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ABSTRACT. For functions belonging to each of the subclass€s (o) and NV («) of normal-

ized analytic functions in open unit digk which are introduced and investigated in this paper,

the authors derive several properties involving their generalized convolution by applying certain
techniques based especially upon the Cauchy-Schwarz and Hdélder inequalities. A number of
interesting consequences of these generalized convolution properties are also considered.
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1. INTRODUCTION AND DEFINITIONS

Let .4, denote the class of functiorfsz) normalizedin the form:

(1.1) F)=z+4) a2  (neN\{1}; N:={1,2,3,..}),

which areanalyticin the openunit disk
U={z:2€¢C and |z] <1}.
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2 SHIGEYOSHI OWA AND H.M. SRIVASTAVA

We denote byM,, («) the subclass ofd,, consisting of functions (z) which satisfy the in-
equality:

2f'(2) ,
(1.2) E)‘i(f(z)><a (a>1; z€U).
Also let \V,, («) be the subclass o4, consisting of functiong (z) which satisfy the inequality:
Zfl/ (Z) .
(1.3) 9‘{(1+ f’(z)><a (a>1; z€U).

Forn = 2andl < a < g, the classes\/; (o) and N, (o) were investigated earlier by
Uralegaddiet al. (cf. [5]; see alsol[[4] and [6]). In fact, following these earlier works in
conjunction with those by Nishiwaki and Owé [1] (see also [3]), it is easy to derive L¢mina 1.1
and Lemma 1]2 below, which provide the sufficient conditions for functjprs A,, to be in
the classesvVt,, (o) and N, («), respectively.

Lemma 1.1.If f € A, given by(1L.1) satisfies the condition:

b 1
(1.4) (k—n)lag] S a—1 (1<a<n; ),
k=n

thenf € M,, (a).
Lemma 1.2.If f € A, given by(1.1) satisfies the condition:

1
(1.5) Zk —a)la] Sa—1 <1<o¢<n; >,

thenf € N, ().
For examples of functions in the classes, («) and\,, («), let us first consider the function
¢ (z) defined by

(1.6) +Z< kﬁ_l) a))zk,

which is of the form[(1.]1) with
n(a—1)
k(k+1)(k—a)

(k=n,n+1,n+2,...),

so that we readily have

o0

(1.8) ;( )|ak|—n2(——k—+1)

Thus, by Lemma 1|1, € M, («). Furthermore, since
(1.9) f(z)eN, (o) = 2f'(2) € M, (a),
we observe that the functian(z) defined by

o - n(a—1) A
(1.10) Y (2) '_Z+;<k2(k+1)(k—a))z

belongs to the clas¥/,, (a).
In view of Lemmd 1.1l and Lemnja 1.2, we now define the subclasses

M (o) Cc M, (a) and N (o) CN,(a),
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which consist of functiong (=) satisfying the condition$ (1.4) arld (IL.5), respectively.
Finally, for functionsf; € A,, (j = 1,...,m) given by

(1.11) fj(z):z—l—ZakJ 2" (j=1,...,m),

the Hadamard product (or convolution) is defined by

(1.12) (fro- fm) (2) = +Z(H%>

n \j=1

2. CONVOLUTION PROPERTIES OF FUNCTIONS IN THE CLASSES M () AND N¥(«)

For the Hadamard product (or convolution) defined[by (1.12), we first prove
Theorem 2.1.1f f; () € M}, (a;) (j =1,...,m), then
(frx-x fm) (2) € M (8),
where
(n—1) HT:1 (a; — 1)
[[2 (n—ay) + 1155 (0 — 1)
The result is sharp for the functiorfs(2) (j = 1,...,m) given by

(2.2) fj(z):z—|—< )z” (j=1,...,m).

Proof. Following the work of Owal[2], we use the principle of mathematical induction in our
proof of Theoren 2]1. Lef; (z) € M}, (a1) and f> (z) € M? (o). Then the inequality:

(2.1) B=1+

Oéj—l

n—aj

(k—aj)lap;| So; =1 (j=1,2)
implies that

(2.3)

Thus, by applying the Cauchy-Schwarz inequality, we have

2

20 g | x|
_1) Al |ak,

2(2& ) (B2

k=n

0[1—1

)\am) <1

3 (’“ 5) (] aa] < Z 1; 222__0‘12; (o] anal,

k=n

Therefore, if

that is, if

\/Naka] lag2] < (z : ;) \/Eil__ai; EZQ__O%) (k=nn+1n+2...),
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We also note that the inequalify (P.3) yields

a; —1 )
\/|ak,j|§ kj—m =12 k=nn+1n+2,...).
\/ j

Consequently, if
¢@n—n@m—1)<5—1¢w—ag@—ag
(k—al)(k—ag):k‘—(S (041—1)(0(2—1)7

k—96 < (k'—Oél)(kZ—OéQ)
d—17 (g —1)(ag —1)
then we havé f; « f») (z) € M, (9). It follows from (2.4) that
(k—1)(c1 — 1) (e — 1)
(k’ — O[l) (kﬁ — O./Q) + (a1 — 1) (O./Q — 1)
Sinceh (k) is decreasing fok = n, we have
(n—1)(a; — 1) (g — 1)
(n—ai)(n—a)+ (a; — 1) (ag — 1)’
which shows thatf; x f») (z) € M* (0), where
(n—1)(a; — 1) (g — 1)
(n—ai)(n—ay)+ (ag —1) (g — 1)

that is, if

(2.4) (k=nn+1,n+2,...),

d=1+

§>1+

=14+

Next, we suppose that

(frx--x fm) (2) € M (7)),

(n =TI (g — 1)
HT:1 (n—ay) + HT:1 (aj—1)

Then, by means of the above technique, we can show that

(frx- % fnga) (2) € M, (B),

where

vi=1+

where
_ (n=1)(y=1) (@mi1 — 1)
(2.5) P T =) + 0 - D (@me 1)
Since
=D (- 1)
(v = 1) (ms1 — 1) = H;”Zl (n—ay) + H;nzl (o — 1)
and

) — = DIL (0= )
P T (= ag) + T (o — 1)
Equation[(2.p) shows that

(n— )T (o — 1)
T T ) T oy - 1)
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Finally, for the functionsf; () (j = 1,...,m) given by [2.2), we have

H(aj )>2”22+Anz”,
n—aqj;

j=1
where
_ ﬁ (O‘J — 1)
o1 n—aq;
It follows that
k—

> (55 =1

k=n 6
This evidently completes the proof of Theorem|2.1. O

By settinga; = a (j = 1,...,m) in Theorenj 2.1, we get
Corollary 2.2. If f; (2) € M} () (j =1,...,m), then

(fr- o fm) (2) € M (8),

where
(n—1)(a —1D"

(n—a)"+ (a—1)"
The result is sharp for the functiorfs (z) (j = 1,...,m) given by
a—1 )
fj(z)—z—i-( )z” (j=1,...,m).

n—uo

B=1+

Next, for the Hadamard product (or convolution) of functions in the chg$$z), we derive
Theorem 2.3.1f f; (2) € N} (o) (j = 1,...,m), then

(e fu) (2) €N (B).
(n— DI, (0~ 1)

nm-l H;n:1 (n—a;) + H;n:1 (a; — 1)
The result is sharp for the functiorfs(z) (j = 1,...,m) given by

(2.6) fﬂd—z+<—%:i—)z” G=1.....m).

n(n— a;)

where
B=1+

Proof. As in the proof of Theoremn 2.1, fof; (z) € N (o) and f2 (z) € N (a2), the follow-
ing inequality:

= (k(k—=9§
> (%) |ag] laz| =1

k=n
implies that(f; = f2) (z) € N (8). Also, in the same manner as in the proof of Thedrer 2.1,
we obtain

(k=1) (01 = 1) (az = 1)
k(k—oaq)(k—a2)+ (a; — 1) (ag — 1)
The right-hand side of (2. 7) takes its maximum value foe= n, because it is a decreasing
function of k = n. This shows thatf; * f>) (z) € N (§), where

n—1)(a; — 1) (g — 1)
n(n—a)(n—oa)+(a—1)(ag—1)

27) =1+

(k=n,n+1,n+2,...).

§=1+
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Now, assuming that

(fro--x fm) (2) €N (7),

where
. (n= DI (0 = 1)
nm-1 H;n:1 (n—ay) + H;n:1 (aj — 1)
we have
(frx-x fng1) (2) €N, (B),
where

(n—=1 (=1 (@mn —1)
n(n—7)(n—amn) + (v = 1) (ama — 1)
(n = DI (05— 1)
nn [T (= ag) + T (o = 1)

Moreover, by taking the functiong () given by (2.6 ), we can easily verify that the result of

B=1+

-1+

Theorenj 2.3 is sharp. O
By lettinga; = a (j =1,...,m)in Theoren. we obtain
Corollary 2.4. If f; (z) € N (a) (4= m), then

(fi - &MM@EA@W%

where
(n—1)(a—1)"
nmt(n—a)"+ (a—-1)"
The result is sharp for the functiorfs(z) (j = 1,...,m) given by
a—1 )
fj(z):Z+(—)Zn (j=1,...,m).

n(n— )

f=1+

Now we turn to the derivation of the following lemma which will be used in our investigation.
Lemma 2.5.1f f (z) € M (a) andg (2) € N (B), then(f * g) (z) € M (v), where
(n—1(@-1)(E-1)
nn—a)n-7F+(@-1)(F-1)
The result is sharp for the functiorf§z) andg (=) given by

f@):z+(::;>ﬂ

vy:=1+

and
g@):z+<g%2%§)ﬂ.
Proof. Let
f@y:z+§§%zkewqgn
and :

g(z):erZbkzkE/\/’;(ﬁ).

k=n
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Then, by virtue of Lemmpa 1] 1, it is sufficient to show that

k
2 : (—”) ag| |bx] < 1
Y

k=n
for (f = g) () € M (7). Indeed, since

and

if we assume that

SN —a) (k- p)
> (=2 )\akuwz =~ I,

k=n

so that

k—n (a—1)(B-1)
then we prove thatf x g) (z) € M (). Consequently, ify satisfies the inequality:
(k=1 (a=1)(B-1)
k(k—a)(k—p0)+(a—-1)(F—-1)

then(f x g) (z) € M (7). Thusitis easy to see thgt * g) (z) € M () with v given already
in LemmaZ.b. O

By combining Theorerp 211 and Theorém|2.3 with Lenima 2.5, we arrive at
Theorem 2.6.1f f; (2) € M}, (oj) (j =1,...,p)andg; (z) e N} (5;) (j =1,....q), then

(frx-* fyxgir---%gy) (2) € My (7),

Vag| |by| = (7—1)\/1{:(1{—&)(]{:—@ (k=n,n+1n+2,...)

vy 1+ (k=nn+1,n+2,...),

where ( " -
721"‘”(”_(1)( ) (a—1)(B-1)
_ (n = DI (o = 1)
(28) a=1+ é):l (TL a]) + l—IJ:1 ( 1)7
and
(2.9) =1+ (n— 1T} (8, — 1)

T, (= 0) + 1 (3~ 1)

The result is sharp for the functiorfs(z) (j =1,...,p) andg, (2) (j =1,...,q) given by

(2.10) fi(2) =2+ (zj__aD 2 (j=1,...,p)
and
(2.11) gj(z>:z+(£)zn G=1,....q).
n(n—p)
Foroy =a(j=1,...,p)ands; = 5 (j = 1,...,q), Theorenj 26 immediately yields
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Corollary 2.7. If f; () e M (a) (j =1,...,p)andg; (2) e N (8) (j =1,...,q), then
(froeox fyrgrs gy (2) € My (),

where
_ (n—1)(a—-1)"(B—1)
F T g gy e P L
The result is sharp for the functiorfs (z) (j =1,...,p) andg; (2) ( =1,...,¢) given by

(2.12) fﬂ@:z+(z:;>%l (G=1,...,p)
and
(2.13) gj(z):z—l—(%) 2" GJ=1,...,9).

We also have the following results analogous to Thedrein 2.6 and Corollary 2.7:
Theorem 2.8.1f f; (z) € MZ (o) (j =1,...,p) andy; () e N (5;) (j =1,...,q), then
(fisox fyxgix-xgy) (2) €NG (),
where
(n—1(a-1)(F-1)
(n—a)(n=0)+(a-1)(F-1)

a and j are given by(2.8)) and , respectively. The result is sharp for the functigingz)
(j=1,...,p)andg; (z) (j = 1,...,q) given by(2.10) and (2.11)), respectively.
Corollary 2.9. If f; (z) €e M () (j =1,...,p)andg; (z) e N () (j =1,...,q), then

(frx-oox fyrgrr---xgg) (2) €N (7)),

(2.14) v=1+

where
(n—1(a=-1"E-1"
ni T (n =) (n =0+ (a = 1P (5= )7
The result is sharp for the function$ (z) (j =1,...,¢) andg;(z) (j =1,...,q) given by

(2.12) and ([2.13)), respectively.

(2.15) vy=1+

3. GENERALIZATIONS OF CONVOLUTION PROPERTIES

For functionsf; (z) (j = 1,...,m) given by [1.11), thgieneralizectonvolution (or thegen-
eralizedHadamard product) is defined here by

(3.1) (fro-- o f)(2) =2+ Z ( (a,w»)”lj) P

k=n \J

Our first result for the generalized convolution defined[by]|(3.1) is contained in
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Theorem 3.1.1f f; (2) € M}, (a;) (j =1,...,m), then
(fro---ofm)(z) € M (0),

where

(3.2) T o U

[T (n = O‘j)pj + 1T, (e = 1%

n—1 “ ozj)
- - Z)-1]=2.
Hj:l (o — 1) <Z <pj )
The result is sharp for the functiorfs (z) (j = 1,...,m) given by

(3.3) fj(z)zz—i-(aj_l‘)z” G=1,...,m).

and

Proof. We use the principle of mathematical induction once again for the proof of Th¢orgm 3.1.
Since, forf; (z) € M (a1) and fy (2) € M (),

> ]’C—O./j .
Z(aj_1)|ak,j|§1 (=12,

k=n

we have

54 H(Z{<a _i)”rak,j\%} ) <1

Therefore, by appealing to the Holder inequality, we find frpm|(3.4) that

2
1 S — 1\ r
(3.5) JJIRE gH(O‘J ) (k=nn+1,n+2,...).

Now we need to find the smallesf(1 < § < 1) which satisfies the inequality:

X k-6 2 1
> (m) (Hm,jw) <1
k=n J=1

By virtue of the inequality{(3]5), this means that we find the smafl¢st< ¢ < “*) such that

kZ(k =) <H|ak]|%) <Z(k ) (H(k_al);j) <1,

that is, that

k=6 2 (k—a;\#
FTO < AR —
5_1:1_[( _1) (k=nn+1,n+2,...),

J. Inequal. Pure and Appl. Math3(3) Art. 42, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10 SHIGEYOSHI OWA AND H.M. SRIVASTAVA

which yields

1
k=T, (o —1)%
( ) T2 (0 — 1) : (k=nn+1,n+2,...).

d=21+ ; < ; -
Hj:l (k—ay)m + Hj:l (aj —1)7

Let us define

h(k) = bl . (k=n).

[T, (k= o)) + Ty (o — D)7 -
Then, for the numerata¥ (k) of 1’ (k), we have

1 1

N (k)= (a1 = 1) (g = )72 — (k —ar)n (b — )2
k—1 k—1
( (k’—OéQ)—f— (k?—(l/l)—(k’—aél)a{?—OéQ))
p1 P2
< (o =D (@ = 1) = (k—an)mn ' (k—az)?
1 1
. (—(k’—CYQ)(CYl_1)+_(k_a1)(a2_1>>'
b1 P2
Sincek = nandl < a; < 2%, we note thak — a; > a; — 1 (j = 1,2). This implies that

1 1

N (k) € — (k= a)s ™ (k- ag)m

1 1
-(p—l(k—ag)(al—1)+p—2(/<:—041)(042—1)—(@1—1)(@2—1)>

1 1

< —(k—a)n ' (k—ag)r”

. (pll(n—az)(al—1)+pl2(n—a1)(a2—1)_(a1_1)(a2_1))
= (k—a)m (k- ag)m ! {(n— 1) <% - % — 1) —2(a1 — 1) (g — 1)}
=0,

by means of the condition of Theordm [3.1. This implies thé&t) is decreasing fok = n.
Consequently, we have

(n—1) H§:1 (aj — 1)% |
[T (n =) + T (a; = 1%

Thus the assertion of TheorémI3.1 holds true wiegs 2.
Next we suppose that

§=1+

(fro---ofm)(2) € M (),

where

(n = DI} (0 — 1™
H;'n:1 (n—a;)" + H;n:1 (aj —1)7
Then, clearly, the first half of the above proof implies that

(fro--- o fmi1)(2) € M (D)

y=1+
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with

__1 _1
(n=1)(y = 1) Pt (aguyy — )Pt

f=1+ —_1 1 1__1 1
(=) 7P (1 = Q)T+ (7 = 1) (g — 1)

It is easy to verify that

=1+ (”‘UHTT(%—U% |
I (0= )™ + TL (0~ 1)

Thus, by the principle of mathematical induction, we conclude that

(fro--ofm)(2) € M, (5),

whereg is given by [3.2).
Finally, by taking the functiong; (z) (j = 1,...,m) given by [3.8), we have

fl(20)
(1) (ﬁ (20))

Therefore, Theorein 3.1 is sharp for the functigh$z) (j = 1,...,m) given by [3.3). This
completes the proof of Theorgm BB.1. O

(fl .fm - (

which shows that

By puttinga; = « (j = 1,...,m) in Theorenj 3.1, we obtain
Corollary 3.2. If f; () € M} («) (j =1,...,m), then

(fro---ofn)(2) € M (a).
The result is sharp for the functiorfs(2) (j = 1,...,m) given by

fj(2)=z+<a_1>z” G=1,....m).

n—uo

Similarly, for the generalized convolution defined py {3.1) for functions in the dlgis&v),
we derive

Theorem 3.3.1f f; (2) € N (o) (j = 1,...,m), then
(fro---ofin)(2) €N (D),

where

(3.6) G—14+ (n—1) ng’”;l (o —1)%

o m =
H;'n:1 (n—ay)™ + Hj:l (aj — 1)

The result is sharp for the functiorfs(z) (j = 1 m) given by
A N CYj —1 n .
(3.7) f](z)—z+(—n<n_&j))z (j=1,...,m).

J. Inequal. Pure and Appl. Math3(3) Art. 42, 2002 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

12 SHIGEYOSHI OWA AND H.M. SRIVASTAVA

Proof. By applying the same technique as in the proof of Theofem 3.1, we find that
(fi e f2) () € N¥ (), where

E— D (; —1)%

; ( )1_!3:1(02 ) - (k=nn+1,n+2...),
Hj:l (k—a;)" + Hj:l (aj —1)7
for fi (z) € Njf (o) and f, (z) € N;f (az). Therefore, we have
(n =T (g =%

2 L 2 =
Hj:l (k— o)™ + Hj:l (aj —1)7
Furthermore, by assuming that

(fro--efm)(2) €N (7),

d=1+

(3.8) =1+

where )
(n =D, (= 1)™
H;’nzl (k— O‘j)Fj + H;ﬂ:1 (o — 1)%i

(fro-- o fmi)(2) € N (D),

y=1+

we can show that

where )
(n =I5 (o —1)%
m+1 i m+1 L '
Hj:+1 (k—a;)" + Hj;l (o —1)7
Therefore, using the principle of mathematical induction once again, we conclude that

(fro---ofm)(z) €Ny (D)

B=1+

with (3 given by [3.6).
Itis clear that the result of Theorgm B.3 is sharp for the functjoris) (j = 1,...,m) given

by 3.7). O
Finally, by lettinga; = « (j = 1,...,m) in Theorenj 33, we deduce
Corollary 3.4. If f; (2) e Njf (a) (j = 1,...,m), then
(fro--ofm)(z) € Ni(a).
The result is sharp for the functiorfs (z) (j = 1,...,m) given by
(3.9) fj(z):z—l—( )>z” (j=1,...,m).

n(n— «

a—1
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