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ABSTRACT. A sufficient condition of new type is given which implies that certain sequences
belong to the Telyakovskiı̌’s classS. Furthermore the relations of two subclasses of the classS
are analyzed.
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1. I NTRODUCTION

In 1973, S.A. Telyakovskiı̌ [3] defined the classS of number sequences which has become
a very flourishing definition. Several mathematicians have wanted to extend this definition, but
it has turned out that most of them are equivalent to the classS. For some historical remarks,
we refer to [2]. These intentions show that the classS plays a very important role in many
problems.

The definition of the classS is the following: A null-sequencea := {an} belongs to the
classS, or briefly a ∈ S, if there exists a monotonically decreasing sequence{An} such that∑∞

n=1 An < ∞ and|∆ an| ≤ An hold for alln.
We recall only one result of Telyakovskiı̌ [3] to illustrate the usability of the classS.

Theorem 1.1.Let the coefficients of the series

(1.1)
a0

2
+

∞∑
n=1

an cos nx

belong to the classS. Then the series (1.1) is a Fourier series and∫ π

0
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whereC is an absolute constant.

Recently Ž. Tomovski [4] defined certain subclasses ofS, and denoted them bySr, r =
1, 2, . . . as follows:

A null-sequence{an} belongs toSr, if there exists a monotonically decreasing sequence{
A

(r)
n

}
such that

∑∞
n=1 nr A

(r)
n < ∞ and|∆ an| ≤ A

(r)
n .

In [5] Tomovski established, among others, a theorem which states that if{an} ∈ Sr then the
r-th derivative of the series (1.1) is a Fourier series and the integral of the absolute value its sum
function less than equal toC(r)

∑∞
n=1 nr A

(r)
n , whereC(r) is a constant.

His proof is a constructive one and follows along similar lines to that of Theorem 1.1.
In [1] we also defined a certain subclass ofS as follows:
Let α := {αn} be a positive monotone sequence tending to infinity. A null-sequence{an}

belongs to the classS(α), if there exists a monotonically decreasing sequence
{

A
(α)
n

}
such that

∞∑
n=1

αn A(α)
n < ∞ and |∆ an| ≤ A(α)

n .

ClearlyS(α) with αn = nr includesSr.
In [2] we verified that if{an} ∈ Sr, then{nran} ∈ S, with a sequence{An} that satisfies the

inequality

(1.2)
∞∑

n=1

An ≤ (r + 1)
∞∑

n=1

nr A(r)
n .

Thus, this result and Theorem 1.1 immediately imply the theorem of Tomovski mentioned
above.

Our theorem which yields (1.2) reads as follows.

Theorem 1.2. Let γ ≥ β > 0 andSα := S(α) if αn = nα. If {an} ∈ Sγ then{nβan} ∈ Sγ−β

and

(1.3)
∞∑

n=1

nγ−β A(γ−β)
n ≤ (β + 1)

∞∑
n=1

nγ A(γ)
n

holds.

It is clear that ifγ = β = r then (1.3) gives (1.2)
(
A

(0)
n = An

)
.

In [2] we also verified that the statement of Theorem 1.2 is not reversible in general.
In [3] Telyakovskǐı realized that in the definition of the classS we can takeAn := maxk≥n |∆ ak|,

that is,{an} ∈ S if an → 0 and
∑∞

n=1 maxk≥n |∆ ak| < ∞.
This definition ofS has not been used often, as I know.
The reason, perhaps, is the appearing of the inconvenient addendsmaxk≥n |∆ ak|.
In the present note first we give a sufficient condition being of similar character as this defi-

nition of S but withoutmaxk≥n |∆ ak|, which implies that{an} ∈ S.
Second we show that with a certain additional assumption, the assertion of Theorem 1.2 is

reversible and the additional condition to be given is necessary in general.

2. RESULTS

Before formulating the first theorem we recall a definition.
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A non-negative sequencec := {cn} is called locally almost monotone if there exists a con-
stantK(c) depending only on the sequencec, such that

cn ≤ K(c)cm

holds for anym andm ≤ n ≤ 2m. These sequences will be denoted byc ∈ LAMS.

Theorem 2.1. If a := {an} is a null-sequence,a ∈ LAMS and
∑∞

n=1 |∆ an| < ∞, thena ∈ S.

Theorem 2.2.Letγ ≥ β > 0. If {nβan} ∈ Sγ−β, and

(2.1)
∞∑

n=1

nγ|∆ an| < ∞,

then{an} ∈ Sγ.

Remark 2.3. The condition (2.1) is not dispensable, moreover it cannot be weakened in general.

The following lemma will be required in the proof of Theorem 2.1.

Lemma 2.4. If c := {cn} ∈ LAMS andαn := supk≥n ck, then for anyδ > −1

(2.2)
∞∑

n=1

nδ αn ≤ K(K(c), δ)
∞∑

n=1

nδ cn.

Proof. Sincec ∈ LAMS thus withK := K(c)

(2.3) α2n = sup
k≥2n

ck ≤ sup
m≥n

K c2m ≤ K sup
m≥n

c2m .

If
∑

nδ cn < ∞, thencn → 0, thus by (2.3) there exists an integerp = p(n) ≥ 0 such that

α2n ≤ K c2n+p .

Then, by the monotonicity of the sequence{αn},
n+p∑
k=n

2k(1+δ)α2k ≤ K c2n+p

n+p∑
k=n

2k(1+δ)

≤ K 2(1+δ) 2(n+p)(1+δ) c2n+p

≤ K2 2(1+δ)2

2n+p∑
ν=2n+p−1+1

νδ cν

clearly follows. If we start this arguing withn = 0, and repeat it withn + p in place ofn, if
p ≥ 1; and ifp = 0 then withn+1 in place ofn, and make these blocks repeatedly, furthermore
if we add all of these sums, we see that the sum

∑∞
k=3 2k(1+δ)α2k will be majorized by the sum

K2 4(1+δ)
∑∞

n=1 nδ cn, and this proves (2.2). �

Remark 2.5. Following the steps of the proof it is easy to see that withϕn in place ofnδ, (2.2)
also holds if{ϕn} ∈ LAMS and2nϕ2n is quasi geometrically increasing.

J. Inequal. Pure and Appl. Math., 4(2) Art. 35, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 L. LEINDLER

3. PROOFS

Proof of Theorem 2.1.Using Lemma 2.4 withcn = an andδ = 0, we immediately get that

(3.1)
∞∑

n=1

max
k≥n

|∆ ak| < ∞,

namely the assumptionan → 0 yields thatsup |∆ ak| = max |∆ ak|, and thus (3.1) implies that
{an} ∈ S. �

Proof of Theorem 2.2.With respect to the equality

|∆(nβ an)| = |nβ(an − an+1)− an+1((n + 1)β − nβ)|

it is clear that
nβ|∆ an| ≤ A(γ−β)

n + K nβ−1|an+1|,
whereK is a constantK = K(β) > 0 independent ofn.

Hence, multiplying withn−β, we get that

(3.2) |∆ an| ≤ n−βA(γ−β)
n + K n−1

∞∑
k=n+1

|∆ ak|,

thus if we define

A(γ)
n := n−βA(γ−β)

n + K n−1

∞∑
k=n+1

|∆ ak|,

then this sequenceA(γ)
n is clearly monotonically decreasing, andA

(γ)
n ≥ |∆ an|, furthermore by

the assumptions of Theorem 1.2 and (3.2)
∞∑

n=1

nγ A(γ)
n < ∞,

since
∞∑

n=1

nγ−1

∞∑
k=n+1

|∆ ak| ≤ K(γ)
∞∑

k=1

kγ|∆ ak| < ∞.

Thus{an} ∈ Sγ is proved. The proof is complete. �

Proof of Remark 2.3.Let an = n−β, then|∆ nβan| = 0, therefore{nβan} ∈ Sγ−β holds e.g.
with A

(γ−β)
n = nβ−γ−2. On the other hand|∆ an| ≥ (n + 1)−β−1, thus, byγ ≥ β,

(3.3)
∞∑

n=1

nγ|∆ an| = ∞,

consequently, ifA(γ)
n ≥ |∆ an|, then

∞∑
n=1

nγ A(γ)
n = ∞

also holds, therefore{an} 6∈ Sγ.
In this case, by (3.3), the additional condition (2.1) does not maintain.
Herewith, Remark 2.3 is verified, namely we can also see that the condition (2.1) cannot be

weakened in general. �
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