ON QUASI β-POWER INCREASING SEQUENCES

SANTOSH KR. SAXENA
H. N. 419, Jawaharpuri, Badaun

Department of Mathematics
Teerthanker Mahaveer University
Moradabad, U.P., India
ssumath@yahoo.co.in
Received 31 January, 2008; accepted 15 May, 2009
Communicated by S.S. Dragomir

Abstract. In this paper we prove a general theorem on $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ summability, which generalizes a theorem of Özarslan [6] on $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ summability, under weaker conditions and by using quasi β-power increasing sequences instead of almost increasing sequences.

Key words and phrases: Absolute Summability, Summability Factors, Infinite Series.
2000 Mathematics Subject Classification 40D05, 40F05.

1. Introduction

A positive sequence $\left(\gamma_{n}\right)$ is said to be a quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m} \tag{1.1}
\end{equation*}
$$

holds for all $n \geq m \geq 1$. It should be noted that every almost increasing sequence is a quasi β-power increasing sequence for any non-negative β, but the converse need not be true as can be seen by taking the example, say $\gamma_{n}=n^{-\beta}$ for $\beta>0$. So we are weakening the hypotheses of the theorem of Özarslan [6], replacing an almost increasing sequence by a quasi β-power increasing sequence.

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$ and let $\left(p_{n}\right)$ be a sequence with $p_{0}>0, p_{n} \geq 0$ for $n>0$ and $P_{n}=\sum_{\nu=0}^{n} p_{\nu}$. We define

$$
\begin{equation*}
p_{n}^{\alpha}=\sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} p_{\nu}, \quad P_{n}^{\alpha}=\sum_{\nu=0}^{n} p_{\nu}^{\alpha}, \quad\left(P_{-i}^{\alpha}=p_{-i}^{\alpha}=0, i \geq 1\right), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{0}^{\alpha}=1, \quad A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!}, \quad(\alpha>-1, n=1,2,3, \ldots) \tag{1.3}
\end{equation*}
$$

[^0]The sequence-to-sequence transformation

$$
\begin{equation*}
U_{n}^{\alpha}=\frac{1}{P_{n}^{\alpha}} \sum_{\nu=0}^{n} p_{\nu}^{\alpha} s_{\nu} \tag{1.4}
\end{equation*}
$$

defines the sequence $\left(U_{n}^{\alpha}\right)$ of the $\left(\bar{N}, p_{n}^{\alpha}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}^{\alpha}\right)$ (see [7]).

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}^{\alpha}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{k-1}\left|U_{n}^{\alpha}-U_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

and it is said to be summable $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|U_{n}^{\alpha}-U_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

In the special case when $\delta=0, \alpha=0$ (respectively, $p_{n}=1$ for all values of n) $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ (respectively $|C, 1 ; \delta|_{k}$) summability.

Mishra and Srivastava [4] proved the following theorem for $|C, 1|_{k}$ summability.
Later on Bor [3] generalized the theorem of Mishra and Srivastava [4] for $\left|\bar{N}, p_{n}\right|_{k}$ summability.

Quite recently Özarslan [6] has generalized the theorem of Bor [3] under weaker conditions. For this, Özarslan [6] used the concept of almost increasing sequences. A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Obviously every increasing sequence is an almost increasing sequence but the converse needs not be true as can be seen from the example $b_{n}=n e^{(-1)^{n}}$.

Theorem 1.1. Let $\left(X_{n}\right)$ be an almost increasing sequence and the sequences $\left(\rho_{n}\right)$ and $\left(\lambda_{n}\right)$ such that the conditions

$$
\begin{gather*}
\left|\lambda_{n}\right| X_{n}=O(1), \quad \text { as } n \rightarrow \infty \tag{1.9}\\
\sum_{n=1}^{\infty} n\left|\Delta \rho_{n}\right| X_{n}<\infty
\end{gather*}
$$

are satisfied. If $\left(p_{n}\right)$ is a sequence such that the condition

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right), \quad \text { as } n \rightarrow \infty \tag{1.11}
\end{equation*}
$$

is satisfied and

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|s_{n}\right|^{k}=O\left(X_{m}\right), \quad \text { as } m \rightarrow \infty \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}}=O\left\{\left(\frac{P_{\nu}}{p_{\nu}}\right)^{\delta k} \frac{1}{P_{\nu}}\right\} \tag{1.13}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ for $k \geq 1$ and $0 \leq \delta<\frac{1}{k}$.

2. Main Result

The aim of this paper is to generalize Theorem 1.1 for $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ summability under weaker conditions by using quasi β-power increasing sequences instead of almost increasing sequences. Now, we will prove the following theorem.

Theorem 2.1. Let $\left(X_{n}\right)$ be a quasi β-power increasing sequence for some $0<\beta<1$ and the sequences $\left(\rho_{n}\right)$ and $\left(\lambda_{n}\right)$ such that the conditions (1.7) - (1.10) of Theorem 1.1 are satisfied. If $\left(p_{n}^{\alpha}\right)$ is a sequence such that

$$
\begin{equation*}
P_{n}^{\alpha}=O\left(n p_{n}^{\alpha}\right), \quad \text { as } n \rightarrow \infty, \tag{2.1}
\end{equation*}
$$

is satisfied and

$$
\begin{align*}
& \sum_{n=1}^{m}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1}\left|s_{n}\right|^{k}=O\left(X_{m}\right), \quad \text { as } m \rightarrow \infty, \tag{2.2}\\
& \sum_{n=\nu+1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{\alpha}}=O\left\{\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k} \frac{1}{P_{\nu}^{\alpha}}\right\}, \tag{2.3}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ for $k \geq 1$ and $0 \leq \delta<\frac{1}{k}$.
Remark 1. It may be noted that, if we take $\left(X_{n}\right)$ as an almost increasing sequence and $\alpha=0$ in Theorem 2.1, then we get Theorem 1.1. In this case, conditions (2.1) and (2.2) reduce to conditions (1.11) and (1.12) respectively and condition (2.3) reduces to (1.13). If additionally $\delta=0$, relation (2.3) reduces to

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\frac{1}{P_{\nu}}\right), \tag{2.4}
\end{equation*}
$$

which always holds.
We need the following lemma for the proof of our theorem.
Lemma 2.2 ([5]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of the theorem, the following conditions hold

$$
\begin{gather*}
n \rho_{n} X_{n}=O(1), \quad \text { as } n \rightarrow \infty, \tag{2.5}\\
\sum_{n=1}^{\infty} \rho_{n} X_{n}<\infty .
\end{gather*}
$$

Proof of Theorem [2.1] Let $\left(T_{n}^{\alpha}\right)$ be the $\left(\bar{N}, p_{n}^{\alpha}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then by definition, we have

$$
T_{n}^{\alpha}=\frac{1}{P_{n}^{\alpha}} \sum_{\nu=0}^{n} p_{\nu}^{\alpha} \sum_{w=0}^{\nu} a_{w} \lambda_{w}=\frac{1}{P_{n}^{\alpha}} \sum_{\nu=0}^{n}\left(P_{n}^{\alpha}-P_{\nu-1}^{\alpha}\right) a_{\nu} \lambda_{\nu} .
$$

Then, for $n \geq 1$, we get

$$
T_{n}^{\alpha}-T_{n-1}^{\alpha}=\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n} P_{\nu-1}^{\alpha} a_{\nu} \lambda_{\nu}
$$

Applying Abel's transformation, we have

$$
\begin{aligned}
T_{n}^{\alpha}-T_{n-1}^{\alpha} & =\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} \Delta\left(P_{\nu-1}^{\alpha} \lambda_{\nu}\right) s_{\nu}+\frac{p_{n}^{\alpha}}{P_{n}^{\alpha}} s_{n} \lambda_{n} \\
& =-\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha} s_{\nu} \lambda_{\nu}+\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} P_{\nu}^{\alpha} s_{\nu} \Delta \lambda_{\nu}+\frac{p_{n}^{\alpha}}{P_{n}^{\alpha}} s_{n} \lambda_{n} \\
& =T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha}, \quad \text { say. }
\end{aligned}
$$

Since

$$
\left|T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha}\right|^{k} \leq 3^{k}\left(\left|T_{n, 1}^{\alpha}\right|^{k}+\left|T_{n, 2}^{\alpha}\right|^{k}+\left|T_{n, 3}^{\alpha}\right|^{k}\right)
$$

to complete the proof of Theorem 2.1, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, w}^{\alpha}\right|^{k}<\infty, \quad \text { for } w=1,2,3
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, and using $\left|\lambda_{n}\right|=O\left(\frac{1}{X_{n}}\right)=O(1)$, by 1.9 , we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, 1}^{\alpha}\right|^{k} & =\sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha} s_{\nu} \lambda_{\nu}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k}\left(\frac{1}{P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha}\right)^{k-1} \\
& =O(1) \sum_{\nu=1}^{m} p_{\nu}^{\alpha}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1}\left(\frac{1}{P_{n-1}^{\alpha}}\right) \\
& =O(1) \sum_{\nu=1}^{m} p_{\nu}^{\alpha}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k} \frac{1}{P_{\nu}^{\alpha}} \\
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|\left|\lambda_{\nu}\right|^{k-1} \\
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{\nu=1}^{m-1} \Delta\left|\lambda_{\nu}\right| \sum_{u=1}^{\nu}\left(\frac{P_{u}^{\alpha}}{p_{u}^{\alpha}}\right)^{\delta k-1}\left|s_{u}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu}\right| X_{\nu}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{\nu=1}^{m-1} \rho_{\nu} X_{\nu}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1), \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 2.1 and Lemma 2.2 . Since $\nu \rho_{\nu}=O\left(\frac{1}{X_{\nu}}\right)=O(1)$, by (2.5), using the fact that $\left|\Delta \lambda_{n}\right| \leq \rho_{n}$ by (1.7) and $P_{n}^{\alpha}=O\left(n p_{n}^{\alpha}\right)$ by (2.1) and after applying the Hölder's inequality again, we obtain

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, 2}^{\alpha}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1}\left(\frac{1}{P_{n-1}^{\alpha}}\right)^{k}\left\{\sum_{\nu=1}^{n-1} P_{\nu}^{\alpha}\left|\Delta \lambda_{\nu}\right|\left|s_{\nu}\right|\right\}^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{\alpha}}\left\{\sum_{\nu=1}^{n-1} p_{\nu}^{\alpha}\left(\nu \rho_{\nu}\right)^{k}\left|s_{\nu}\right|^{k}\right\}\left\{\frac{1}{P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha}\right\}^{k-1} \\
& =O(1) \sum_{\nu=1}^{m} p_{\nu}^{\alpha}\left(\nu \rho_{\nu}\right)^{k}\left|s_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{\alpha}} \\
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left(\nu \rho_{\nu}\right)^{k}\left|s_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m-1} \Delta\left(\nu \rho_{\nu}\right) \sum_{w=1}^{\nu}\left(\frac{P_{w}^{\alpha}}{p_{w}^{\alpha}}\right)^{\delta k-1}\left|s_{w}\right|^{k}+O(1) m \rho_{m} \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta\left(\nu \rho_{\nu}\right)\right| X_{\nu}+O(1) m \rho_{m} X_{m} \\
& =O(1) \sum_{\nu=1}^{m-1} \nu\left|\Delta \rho_{\nu}\right| X_{\nu}+O(1) \sum_{\nu=1}^{m-1} \rho_{\nu+1} X_{\nu+1}+O(1) m \rho_{m} X_{m} \\
& =O(1), \text { as } m \rightarrow \infty
\end{aligned}
$$

by the virtue of the hypotheses of Theorem 2.1 and Lemma 2.2. Finally, using the fact that $P_{n}^{\alpha}=O\left(n p_{n}^{\alpha}\right)$, by 2.1) as in $T_{n, 1}^{\alpha}$, we have

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, 3}^{\alpha}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1}\left|s_{n}\right|^{k}\left|\lambda_{n}\right| \\
& =O(1), \quad \text { as } m \rightarrow \infty .
\end{aligned}
$$

Therefore, we get

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, w}^{\alpha}\right|^{k}=O(1), \quad \text { as } m \rightarrow \infty, \quad \text { for } w=1,2,3 .
$$

This completes the proof of Theorem 2.1.
If we take $p_{n}=1$ and $\alpha=0$ for all values of n in Theorem 2.1, then we obtain a result concerning the $|C, 1, \delta|_{k}$ summability.

References

[1] S. ALJANČIĆ AND D. ARANDELOVIĆ, O-regular varying functions, Publ. Inst. Math., 22(36) (1977), 5-22.
[2] H. BOR, A note on some absolute summability methods, J. Nigerian Math. Soc., 6 (1987), 41-46.
[3] H. BOR, A note on absolute summability factors, Internet J. Math. and Math. Sci., 17(3) (1994), 479-482.
[4] K.N. MISHRA AND R.S.L. SRIVASTAVA, On absolute Cesàro summability factors of infinite series, Portugal. Math., 42(1) (1985), 53-61.
[5] L. LEINDLER, A new application of quasi power increaseing sequences, Publ. Math. (Debrecen), 58 (2001), 791-796.
[6] H.S. ÖZARSLAN, On almost increasing sequences and its applications, Internat. J. Math. and Math. Sci, 25(5) (2001), 293-298.
[7] S.K. SAXENA AND S.K. SAXENA, A note on $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ summability factors, Soochow J. Math., 33(4) (2007), 829-834.

[^0]: The author wishes to express his sincerest thanks to Dr. Rajiv Sinha and the referees for their valuable suggestions for the improvement of this paper.

 035-08

