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ABSTRACT. The paper is concerned with the solvability of variational inequalities that contain
second-order quasilinear elliptic operators and convex functionals. Appropriate concepts of sub-
and supersolutions (for inequalities) are introduced and existence of solutions and extremal so-
lutions are discussed.

Key words and phrasessubsolution, supersolution, extremal solution, variational inequality.

2000Mathematics Subject Classificat 085325, 35J60, 35J65, 35J85.

1. INTRODUCTION

We are concerned in this paper with the existence of solutions and extremal solutions of

noncoercive variational inequalities of the form:
) (L(w),v =) = (Gu).v = u) +j(v) = j(w) = 0, Yo € Wy(Q)
u € WyP(Q).

Here() is a bounded region iRY with smooth boundaryL is (the weak form of) the second
order quasi-linear elliptic operator

N
0

1.2) — ZZ:; o [A;(x, u, Vu)| + Ao(z, u, Vu)
and( is the lower-order term (cf[ (2.1) and (R.6)).is a convex functional, representing ob-
stacles or unilateral conditions imposed on the solutions. Depending on the chgicehef
variational inequality[(1]1) is the weak form of an equation or a complementarity problem
that contains the operatdr (L.2) with various types of free boundaries or constraints (cf. e.g.
[14,13,12]).
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2 VY KHoI LE

SinceG may have superlinear growth, the operaterG is noncoercive in general. The solv-
ability of problem [1.1) can be studied by several approaches, for example, bifurcation methods
(cf. [16,[27,[29] 10], etc.), recession argumenits(([4, 2/ 2B, 11|, 21, 22, 20], etc.), variational ap-
proaches ([24, 32, 21], etc.), or topological/fixed point methads ([30, 31], etc.).

We are concerned here with another way to study the solvabilify gf (1.1), based on sub- and
supersolutions. Recession methods have been quite popular recently in studying noncoercive
problems. There are essential differences between these two approaches. Following recession
approaches, the solvability of the problem is usually established by assuming conditions on
asymptotic behaviors (i.e., behaviors when the involved variables are large) of the lower order
terms (e.g.G in problem (1.1)). Problems of typg (1.1) have been investigated in detail by
recession arguments in [21,122]. Improvements on the existence results based on recession
approaches in[2, 28] 1, 21,122] were presented recently in [20].

Compared to other methods, the sub-supersolution approach when applicable (i.e, when sub-
and supersolutions exist) usually permits more flexible requirements on the growth rate of the
perturbing termG (normally, one only needs to know the behaviorstobn bounded inter-
vals). Moreover, based on the lattice structure of the spat®((2), the sub- and supersolution
method could also give insight into the ordering properties of the solution set between the
sub- and supersolutions, and especially, the existence of maximal and minimal solutions. We
refer the reader to [26] of [18] for more discussions on the difficulties arising when the sub-
supersolution method is extended from equations (with natural symmetric structure) to varia-
tional inequalities (without symmetric settings), together with advantages of the method. More
remarks on our approach here fpr {1.1), compared with the recession approach, are given in
Remark4.B.

This paper is the next step of our study plan proposed in [18] on sub- supersolution methods
applied to variational inequalities. In that paper, we consider inequalities on closed convex sets,
that is the particular case whefés the indicator function of a closed convex #ét

0 if uek

J(u) = .
oo If ué¢gK.
However, many interesting problems in mechanics and applied mathematics lead to other types
of convex functionals, for example,

i) = [ wtea@)ds o j(w = [ o ulan(e)ds,

(cf. [12,[11]). Because of the nonsymmetric nature of the problem, sub- supersolution meth-
ods for smooth equations (cf. e.q. [13], [10]l [9], or][15]) and also the argumenitslin [18] for
inequalities on convex sets are not directly applicablg td (1.1). The goal of this paper is to study
the variational inequality (I}1) with more generality on the convex functigriat a sub- su-
persolution approach. The main difficulty we face here is defining sub- and supersolutions for
the inequality[(1.11) in an appropriate way such that the truncation—penalization machinery used
for smooth, symmetric equations and for inequalities on convex sets can be extended to our
nonsmooth, nonsymmetric case. Basically, we need to define sub- and supersolufions of (1.1)
such that: (i) under reasonable conditions, one can show the existence of solutions and extremal
solutions between sub- and supersolutions, (ii) there is some way to find sub- supersolutions or
to check whether a given function is a sub- or supersolution, and (iii) sub- and supersolutions
in inequalities extend those in equations.

To meet these requirements, in the next section, we need to make non straightforward exten-
sions on the usual sub- and supersolution concepts for equations and also on those presented in
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[18] to the more general situation of inequality (1.1) (cf. Definifior] 2.1). In Segfion 3, we prove
several existence results for the inequality(1.1) based on the sub- supersolution concepts in Sec-
tion[d. Itis shown in Theorenis 3.1 and|3.3 that if there exist a subsolution and a supersolution
or merely a subsolution (or a supersolution) and a one-sided growth condition, then problem
(I.7) is solvable. We also consider the existence of maximal or minimal (extremal) solutions,
which are the biggest and smallest solutions| of|(1.1) (in certain ordering) within the interval
between a subsolution and a supersolution (Theoremis 3]2, 3.4). In Section 4, we consider some
examples where one can actually find sub- and supersolutions. Combining with the results in
Section| B, we obtain the existence of nonnegative nontrivial solutions and extremal solutions
in eigenvalue problems for variational inequalities. The first problem is about an inequality
containing a quasilinear elliptic operator and the convex term is given by an integral. By using
constants as sub- and supersolutions, we find conditions such that the inequality has bounded
solutions. The second example is an eigenvalue problem for an inequality that contains the
Laplacian. By using sub- and supersolutions constructed from the principal eigenfunctions of
thep-Laplacian, we show the existence of positive solutions of the inequality.

Compared with sub- supersolution methods for equations or for inequalities on convex sets,
the development of the method for inequalities with general convex functionals (not necessarily
indicators of convex sets) requires some nontrivial adaptation and modifications and new argu-
ments in several places. Note that our presentation here is somewhat related to the results in
[6),18,[7] about sub- supersolution methods for differential inclusions with convex terms given by
certain integrals. The concepts of sub- and supersolutions there are for (pointwise) inclusion are
defined mostly pointwise, while our concepts here are for inequalities and are based on the dual
betweenV () and[IW17(2)]*. An interesting question is to possibly compare the approach
here with that in[[6], 8,17].

2. GENERAL SETTINGS

In this section, we consider the assumptions imposed on the ineqiality (1.1) and next define
sub- and supersolutions for it. We use the notafion= 1W*(Q2) and X, := W, ?(Q) for the
usual first-order Sobolev spaces.[In {1l)s a mapping fromX to X*, defined by

N

ZAi(x,u, Vu)ov + Ao(z, u, Vu)v| dz, Yu,v € X,

=1

where, for eachi € {0,1,..., N}, A; is a Carathéodory function frofd x RV¥*! to R. For
ie{l,...,N}N,

@) (wo- [

(2.2) Ay, u, €)] < agl) + bo(lul~ + [¢[P1),
and
(2.3) | Ao(,u, )| < ar(x) + by (|ul?™" + €]),

for almost allz € Q, allu € R, ¢ € RY with by, b, > 0, ap € LP (Q),a, € L7 (Q), 1 < ¢ <
p*. (As usualp’ is the Holder conjugate gf andp* is its Sobolev conjugate.) Moreover,
N

(2.4) Z[Ai(x,u, &) — Az, v, N — &) + [Ao(z,u, &) — Ag(z, v/, EN](u —u") > 0,

i=1

if (u,&) # (v,¢),and
N
(2.5) > A u, )& + Ao, u, u > a(€ + [ul’) — B(x),

i=1
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fora.e.r € Q,allu € R, £ € RN, wherea > 0 andgs € L'(Q2). The lower-order operatd¥ is
defined by

(2.6) (G(u),v) —/QF(x,u,Vu)vdx,

where F' : Q x R¥*! — R is a Carathéodory function with certain growth conditions to
be specified later. We also assume thas a mapping fromX to R U {oo} such that the
restrictionj|W&,p(Q) is convex and lower semicontinuous Bf*(€2) with non empty effective

domain. Before stating our theorem about existence of solutions, we need to define subsolutions
and supersolutions for inequalities with convex functionals. These definitions extend those
definitions presented in [18] for inequalities on closed convex sets. As seen in the following
definitions, they are more complicated. As usual, we use the notation

u Vv =max{u,v}, uAv=min{u,v}.

and
AxB={axb:a€ A, be B},

whereA, B ¢ W'?(Q) andx € {A,V}. As is well known,IW?(Q) andW,*(1) are closed
under the operationg andA, that is,

u,v € WHP(Q)(resp. Wy P () = u Vv, u A v € WHP(Q)(resp.W, P (Q)).

Definition 2.1. A functionu € W'?(Q) is called al¥-subsolution of[(1]L) if there exists a
functional J (depending om):

J=J,: WH(Q) — RU {oo},
such that
(i) w<00nof
2.7) (il) F(-u,Vu) € LY(Q)

(iii) J(uw) < oo, and

(2.8) Jv V) +J(vAw) < j(v) + J(w), Yo € WeP(Q) N D(j),
and
(2.9) (iv) (L(u), v —w) = (G(w),v—u) +J(v) = J(u) >0, v € ur [Wy”(Q) N D(j)],

(D(j) = {v e X : j(v) < oo} is the effective domain of). We have a similar definition
for W-supersolutiori: @ is a W -supersolution ofl) if there existé = J; : WhP(Q) —
R U {00} such that:

(i) w>00no.
(2.10) (i) F(-,u, Va) e LY(Q)

(iii) J(w) < o0, and

(2.11) JoAT) + J(v V) <)+ J(@), Yo e WyP(Q) N D(j),
and
(2.12) (iv) (L(@),v—1a) —{(G(@),v—a)+J(v) = J(@) >0, v €TV [WyP(Q)ND()].

A subsolution of [(1.]) is a finite maximum & -subsolutions and a supersolution is a finite
minimum of W -supersolutions.
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Suppose there exist a subsolution= max{u, : 1 < i < k} and a supersolution =
min{z; : 1 <1 < m} of (1.1). We assume thdt has the following growth condition:

(2.13) |F (2, u,€)] < as(x) + balg]”'”
fora.e.x € Q, all¢ € RY, all u such thatu,(z) < u < Ty(x)), whereay € L7 (Q), by > 0,
q < p* (p* is the Sobolev conjugate pj, and
uy =min{y,; : 1 <7 <k}, Gp=max{u; :1 <1 <m}.
We conclude this section with some remarks.

Remark 2.1. (i) If « is a solution of[(1.]), then is a subsolution of (1]1), providedsatisfies
the following condition:

(2.14) JoVu)+jlwAu) < jv) +j(u),
forall u,v € WLP(%In fact, if u is a solution of) then it satisfies (i) — (ii). By choosing
(2

J = j, we see tha{ (2]8) follows from (214). df= u A w,w € W;7(), thenv = 0 on 9,
i.e., v € W,"(Q). Hence,[(2.0) is a consequence|of [1.1). Similarl.14) holds, then any
solution is a supersolution.

(i) (2.14) is satisfied for several usual convex functioryalBor example, ifj is given by

(2.15) jtw) = [ vl

E
whereFE is a subset of2 or 992, ¢ : Q x R — R U {00}, is a Carathéodory function such that
(2.16) Y(z,u) > as(x) + bslul®, x € Q, u € R,

whereas € L'(Q) and0 < s < p*. j is well defined fromiV?(Q2) to RU {co} and; is convex
if ¢(z,-) is convex for a.ex € 2. Also, by Fatou’s lemma; is weakly lower semicontinuous.
Letu,v € WP(Q) and denote

U ={zeQ:v(x)<u(x)}, Q={xecQ:v(r)>u)}.

Then,
o Au)+ i vu) = (/Ql+/ﬂ2)w(mu)+(/ﬂ —i—/%)w(v\/u)
o1 =(mem+4y@m+éﬁmw+éﬂmm
= [+ [ vl
— W)+ i)

Hence,[(2.1}4) is satisfied. Note that from (2.16)¢, v) is bounded from below by a function
in L'(Q). Thus, the integrals inj (2.17) are U {co} and we can split and combine them as
done.

(i) If j = Ik, K is a closed convex set W&’p(Q), then we recover the cases considered in
[18]. Moreover, [(2.1j4) holds providel satisfied the condition

(2.18) u,ve K = uAv, uVuveK.

As noted in[[18],[(2.18) is satisfied wheneVe€ris defined by obstacles or by certain conditions
on the gradients. We can also check that by uging [2.15).

(iv) If 5 =0, we have an equation ip (1.1). By choosing-= 0 also, we see thdt (3.8) - (2]111)
obviously hold and[(2]9) - (2.12) reduce to the usual definitions of sub- and supersolutions
of equations. Ifj = Iy as in (iii), then by choosingy = 0, we see that the definition of
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subsolutions in[18] is equivalent to the definition in (i) — (iv) here. Thus, Definjtioh 2.1 is an
extension of that in [18].
(v) By choosing/ = 0 in (2.8) and[(2.p), we see thatifis a subsolution of the equation

(L(u),v) — (G(u),v) = 0, Yo € W,?(Q)

andj(vVvau) < j(v), Yo € Wy P(Q)ND(4), thenu is a subsolution 01). Similar observations
hold for supersolutions.

(vi) Compared to the definitions in [13,/10,/9,/15] 18], the new ingredient here is the intro-
duction of the functional in Definition[2.], which permits more flexibility in constructing sub-
and supersolutions (by choosing differeit

3. MAIN EXISTENCE RESULTS

In this section, we state and prove our existence results for solutions and extremal solutions
of (1.1), based on the concepts of sub- and supersolutions in Sgction 2.

Theorem 3.1. Assume[(1]1) has a subsolutiarand a supersolutiom such thatu < @ and
that (2.13) holds. Then, (1.1) has a solutiesuch that, < v < .

Proof. We follow the usual truncation—penalization technique a5 in[[13,19, 15] or [18]. There-
fore, we just outline the main arguments and present only the different points and modifications
needed for our situation here. Liebe defined by (cf/[18])

[t —u(x)]et  if > u(x)
(3.1) b(x,t) = 0 if u(x) <t <u(x)
—[=t+u(x))t if t <u(x).
We have the following estimates (cf. (49) and (50).in/ [18]):
bz, 8)| < as(@) + est|",
with a3 € L7 (Q), and
[ bz el =
forallu € L%(Q), where the:;'s (: = 3, 4, 5) are positive constants independent.ofVe define
Ty (1<i<k, 1<I0<m)andT by:
w,(x) if wu(z) <
Ty(u)(z) = u(z) if w(z) <ulz) <ulo)
w(z) it u(z)>w(x),
and
u(z) if u(x)

<
T(u)(z) =< u(z) if wulr)<ulr) <u(z)

Let us consider the variational inequality

(3.2) (L(uw) + BB(u) = Cu),v —u) + j(u) = j(u) >0, Yo € Wy"(Q)
' we Whe(Q),
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with 5 > 0 sufficiently large. Consider the (nonlinear) operatBrandC given by

(B(w), §) = / b, )6,

Q
and

(33)  (Clu).¢) = / F(T(u), VT())
+Z|F W), VTu(u) — F( T(u), VT(0))[16,

vu, b€ Wy (Q).

Let us prove that/ = L + 3B — C is pseudo-monotone div7(2). In fact, assume,, — w
in WP (Q) ("—" denotes the weak convergence) and

(3.4) lim sup(H (w,), w, —w) < 0.

n—oo

We show that
(3.5) lim (H (wy,),w, —v) > (H(w),w —v), Yo € WP(Q).

Since the embedding’!#(Q2) — L?(Q) is compact, we have,, — w in LP({2). By passing
to a subsequence, if necessary, we can assume that there is a fériatibf(2) such that

w, — w a.e.inf), and
(3.6)

|w,| < h a.e.in, ¥n.

Since the sequendev, } is bounded iV 1?(Q), the sequence{sF T(wy), VI (wy,))} and
{F(-,T(w,), VT (w,))} are uniformly bounded ir.? (Q2). From (3.3), it follows that the se-
quence{ (3B — C)(w,)} is bounded in. (). (3.8) thus implies that

(BB — C)(wy), w, —w) — 0.
Hence, from[(3.4),
(3.7) lim sup(L(w,,) — L(w), w,, — w) = limsup(L(w,), w, —w) < 0.

Since{A;} (i = 0,1,...,n) satisfy [2.2) —[(2}4), it follows fron] (3]6) anfl (3.7) that, — w

in Wr(Q). ConsequentlyH (w,) — H(w) in L7(Q) and oIIows. This shows that

L + 6B — C is pseudo- monotone Using arguments similar to those in [18], we can prove
that L + 6B — C'is coercive onW P(Q2). Moreover, this mapping is obviously continuous
and bounded. Classical existence results for variational inequalities (cf. €.0. [23 14]) glve the
existence of at least one solutienc W, *(Q) of (3.4). Also, it is clear thatL e D

prove that < u. Letu, (1 < ¢ < k) be all’- subsolutlon Since € W7 (Q .)

with u = u, andv = u A u gives

(), ug AN —u,) = (Guy,), uy Au—u,) + J(u, Au) = J(u,) > 0.
Sincey, A u = u, — (u, —u)", the above inequality becomes
(3.8) —((uy), (g = u)") = (Gluy), (g — u)") + J(uy Au) = J(u,) = 0.

On the other hand, singg vV u = 00nd%, v = u, Vu € W,y P (Q). Letting v into ) and
noting thatu, V v = u + (v, — u)™, we get

(39) (L(u) + BB(u) — C(u), (uy — u)*) + j(u, V u) — j(u) > 0.
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Adding (3.8) and[(3]9), one gets
(L(u) — L(yy), (uy — u)") + (Glu,), (uy, —u) ")

+(BB(u) = C(u), (u, — w)")j(u, v u) = j(u) + J(u, Au) = J(u,) > 0.

q

From [2.8),
J(ug Vu) = j(u) + J(uy Au) — J(u,) < 0.

q) =
Using the integral formulation aB, C' andG, we get
(3.10)

(L(u) — L(uy,), (u, —u)*) + / F(,ug, Vug) (u, —u)™ + ﬁ/ﬁb(%U)(uq —u)”

—/Q F(z,T(u),VT(u)) + Z |F(z, Ta(u), VTy(u)) — F(z, T(u), VT (u)) | (u, —u)*
> 0. |
We have
(L(w) — L(u,), (u, — ) w/ (1, — )
+/Q F(u,) — F( T(U))—ZIF( Ta(u)) = F( T()]| (¢ —u)" =0
Using
F(z,u,(z)) — F(z,T(u Z |F(z, Ty (u — F(x,T(u)(z))|
< F(z, uy(x)) — F(x T(U)(l’)) — [F (2, T, (u)(x)) — F(z,T(u)(z))]
= F(z,u,(z)) = F(z,T(u)(x)) — |F(z,u,(x)) — F(z, u(z))|
<0,
we obtain
@1y [ |F )= SIFCTw) — FC T (- )t
= [ |Fm) = FCT) = S PG Tw) — P T )*
<0. q ’
Using the fact that
(L(u) — L(yg), (u, —u)")
- _/{ . {Z[A (z,u,, Vu,) — Ai(z, u, Vu)|(9u, — O;u)
+[Ao(z, 1y, Vu,) — Aoz, u, Vu)](u, — u)]}

<0,
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(by (2.4)), we have fronj (3.10) and (3]11) the following estimate

0 < [ ¥, -
- /{uq>u}b<-,u><gq—u>

= - (u— u)q’l(z_ﬁq —u) (sincea < u, < u)
{u,>u}

|hUS,
= u, —u)4dx
0 /Q[(_q )T ]d,

and(u, —u)™ = 0a.e.in®, i.e.,u > u, a.e.inf). Using these arguments for alkc {1,... k},
we see thatt > u. We can show in the same way that< @w. Now, from [3.1), we have
b(xz,u(x)) =0 foralmost allx € €2, i.e.,B =0. Also, T;(u) = T'(u) = u, for all 7,/ and thus

(C(w), ) = / Fleyu, Va)p = (G(u), ).

Hence, since: satisfies[(3]2), it also satisfigs ([1.1), i.e.is a solution of [(I.]l) and < u <
u. O

We now prove thaf (I]1) has a maximal and a minimal solution within the interval between
andu.

Theorem 3.2. Assume{(1]1) has a subsolutiorand a supersolutiom such that: < @. More-
over, [2.18) and[(2.14) hold. Thef, (1.1) has a maximal solutioand a minimal solution.
such that

(3.12) u<u, <u <7,
that is,u. andu* are solutions of (1]1) that satisfy (3]12) and.ifs a solution of[(1.]l) such that
u <u <uthenu, <u <u*onf.

The proof is similar to that of the particular cage= Iy, which was already presented in
[18]. Therefore, it is omitted.

As in the case of variational inequalities on convex sets, we still have existence of solutions
and extremal solutions provided only subsolutions (or supersolutions) exist together with certain
one-sided growth conditions. We have in fact the following result.

Theorem 3.3. Assume{(1]1) has a subsolutiorand £ has the growth condition

(3.13) |F(,u,6)| < as(x) + bs(|ul” + |€]%)

fora.e.z € Q, all u such thatu,(z) < u, all ¢ € RY, where0 <o <p—1, a € L¥(Q), and
uy = min{u; : 1 <i < k}.

Hence, [(1.]1) has a solutiansuch that: > u.

The idea of the proof of this result is a combination of Theofem 3.1 stated above and an
extension of Theorem 1 in [18]. We omit the proof and refer the reader to [18] for more details.

By looking closely at the set of solutions ¢f (L.1), one can improve Theprem 3.3 and get the
following stronger result.
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Theorem 3.4. Under the assumptions of Theorem|3[3,](1.1) has a maximal solitiand a
minimal solutionu, such that

(3.14) u<u, <u <7,

that is,«, andu* are solutions of (1]1) that satisfy (3]14) and.ifs a solution of[(1.]ll) such that
u <u<uthenu, <u <u*onf.

Proof. The proof follows the same line as that in Theorem 2] [18]. A main ingredient of the
proof is the boundedness of the set

S ={ueW,?(Q):u>u, uis asolution of [T]1)

in Wol’p(Q). Proving thatS is bounded requires some different arguments from those in [18].
From [1.1) withv = ¢ being a fixed element i®(;), we have

(L(u), ¢ —u) = (G(u), ¢ —u) +j(¢) — j(u) = 0.

Therefore,
(L(u),¢) = /Q ZAi(a:,u,Vu)(’?iu+A0(ac7u,Vu)u
> o [(Vup + )~ [ sar by @)
> Oé\|UH€V01,p(Q)—C-
Hence
[(L(u), 9)| < ZHA 4, V)| o @) 1039 | 2o () + ([ Ao (-, w, V) [| 1 ) 19| 20 ()]

IA

c Z llao + bolulP ™" + bo [ Vul” | Lo o) 10:8l] o o)

Hlar + oufulf ™ + [ Vul" ™ 10l o)
c(1+ [[ullfo ) + VUl )
< (L [[ullfying):
(c denotes a generic constant). From (8.13), we have
(G (), 9)] < (1 + [[ullfne)

IN

and

(G (u), w)| < eI+ [[ullfs@) lullwing) < e(1+ [ullfg)-
Sincej is convex and lower semi-continuous, there exisb, € R such that
Hence,

allullfyipy — ¢ < e(L+ [l + Il + lullwro)-

Sinceo < p, this shows thaful|yy1.sq) < ¢ for all solutionSu of (1.1) such that: > u. Hence,
S'is bounded iV 'r(Q).
The remainder of the proof is similar to that of Theorem 3.n [18]. O

Remark 3.5. Note thatifA; = A;(z,&) (i = 1,..., N) do not depend on, then we can choose
Ay = 0 and all the results stated above still hold.
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4. SOME EXAMPLES

We now apply these general results to establish the existence of solutions and extremal solu-
tions in some particular variational inequalities.

4.1. In this example, we study a quasi-linear elliptic variational inequality that contains a
"unilateral” term given by an integral. Assume thatfet 0,1,..., N, A; satisfies

(4.1) Ai(z,u,0)=0
fora.e.x € ), allu € R and consider the variational inequality

(L(u),v —u) — )\/ F(z,u, Vu)(v —u) 4+ j(v) — j(u) >0, Vv e WyP(Q)

(4.2) Q
ue WP (Q).
Here,L and A are defined as it (3.1], (2.2), ard (2.3) of Secfibn & a real parameter and
@3) i) = [ o),
wherey : Q@ x R — R U {oc} is a Carathéodory function such that

wherea € L'(Q),b > 0. It follows from this inequality that forw € WP(Q), o (z, u(x))

is measurable and sincea(z) — blu(z)[P € L'(), j is well defined and(u) € R U {co}.
Assume also that for almost all € Q, ¢(z,-) is convex. Hencej is convex onW?(Q). It
follows from Fatou’s lemma thatis lower semicontinuous on that space. The following lemma
shows the existence of constant sub- and supersolutiops pf (4.2).

Lemma4.1. (a) Assume&3 € R, B < 0is such that
(i) F(z,B,0)>0 fora.e.x € Q

(4.5) /
(ii) F(-,B,0) € LT(Q)
and
(4.6) (i) (. B) <y(zv), Yo < B,

thenB is a subsolution of (4]2).
(b) Similarly, ifA € R, A > 0and

(i) F(x,A,0)<0 fora.e.x € Q

4.7) )
(i) F(-,A,0) € L1(Q)
and
(4.8) (i) (e A) > Pz,0), Yo > A,

then A is a supersolution of (4]2).

Proof. (a) Choosing/ = 0, we see that. = B satisfies conditions (i) — (iii) of Definitioh 2.1.
Moreover, [[2.B) becomes, in this case,

(4.9) jvV B) <j(v), ve WyP(Q) N D(j),
ie.,

L¢(x,v(x)v3)dxg /Q@/J(x,v(x))dx.
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In view of (4.3) and[(4.14), this is equivalent to

(4.10) Y(z,v)dz +/ Y(z, B)dx

{zeQ:v(z)>B} {zeQv(z)<B}

§/ w(x,v)dx—i-/ Y(z,v)d.
{zeQ:v(z)>B} {zeQw(z)<B}

Now, from (4.6), we have
Y(z, B) < Y(z,v(x)) on{zx € Q:v(z) < B}

and thus

/ ve.B) < [ vl
{zxeQ:v(z)<B} {z€Q:v(z)<B}

which implies [4.1D) and thuf (4.9).
To check[(2.D), we assume that= B A w with somew € W, () N D(j). From [4.1) and
the definition ofL, L(B) = 0. Sincev — B < 0, we have from[(4]5)(i) that

(G(B),v— B) = /QF(x,B,O)(U — B)dz <0.

This implies [2.9), completing the proof of (a). The proof of (b) is similar. O

By using Theorems 3.2, 3.4, and Lemmd 4.1, we have the following existence redultffor (4.2).
Theorem 4.2. (a) Assume3 < R satisfies[(4.5)y satisfies[(4)6), and that

|F' (2, u,§)| < az) + b(|ul” + [¢]7)

forae.r € Q, u> B, £ € RV, with0 <o < p—1,a € L¥(Q). Then,[(4.R) has a minimal
solutionu, and a maximal solutiom* such thatB < u, < u*.
(b) Assumed, B € R (A > B) satisfy [(4.5) -[(4]8) and that has the growth condition

|F(z,u,6)| < alx) +b(EP7)

foraexz € Q, ¢ € RY, u € [A, B] withq < p*, a € LP(Q). Then, ) has a minimal
solutionu, and a maximal solutiomn* such thatB < u, < u* < A.

Remark 4.3. As shown in Theorein 4.2 (see also Theofem 4.5 below), comparing sub-supersolution
with recession method, we note that more flexible conditions are usually required in the first
method. In fact, in Theorefn 4.2, if there ate B € R satisfying [(4.5) —[(4]8), then the growth
condition forF' is limited to onlyu € [A, B]. On the other hand, when recession arguments are
used (cf. e.g. Theorems 3.4, 3.16lin [2], Theorems 2.3, 413 in [5], Theorems 2.5, 4.4, Corollary
6.10 in [21], or Theorems 1, 2, 3 in_[20], etc.) conditions on behaviors of the funct@nal
containingF' at infinity are assumed, which is completely different from our approach here.
Another advantage of the method here is that we obtain, in addition to the solvability of
(1.7), ordering properties of the solution sets, especially the existence of maximal and minimal
solutions. This cannot be obtained by recession arguments. However, sub-supersolution method
works only in function spaces with some lattice structure (sudfas(2)). That is the reason
why the method is normally restricted to problems with second-order operators, s{ici as (1.1).
Recession methods, on the other hand, are applicable to higher order problems.
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4.2. We consider in this example a variational inequality that contains tiaglacian, that is,
the inequality[(T.]L) with

(L(u),v) = / |VulP~2Vu - Vo dur,
Q
In this caseA; = |Vu|P20u, (1 <i< N)andA, = 0. The coefficientsd; (i = 0,1,..., N)
clearly satisfy[(2.R) and (2.3). For eagh> 0, suppose that the function
(4.11) x = sup{|F(z,u,&)|:0<u <K, |{| <K}

belongs taL¢ (). We also assume the following behaviorfz, u, ) whenw is very small
or very large:
F(z,u,§) A F(z,u,§)

(4.12) lim inf > 22> limsup

u—0+Jel0  up~l AT uogery wPTh

where)\ is the principal eigenvalue of theLaplacian,

Ao = inf { (/Q \u|pdx> B /Q \VulPdz : u € WP (Q) \ {0}} :

Let ¢ be the (unique) eigenfunction correspondingcsuch thaty(z) > 0 for all x € Q. (It

is known, see e.gl [25], that, ¢ C*(Q) for somea € (0, 1).) By choosing/ = 0 and using

the arguments ir [17] (Lemma 1), we can show that the funatiene¢, satisfies[(2]9) for all

¢ > 0 sufficiently small. On the other hand, etbe a bounded open region that contdinand

let \ be the principal eigenvalue of thelaplacian orf) and¢ the corresponding eigenfunction

on ) such thaty > 0 on ). Then, we can prove that = R<;5|Q satlsfles-Z) (with/ = 0)

for R > 0, sufficiently large. The proofs of these statements are somewhat lengthy; we refer
the reader ta [17] for more details. The following lemma is about the construction of sub- and
supersolutions o 1) based on the eigenfunctianande of the p-Laplacian.

Lemma 4.4. (a) If there exists”; > 0 such that) is nonincreasing ofi—oo, C), i.e
(4.13) Y(x,u) < Y(x,v), fora.e.x € Q, forall u,v such thatv < u < (1,

then, fore > 0 sufficiently smally = e¢, is a subsolution of (4]2).
(b) Similarly, if there existg’; > 0 such that) is nondecreasing o, c0), i.e.,

(4.14) Y(x,u) > Y(x,v), fora.e.x € Q, for all u, v such thatu > v > Cy,
then for R > 0 sufficiently largen = RQ~5|Q is a supersolution 02).
Proof. (a) We need only to check (2.8), i.e.,

J(WV edo) < j(v), Yo € Wy(Q) N D(j).

This is equivalent to

/ (e, con)ds + [ b, v)da
{zeQv<edo} {zeQ:v>epo}

< (/ +/ )@/J(x,v)dx,
{zeQv<edo} {z€Qw>ego}
that is,

(4.15) /{ . ¢}1/1(x,e¢0)d:c§/ Y(z,v)de.

{zeQv<epo}
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Now, sincep, € L>=(2), e¢p(z) < Cy, fora.ex € Qfore > 0small. Hence, for < epy < C1,

(4.13) impliesy(x,v(z)) > ¥(x, edo(x)) for a.e.x € Q. This implies [(4.15). Henceg, is a
subsolution off(4.2). The proof of (b) is similar. O
As a consequence of Lemina}4.4 and Thedrern 3.2, we have the following result.

Theorem 4.5.Under the conditions (4.12) and (4]11), there exist a subsolutiand a super-
solutionu* of (4.2) such that

(0 <)edo < u. < u* < Rolg,
wheree > 0 sufficiently small andz > 0 sufficiently large. In particular, iff" has the growth
condition [4.1]) and\ satisfies[(4.12), ther], (4.2) has a positive solution.

Remark 4.6. (a) (4.2) can be seen as an eigenvalue problem for a variational inequality. We
have proved that fok in certain appropriate interval (given Hy (4/12)) , then](4.2) has positive
eigenfunction.

(b) One canreplacg (2.4) by a somewhat different condition, concentrating only on the higher-
order coefficientsd; (1 < i < ). Namely, we assume that, = 0 and instead 04),

N

> [Ai(w,u, ) — Ag(, !, ))& — &) >0,

=1
fora.ex € Q,allucR,allg ¢ € RY, € £ ¢, and in[2.5),

N
ZAz(x7u7§)§z Z a|§|p - 5’ a.e.r € Q7 Vu € ]R7 V§ € RN?

=1
(o > 0). Also, we need a Hdlder-continuity type of assumption with respeet to
|Ai(z,u,§) — Ay, 0/, €)| < k() + [l + [P~ + P w(|u — o)),

fora.e.x € Q,allu, v’ € R, all¢ € RY, wherew : [0, 00) — [0, 0c) satisfies

(cf. [7]). Assume also thatis given by an integral:

i) = [ o),
wherey satisfies the following growth condition (instead [of (2.16)):
[Y(z,u)] < ag(z) + bs|ul®, a.e.x € Q,Vu € R,

with a3 € L}(Q2), 0 < s < p*. It can be checked thatis continuous. By using the arguments
in [7] (see alsol[18]), we can prove the following result:
Theorem 4.7.1f u; andu, satisfy [2.9) with/ = j, thenu = max{u;, u,} also satisfied (2]9)
with J = j.

It follows that if uy, u, are solutions of (1]1), themax{u,, u,} satisfies|(2]9).
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