|x− t| dt(3.3)

= ‖f − `f ′‖∞

[
(x− a)2 + (b− x)2

2

]

= ‖f − `f ′‖∞

[
1

4
(b− a)2 +

(
x− a + b

2

)2
]

and since
∫ b

a
tdt = b2−a2

2
, we deduce from (3.3) the desired result (3.1).

Now, assume that (3.2) holds with a constantk > 0, i.e.,

(3.4)

∣∣∣∣a + b

2
· f (x)

x
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ b− a

|x|

k +

(
x− a+b

2

b− a

)2
 ‖f − `f ′‖∞ ,

for anyx ∈ [a, b] .
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OSTROWSKITYPE INEQUALITES 5

Considerf : [a, b] → R, f (t) = αt + β; α, β 6= 0. Then

‖f − `f ′‖∞ = |β| ,
1

b− a

∫ b

a

f (t) dt =
a + b

2
· α + β,

and by (3.4) we deduce

∣∣∣∣a + b

2

(
α +

β

x

)
−
(

a + b

2
α + β

)∣∣∣∣ ≤ b− a

|x|

k +

(
x− a+b

2

b− a

)2
 |β|

giving

(3.5)

∣∣∣∣a + b

2
− x

∣∣∣∣ ≤ (b− a) k +

(
x− a+b

2

b− a

)2

for anyx ∈ [a, b] .
If in (3.5) we letx = a or x = b, we deducek ≥ 1

4
, and the sharpness of the constant is

proved. �

The following interesting particular case holds.

Corollary 3.2. With the assumptions in Theorem 3.1, we have

(3.6)

∣∣∣∣f (a + b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ (b− a)

2 |a + b|
‖f − `f ′‖∞ .

4. THE CASE OF WEIGHTED I NTEGRALS

We will consider now the weighted integral case.

Theorem 4.1. Let f : [a, b] → R be continuous on[a, b] and differentiable on(a, b) with [a, b]
not containing0. If w : [a, b] → R is nonnegative integrable on[a, b] , then for eachx ∈ [a, b] ,
we have the inequality:

(4.1)

∣∣∣∣∫ b

a

f (t) w (t) dt− f (x)

x

∫ b

a

tw (t) dt

∣∣∣∣
≤ ‖f − `f ′‖∞

[
sgn (x)

(∫ x

a

w (t) dt−
∫ b

x

w (t) dt

)
+

1

|x|

(∫ b

x

tw (t) dt−
∫ x

a

tw (t) dt

)]
.
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Proof. Using the inequality (3.2), we have∣∣∣∣f (x)

∫ b

a

tw (t) dt− x

∫ b

a

f (t) w (t) dt

∣∣∣∣(4.2)

≤ ‖f − `f ′‖∞
∫ b

a

w (t) |x− t| dt

= ‖f − `f ′‖∞
[∫ x

a

w (t) (x− t) dt +

∫ b

x

w (t) (t− x) dt

]
= ‖f − `f ′‖∞

[
x

∫ x

a

w (t) dt−
∫ x

a

tw (t) dt +

∫ b

x

tw (t) dt− x

∫ b

x

w (t) dt

]
= ‖f − `f ′‖∞

[
x

(∫ x

a

w (t) dt−
∫ b

x

w (t) dt

)
+

∫ b

x

tw (t) dt−
∫ x

a

tw (t) dt

]
from where we get the desired inequality (4.1). �

Now, if we assume that0 < a < b, then

(4.3) a ≤
∫ b

a
tw (t) dt∫ b

a
w (t) dt

≤ b,

provided
∫ b

a
w (t) dt > 0.

With this extra hypothesis, we may state the following corollary.

Corollary 4.2. With the above assumptions, we have

(4.4)

∣∣∣∣∣f
(∫ b

a
tw (t) dt∫ b

a
w (t) dt

)
− 1∫ b

a
w (t) dt

∫ b

a

f (t) w (t) dt

∣∣∣∣∣
≤ ‖f − `f ′‖∞

[∫ x

a
w (t) dt−

∫ b

x
w (t) dt∫ b

a
w (t) dt

+

∫ b

x
w (t) tdt−

∫ x

a
tw (t) dt∫ b

a
tw (t) dt

]
.

5. A QUADRATURE FORMULA

We assume in the following that0 < a < b.
Consider the division of the interval[a, b] given by

In : a = x0 < x1 < · · · < xn−1 < xn = b,

andξi ∈ [xi, xi+1], i = 0, . . . , n− 1 a sequence of intermediate points. Define the quadrature

Sn (f, In, ξ) :=
n−1∑
i=0

f (ξi)

ξi

·
x2

i+1 − x2
i

2
(5.1)

=
n−1∑
i=0

f (ξi)

ξi

· xi + xi+1

2
· hi,

wherehi := xi+1 − xi, i = 0, . . . , n− 1.
The following result concerning the estimate of the remainder in approximating the integral∫ b

a
f (t) dt by the use ofSn (f, In, ξ) holds.
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OSTROWSKITYPE INEQUALITES 7

Theorem 5.1. Assume thatf : [a, b] → R is continuous on[a, b] and differentiable on(a, b) .
Then we have the representation

(5.2)
∫ b

a

f (t) dt = Sn (f, In, ξ) + Rn (f, In, ξ) ,

whereSn (f, In, ξ) is as defined in (5.1), and the remainderRn (f, In, ξ) satisfies the estimate

|Rn (f, In, ξ)| ≤ ‖f − `f ′‖∞
n−1∑
i=0

h2
i

ξi

1

4
+

∣∣∣∣∣ξi − xi+xi+1

2

hi

∣∣∣∣∣
2
(5.3)

≤ 1

2
‖f − `f ′‖∞

n−1∑
i=0

h2
i

ξi

≤ ‖f − `f ′‖∞
2a

n−1∑
i=0

h2
i .

Proof. Apply Theorem 3.1 on the interval[xi, xi+1] for the intermediate pointsξi to obtain∣∣∣∣∫ xi+1

xi

f (t) dt− f (ξi)

ξi

· xi + xi+1

2
· hi

∣∣∣∣(5.4)

≤ 1

ξi

h2
i

1

4
+

(
ξi − xi+xi+1

2

hi

)2
 ‖f − `f ′‖∞

≤ 1

2ξi

h2
i ‖f − `f ′‖∞ ≤ 1

2a
h2

i ‖f − `f ′‖∞

for eachi ∈ {0, . . . , n− 1} .
Summing overi from 1 to n− 1 and using the generalised triangle inequality, we deduce the

desired estimate (5.3). �

Now, if we consider the mid-point rule (i.e., we chooseξi = xi+xi+1

2
above,i ∈ {0, . . . , n− 1})

Mn (f, In) :=
n−1∑
i=0

f

(
xi + xi+1

2

)
hi,

then, by Corollary 3.2, we may state the following result as well.

Corollary 5.2. With the assumptions of Theorem 5.1, we have

(5.5)
∫ b

a

f (t) dt = Mn (f, In) + Rn (f, In) ,

where the remainder satisfies the estimate:

|Rn (f, In)| ≤ ‖f − `f ′‖∞
2

n−1∑
i=0

h2
i

xi + xi+1

(5.6)

≤ ‖f − `f ′‖∞
4a

n−1∑
i=0

h2
i .
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8 S.S. DRAGOMIR

6. APPLICATIONS FOR SPECIAL M EANS

For0 < a < b, let us consider the means

A = A (a, b) :=
a + b

2
,

G = G (a, b) :=
√

a · b,

H = H (a, b) :=
2

1
a

+ 1
b

,

L = L (a, b) :=
b− a

ln b− ln a
(logarithmic mean),

I = I (a, b) :=
1

e

(
bb

aa

) 1
b−a

(identric mean)

and thep−logarithmic mean

Lp = Lp (a, b) =

[
bp+1 − ap+1

(p + 1) (b− a)

] 1
p

, p ∈ R\ {−1, 0} .

It is well known that

H ≤ G ≤ L ≤ I ≤ A,

and, denotingL0 := I andL−1 = L, the functionR 3 p 7→ Lp ∈ R is monotonic increasing.
In the following we will use the following inequality obtained in Corollary 3.2,

(6.1)

∣∣∣∣f (a + b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ (b− a)

2 (a + b)
‖f − `f ′‖∞ ,

provided0 < a < b.

(1) Consider the functionf : [a, b] ⊂ (0,∞) → R, f (t) = tp, p ∈ R\ {−1, 0} . Then

f

(
a + b

2

)
= [A (a, b)]p ,

1

b− a

∫ b

a

f (t) dt = Lp
p (a, b) ,

‖f − `f ′‖[a,b],∞ =

 (1− p) ap if p ∈ (−∞, 0) \ {−1} ,

|1− p| bp if p ∈ (0, 1) ∪ (1,∞) .

Consequently, by (6.1) we deduce

(6.2)
∣∣Ap (a, b)− Lp

p (a, b)
∣∣ ≤ 1

4
×


(1− p) ap (b− a)

A (a, b)
if p ∈ (−∞, 0) \ {−1} ,

|1− p| bp (b− a)

A (a, b)
if p ∈ (0, 1) ∪ (1,∞) .
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(2) Consider the functionf : [a, b] ⊂ (0,∞) → R, f (t) = 1
t
. Then

f

(
a + b

2

)
=

1

A (a, b)
,

1

b− a

∫ b

a

f (t) dt =
1

L (a, b)
,

‖f − `f ′‖[a,b],∞ =
2

a
.

Consequently, by (6.1) we deduce

(6.3) 0 ≤ A (a, b)− Lp (a, b) ≤ b− a

2a
L (a, b) .

(3) Consider the functionf : [a, b] ⊂ (0,∞) → R, f (t) = ln t. Then

f

(
a + b

2

)
= ln [A (a, b)] ,

1

b− a

∫ b

a

f (t) dt = ln [I (a, b)] ,

‖f − `f ′‖[a,b],∞ = max

{∣∣∣ln(a

e

)∣∣∣ , ∣∣∣∣ln(b

e

)∣∣∣∣} .

Consequently, by (6.1) we deduce

(6.4) 1 ≤ A (a, b)

I (a, b)
≤ exp

{
b− a

4A (a, b)
max

{∣∣∣ln(a

e

)∣∣∣ , ∣∣∣∣ln(b

e

)∣∣∣∣}} .
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