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ABSTRACT. An inequality providing some bounds for the integral mean via Pompeiu’s mean
value theorem and applications for quadrature rules and special means are given.
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1. INTRODUCTION
The following result is known in the literature as Ostrowski’s inequallity [1].

Theorem 1.1.Let f : [a,b] — R be a differentiable mapping ofx, b) with the property that
|f' (t)| < M forall t € (a,b). Then

1 b 1 r — atb ’
1.1 - — < |- 2 —a) M
@ 10 -5 1o < |1 (522 ) | 6-am
for all x € [a,b]. The constan% is best possible in the sense that it cannot be replaced by a
smaller constant.

In [2], the author has proved the following Ostrowski type inequality.

Theorem 1.2.Letf : [a,b] — R be continuous ofu, b] with a > 0 and differentiable offa, b) .
Letp € R\ {0} and assume that

K, (f') = sup {u'7|f" (u)]} < 0.

u€(a,b)
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2 S.S. RAGOMIR

Then we have the inequality

2) /f d4—m<tg

23:1’(35— A)+ b—m)L( x) — (x—a)Lg(x,a) if p e (0,00);

x ¢ (z—a)Lb(z,a) — (b—x) L (b,x) — 227 (x — A) ifpe€ (—o0,—-1)U(-1,0)

| (@ —a) L7 (z,0) = (b—2) L7 (byx) — 2 (x — A) ifp=—1,
foranyx € (a,b), where fora # b,

A=A(a,b) = ¢ ; b, is the arithmetic mean,

bp+1 _ ap-i—l
(p+1)(b—a)

L,=L,(ab)= { } ’ , is thep — logarithmic mearp € R\ {—1, 0},

and

L= L(ab) = is the logarithmic mean.

Inb—1Ina
Another result of this type obtained in the same paper is:

Theorem 1.3.Let f : [a,b] — R be continuous otu, b] (with a > 0) and differentiable on
(a,b).If
P(f"):= sup |uf' (x)] < oo,

u€(a,b)
then we have the inequality

b / b b—zx
(1.3) ‘f(x)—ﬁ/ f(t)dt‘ < ]bjgfa) lln [% +2(z—A)lnzx
foranyx € (a,b), where fora # b
I=1(a,b):= . (Zi) , Is the identric mean.

If some local information around the poimt € (a,b) is available, then we may state the
following result as well[[2].

Theorem 1.4.Let f : [a,b] — R be continuous oria, b] and differentiable or(a,b) . Let
p € (0,00) and assume, for a givene (a,b) , we have that

My (@)= swp {Je =l 7 If (]} < oo

u€(a,b

Then we have the inequality
1

1 b
‘””‘F?alf“”tgp@+ww—w

For recent results in connection to Ostrowski’s inequality see the papers [3],[4] and the mono-
graph [5].

The main aim of this paper is to provide some complementary results, where instead of using
Cauchy mean value theorem, we use Pompeiu mean Value Theorem to evaluate the integral
mean of an absolutely continuous function. Applications for quadrature rules and particular
instances of functions are given as well.

(1.4) [(m — a4+ (b— x)pﬂ} M, (z).
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2. POMPEIU’S MEAN VALUE THEOREM

In 1946, Pompeiu [6] derived a variant of Lagrange’s mean value theorem, now known as
Pompeiu’s mean value theorgsee also[7, p. 83]).

Theorem 2.1.For every real valued functiofi differentiable on an intervdk, b not containing
0 and for all pairsz; # x5 in [a, b], there exists a poing in (21, x2) such that

nf (w2 =2l @) ey epriey.

Ty — T2

(2.1)

Proof. Define a real valued functioff on the interval 3, 1] by

(2.2) F(t)=tf G) .

Sincef is differentiable on(+, 1) and

(2.3) Fo=1(7) -1 (7).

then applying the mean value theoren¥t®n the intervalz, y] C [, 2] we get
F(z) — F(y)
r—=y

(2.4) = F'(3)

for somen € (z,y).
Letz, = ;, 21 =, and¢ = % Then, since) € (z,y) , we have
ry < € < xa.

Now, using [2.2) and (2| 3) on (2.4), we have

T (01 ()

that is (@)
z1f (v2) — 2o f (21) eqt
e A R OF
This completes the proof of the theorem. O

Remark 2.2. Following [7, p. 84 — 85], we will mention here a geometrical interpretation
of Pompeiu’s theorem. The equation of the secant line joining the péints (z;)) and

(x9, f (x2)) is given by
f(%) - f(%)

Lo — X1

This line intersects thg—axis at the point0, y) , wherey is

/ ($2) —f (xl)

y=/f(x)+ (= 1),

y=f(2z1) + pE—— (0 —a1)
- w1 f (22) — o f (1)
N r1 — X2 ‘

The equation of the tangent line at the pdifitf (£)) is
y=@—-8fE+r(&).
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The tangent line intersects the-axis at the point0, y) , where

y=—Ef(+ (&)

Hence, the geometric meaning of Pompeiu’s mean value theorem is that the tangent of the point
(&, f(£)) intersects on thg—axis at the same point as the secant line connecting the points

(21, f (x1)) and(z2, f (z2)) -
3. EVALUATING THE INTEGRAL MEAN
The following result holds.

Theorem 3.1.Let f : [a,b] — R be continuous ofu, b] and differentiable oria, b) with [a, b]
not containing). Then for any: € [a, b] , we have the inequality

2
2
b—a |1 x— ob ,
SW {Z‘F( b—; ) ] 1f =0
wherel (t) = t, t € [a,b].

The constan§ Is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. Applying Pompeiu’s mean value theorem, for any € [a,b], there is & betweenz:
andt such that

tf(x) —af(t) =[f(&) =& Q] — )
giving
(3.2) tf (z) —xf (t)] < Sup 1f (&) = & (O] | — 1]
=If = £f'llc | = 1|

foranyt,x € [a,b].
Integrating ovet € [a,b] , we get

s [ai—s [ wa|<ir-eri. [ - da
[(x—a)®+ (b— @1

(3.3)

=1 ~ ¢ :

i ’ -1 2 Cl“‘b 2
—Hf—ﬁﬂm_zw—a)+($— )

and since/” tdt = ¥52*, we deduce fron (3]3) the desired reshit|3.1).
Now, assume thaft (3.2) holds with a constant 0, i.e.,

a T b
(3.4 +b.f()_bia/f(t)dt‘

2 T
2
b—a r — ofb ,

J. Inequal. Pure and Appl. Math6(3) Art. 83, 2005 http://jipam.vu.edu.au/

foranyz € [a,b)].


http://jipam.vu.edu.au/

OSTROWSKITYPE INEQUALITES 5

Considerf : [a,b] — R, f(t) = at + (; a, 3 # 0. Then

If=tf'le = 18l
b
%a/ Ft)ydt — a+t B,

and by [3.4) we deduce

atb 3 a+b b—a r— e’
(o D) - (e s) <20 {m(b;)]w

giving

(3.5)

foranyz € [a,b].
If in (@) we letx = a or x = b, we deduce: > % and the sharpness of the constant is
proved. O

The following interesting particular case holds.

Corollary 3.2. With the assumptions in Theorém|3.1, we have

36 () -5 [ roa] < oS-

4. THE CASE OF WEIGHTED INTEGRALS
We will consider now the weighted integral case.
Theorem 4.1.Let f : [a,b] — R be continuous oifu, b] and differentiable orfa, b) with [a, b]

not containing0. If w : [a, b] — R is nonnegative integrable dn, b] , then for eachr € [a, b],
we have the inequality:

dt—@/abtw(t)dt’

X

(4.1)
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Proof. Using the inequality{ (3]2), we have
b b
(4.2) 'f(m)/ tw(t)dt—x/ f(t)w(t)dt’
a b a
S N RO
r prx b
—lf =7 | [Cw@ G- [wo@-oa

=|f=2f ::lz/axw(t)dt—/:tw(t)dt—i—/ dt—:c/bw ]
=Hf—€f’||oo:ﬂﬁ(/:w(t)dt—/: () + / i [ ]

from where we get the desired inequality (4.1). O

Now, if we assume thdt < a < b, then

f tw (t)d
4.3
9 < oo

provided [ w (t) dt > 0.
With this extra hypothesis, we may state the following corollary.

Corollary 4.2. With the above assumptions, we have

[ tw (t) 1 b
o ‘ (fa <t>dt> fbwuf)dt/af(t)w(tmf

faxw(t)dt—f;w(t)dt+f t) tddt — f tw (t
[P (t)dt fatw

< =4f

5. A QUADRATURE FORMULA

We assume in the following that< a < b.
Consider the division of the interval, b| given by

IL,:a=xg<x1<:--<xpp_1 <xp=0>,

and¢; € [x;,x41],1=0,...,n — 1 a sequence of intermediate points. Define the quadrature
n—1
I (& %2 - %2
(5.1) S (fidn €)=Y é ). =
i=0 v
n—1
_ f(fz) . T+ Tit1 B
i 2
Whel’ehl =Tl — Ty, 1= O, e, — 1.

The following result concerning the estimate of the remainder in approximating the integral
fab f (t) dt by the use of5,, (f, I,,, &) holds.
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Theorem 5.1. Assume thaf : [a,b] — R is continuous ona, b] and differentiable ora, b) .
Then we have the representation

(5.2) /f D (10.€) + Ry (.1, €)

wheresS,, (f, I,,,€) is as defined ir[ (5]1), and the remaindey (/, 1,,, ) satisfies the estimate

5 T+ T 2
i

n—1 h2 1 5
(5.3) Bu (L OIS I =D |+
i=0 > !
—€

Proof. Apply Theorenj 3.1 on the intervat;, z;,+] for the intermediate point§ to obtain

s (&) zi+aim
/Zi f(t)dt — & 5 - h;

1, g — ttren ) ®
Sghi Z+ T If—Cf"

1 /
< Gl IS = < o2 = Cf

(5.4)

foreachi € {0,...,n —1}.
Summing ovet from 1 ton — 1 and using the generalised triangle inequality, we deduce the
desired estimaté (5.3). O

Now, if we consider the mid-point rule (i.e., we chogse- ““2** above; € {0,...,n — 1})

n—1
— Zf <M) hi,
, 2
=0
then, by Corollary 3]2, we may state the following result as well.

Corollary 5.2. With the assumptions of Theorem|5.1, we have

b
(5.5) /f@ﬁﬂmmm+mmm,
where the remainder satisfies the estimate:
If - ef'n“h2
5.6 1) < o0
(5.6) B (£, 1) 2 e

1f = £f']] 2
< =L 7 ~.
- 4da ;hz
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6. APPLICATIONS FOR SPECIAL MEANS
For0 < a < b, let us consider the means

A=Ad) =" )
=G (a,b) :==Va-b,
2
= H (a,b) := LD
a b
L=1L(ab):= Z o (logarithmic mean),
I = = % (b—a) (identric mean)

and thep—logarithmic mean

bp+1 _ ap+1

L, =L, (a,b) = [(pﬂ)(b_a)] . peR\{-1,0}.

It is well known that

H<G<L<I<A,

and, denotind., := I andL_, = L, the functionR > p — L, € R is monotonic increasing.
In the following we will use the following inequality obtained in Corollary]3.2,

(6.1) ‘f(“b) /f ' 0=

provided0 < a < b.

(1) Consider the functiotf : [a,b] C (0,00) — R, f(t) =t?,p € R\ {—1,0}. Then
F(*57) = oy

b
i [ Hd =),
(I-p)a? if pe€(—o00,0)\{-1},
Hf_éf,H[a,b],oo = {

|1 —p|t? if pe(0,1)U(1,00).

Consequently, by (6]1) we deduce

(1=p)a”(b—a)

A{a,b) if pe(—o00,0)\{-1},
(6.2) mNmm—Lymmkgix
|1_ﬁzgyﬂ)ifp€@JﬂMme
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(2) Consider the functiotf : [a,b] C (0,00) — R, f (t) = 1. Then

1

a-+b
(%)
b
[ 1w
1f = Cf a0 =
Consequently, by (6/1) we deduce

1

dt =
b—a

Al(a,b)’

(a,b)’

QN M~

b—a
L(a,b).
a (7)

(6.3) 0 < A(a,b) — L, (a,b) <
(3) Consider the functioff : [a,b] C (0,00) — R, f(¢) = Int. Then
f (a;b) —In[A(a,b)],
b
bia/ f@)dt =1Inll (a,b)],

15 = 5"y = o {1 (%)

Consequently, by (6/1) we deduce

Y

Ala,b) b—a a b
oo =gy eyl
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