ON QUASI β-POWER INCREASING SEQUENCES

SANTOSH Kr. SAXENA
H. N. 419, Jawaharpuri, Badaun
Department of Mathematics
Teerthanker Mahaveer University
Moradabad, U.P., India
EMail: ssumath@yahoo.co.in

Received:	31 January, 2008
Accepted:	15 May, 2009
Communicated by:	S.S. Dragomir
2000 AMS Sub. Class.:	40D05, 40F05.

Key words:
Abstract:

Acknowledgements:
The author wishes to express his sincerest thanks to Dr. Rajiv Sinha and the referees for their valuable suggestions for the improvement of this paper.

Title Page

Contents

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena vol. 10, iss. 2, art. 56, 2009

Page 1 of 11
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 Main Result

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents
44
Page 2 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction

A positive sequence $\left(\gamma_{n}\right)$ is said to be a quasi β-power increasing sequence if there exists a constant $K=K(\beta, \gamma) \geq 1$ such that

$$
\begin{equation*}
K n^{\beta} \gamma_{n} \geq m^{\beta} \gamma_{m} \tag{1.1}
\end{equation*}
$$

holds for all $n \geq m \geq 1$. It should be noted that every almost increasing sequence is a quasi β-power increasing sequence for any non-negative β, but the converse need not be true as can be seen by taking the example, say $\gamma_{n}=n^{-\beta}$ for $\beta>0$. So we are weakening the hypotheses of the theorem of Özarslan [6], replacing an almost increasing sequence by a quasi β-power increasing sequence.

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$ and let $\left(p_{n}\right)$ be a sequence with $p_{0}>0, p_{n} \geq 0$ for $n>0$ and $P_{n}=\sum_{\nu=0}^{n} p_{\nu}$. We define

$$
\begin{equation*}
p_{n}^{\alpha}=\sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} p_{\nu}, \quad P_{n}^{\alpha}=\sum_{\nu=0}^{n} p_{\nu}^{\alpha}, \quad\left(P_{-i}^{\alpha}=p_{-i}^{\alpha}=0, i \geq 1\right), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{0}^{\alpha}=1, \quad A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!}, \quad(\alpha>-1, n=1,2,3, \ldots) \tag{1.3}
\end{equation*}
$$

The sequence-to-sequence transformation

$$
\begin{equation*}
U_{n}^{\alpha}=\frac{1}{P_{n}^{\alpha}} \sum_{\nu=0}^{n} p_{\nu}^{\alpha} s_{\nu} \tag{1.4}
\end{equation*}
$$

defines the sequence $\left(U_{n}^{\alpha}\right)$ of the $\left(\bar{N}, p_{n}^{\alpha}\right)$ mean of the sequence $\left(s_{n}\right)$, generated by the sequence of coefficients $\left(p_{n}^{\alpha}\right)$ (see [7]).

Quasi β-Power Increasing Sequences

Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents

Page 3 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}^{\alpha}\right|_{k}, k \geq 1$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{k-1}\left|U_{n}^{\alpha}-U_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.5}
\end{equation*}
$$

and it is said to be summable $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [7])

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|U_{n}^{\alpha}-U_{n-1}^{\alpha}\right|^{k}<\infty \tag{1.6}
\end{equation*}
$$

In the special case when $\delta=0, \alpha=0$ (respectively, $p_{n}=1$ for all values of n) $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}\left(\right.$ respectively $\left.|C, 1 ; \delta|_{k}\right)$ summability.

Mishra and Srivastava [4] proved the following theorem for $|C, 1|_{k}$ summability.
Later on Bor [3] generalized the theorem of Mishra and Srivastava [4] for $\left|\bar{N}, p_{n}\right|_{k}$ summability.

Quite recently Özarslan [6] has generalized the theorem of Bor [3] under weaker conditions. For this, Özarslan [6] used the concept of almost increasing sequences. A positive sequence $\left(b_{n}\right)$ is said to be almost increasing if there exists a positive increasing sequence $\left(c_{n}\right)$ and two positive constants A and B such that $A c_{n} \leq b_{n} \leq$ $B c_{n}$ (see [1]). Obviously every increasing sequence is an almost increasing sequence but the converse needs not be true as can be seen from the example $b_{n}=n e^{(-1)^{n}}$.

Theorem 1.1. Let $\left(X_{n}\right)$ be an almost increasing sequence and the sequences $\left(\rho_{n}\right)$ and $\left(\lambda_{n}\right)$ such that the conditions

$$
\begin{gather*}
\left|\Delta \lambda_{n}\right| \leq \rho_{n} \tag{1.7}\\
\rho_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{1.8}\\
\left|\lambda_{n}\right| X_{n}=O(1), \quad \text { as } n \rightarrow \infty
\end{gather*}
$$

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 11	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left|\Delta \rho_{n}\right| X_{n}<\infty \tag{1.10}
\end{equation*}
$$

are satisfied. If $\left(p_{n}\right)$ is a sequence such that the condition

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right), \quad \text { as } n \rightarrow \infty \tag{1.11}
\end{equation*}
$$

is satisfied and

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1}\left|s_{n}\right|^{k}=O\left(X_{m}\right), \quad \text { as } m \rightarrow \infty \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\delta k-1} \frac{1}{P_{n-1}}=O\left\{\left(\frac{P_{\nu}}{p_{\nu}}\right)^{\delta k} \frac{1}{P_{\nu}}\right\} \tag{1.13}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n} ; \delta\right|_{k}$ for $k \geq 1$ and $0 \leq \delta<\frac{1}{k}$.

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents

Page 5 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Main Result

The aim of this paper is to generalize Theorem 1.1 for $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ summability under weaker conditions by using quasi β-power increasing sequences instead of almost increasing sequences. Now, we will prove the following theorem.
Theorem 2.1. Let $\left(X_{n}\right)$ be a quasi β-power increasing sequence for some $0<\beta<1$ and the sequences $\left(\rho_{n}\right)$ and $\left(\lambda_{n}\right)$ such that the conditions (1.7) - (1.10) of Theorem 1.1 are satisfied. If $\left(p_{n}^{\alpha}\right)$ is a sequence such that

$$
\begin{equation*}
P_{n}^{\alpha}=O\left(n p_{n}^{\alpha}\right), \quad \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

is satisfied and

$$
\begin{align*}
& \sum_{n=1}^{m}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1}\left|s_{n}\right|^{k}=O\left(X_{m}\right), \quad \text { as } m \rightarrow \infty \tag{2.2}\\
& \sum_{n=\nu+1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{\alpha}}=O\left\{\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k} \frac{1}{P_{\nu}^{\alpha}}\right\}, \tag{2.3}
\end{align*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ for $k \geq 1$ and $0 \leq \delta<\frac{1}{k}$.
Remark 1. It may be noted that, if we take $\left(X_{n}\right)$ as an almost increasing sequence and $\alpha=0$ in Theorem 2.1, then we get Theorem 1.1. In this case, conditions (2.1) and (2.2) reduce to conditions (1.11) and (1.12) respectively and condition (2.3) reduces to (1.13). If additionally $\delta=0$, relation (2.3) reduces to

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}=O\left(\frac{1}{P_{\nu}}\right) \tag{2.4}
\end{equation*}
$$

which always holds.

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents

Page 6 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

We need the following lemma for the proof of our theorem.
Lemma 2.2 ([5]). Under the conditions on $\left(X_{n}\right),\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ as taken in the statement of the theorem, the following conditions hold

$$
\begin{equation*}
n \rho_{n} X_{n}=O(1), \quad \text { as } n \rightarrow \infty, \tag{2.5}
\end{equation*}
$$

$$
\sum_{n=1}^{\infty} \rho_{n} X_{n}<\infty .
$$

Proof of Theorem 2.1. Let $\left(T_{n}^{\alpha}\right)$ be the $\left(\bar{N}, p_{n}^{\alpha}\right)$ mean of the series $\sum a_{n} \lambda_{n}$. Then by definition, we have

$$
T_{n}^{\alpha}=\frac{1}{P_{n}^{\alpha}} \sum_{\nu=0}^{n} p_{\nu}^{\alpha} \sum_{w=0}^{\nu} a_{w} \lambda_{w}=\frac{1}{P_{n}^{\alpha}} \sum_{\nu=0}^{n}\left(P_{n}^{\alpha}-P_{\nu-1}^{\alpha}\right) a_{\nu} \lambda_{\nu} .
$$

Then, for $n \geq 1$, we get

$$
T_{n}^{\alpha}-T_{n-1}^{\alpha}=\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n} P_{\nu-1}^{\alpha} a_{\nu} \lambda_{\nu} .
$$

Applying Abel's transformation, we have

$$
\begin{aligned}
T_{n}^{\alpha}-T_{n-1}^{\alpha} & =\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} \Delta\left(P_{\nu-1}^{\alpha} \lambda_{\nu}\right) s_{\nu}+\frac{p_{n}^{\alpha}}{P_{n}^{\alpha}} s_{n} \lambda_{n} \\
& =-\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha} s_{\nu} \lambda_{\nu}+\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} P_{\nu}^{\alpha} s_{\nu} \Delta \lambda_{\nu}+\frac{p_{n}^{\alpha}}{P_{n}^{\alpha}} s_{n} \lambda_{n} \\
& =T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha}, \quad \text { say. }
\end{aligned}
$$

Quasi β-Power Increasing Sequences

Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents

Page 7 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Since

$$
\left|T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha}\right|^{k} \leq 3^{k}\left(\left|T_{n, 1}^{\alpha}\right|^{k}+\left|T_{n, 2}^{\alpha}\right|^{k}+\left|T_{n, 3}^{\alpha}\right|^{k}\right)
$$

to complete the proof of Theorem 2.1, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, w}^{\alpha}\right|^{k}<\infty, \quad \text { for } w=1,2,3
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=$ 1, and using $\left|\lambda_{n}\right|=O\left(\frac{1}{X_{n}}\right)=O(1)$, by (1.9), we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, 1}^{\alpha}\right|^{k} & =\sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|\frac{p_{n}^{\alpha}}{P_{n}^{\alpha} P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha} s_{\nu} \lambda_{\nu}\right|^{k} \\
& \leq \sum_{n=2}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1} \frac{1}{P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k}\left(\frac{1}{P_{n-1}^{\alpha}} \sum_{\nu=1}^{n-1} p_{\nu}^{\alpha}\right)^{k-1} \\
& =O(1) \sum_{\nu=1}^{m} p_{\nu}^{\alpha}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k} \sum_{n=\nu+1}^{m+1}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1}\left(\frac{1}{P_{n-1}^{\alpha}}\right) \\
& =O(1) \sum_{\nu=1}^{m} p_{\nu}^{\alpha}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k} \frac{1}{P_{\nu}^{\alpha}} \\
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right|\left|\lambda_{\nu}\right|^{k-1}
\end{aligned}
$$

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page

Contents

Page 8 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k}\left|\lambda_{\nu}\right| \\
& =O(1) \sum_{\nu=1}^{m-1} \Delta\left|\lambda_{\nu}\right| \sum_{u=1}^{\nu}\left(\frac{P_{u}^{\alpha}}{p_{u}^{\alpha}}\right)^{\delta k-1}\left|s_{u}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k} \\
& =O(1) \sum_{\nu=1}^{m-1}\left|\Delta \lambda_{\nu}\right| X_{\nu}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{\nu=1}^{m-1} \rho_{\nu} X_{\nu}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1), \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents

Page 9 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{aligned}
& =O(1) \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left(\nu \rho_{\nu}\right)^{k}\left|s_{\nu}\right|^{k} \\
& =O(1) \sum_{\substack{\nu=1 \\
m-1}\left(\nu \rho_{\nu}\right) \sum_{w=1}^{\nu}\left(\frac{P_{w}^{\alpha}}{p_{w}^{\alpha}}\right)^{\delta k-1}\left|s_{w}\right|^{k}+O(1) m \rho_{m} \sum_{\nu=1}^{m}\left(\frac{P_{\nu}^{\alpha}}{p_{\nu}^{\alpha}}\right)^{\delta k-1}\left|s_{\nu}\right|^{k}}^{=O(1) \sum_{\nu=1}^{m-1}\left|\Delta\left(\nu \rho_{\nu}\right)\right| X_{\nu}+O(1) m \rho_{m} X_{m}} \\
& =O(1) \sum_{\nu=1}^{m-1} \nu\left|\Delta \rho_{\nu}\right| X_{\nu}+O(1) \sum_{\nu=1}^{m-1} \rho_{\nu+1} X_{\nu+1}+O(1) m \rho_{m} X_{m} \\
& =O(1), \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by the virtue of the hypotheses of Theorem 2.1 and Lemma 2.2. Finally, using the fact that $P_{n}^{\alpha}=O\left(n p_{n}^{\alpha}\right)$, by (2.1) as in $T_{n, 1}^{\alpha}$, we have

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k+k-1}\left|T_{n, 3}^{\alpha}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}^{\alpha}}{p_{n}^{\alpha}}\right)^{\delta k-1}\left|s_{n}\right|^{k}\left|\lambda_{n}\right| \\
& =O(1), \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents
\square
Page 10 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] S. ALJANČIĆ and D. ARANDELOVIĆ, O-regular varying functions, Publ. Inst. Math., 22(36) (1977), 5-22.
[2] H. BOR, A note on some absolute summability methods, J. Nigerian Math. Soc., 6 (1987), 41-46.
[3] H. BOR, A note on absolute summability factors, Internet J. Math. and Math. Sci., 17(3) (1994), 479-482.
[4] K.N. MISHRA and R.S.L. SRIVASTAVA, On absolute Cesàro summability factors of infinite series, Portugal. Math., 42(1) (1985), 53-61.
[5] L. LEINDLER, A new application of quasi power increaseing sequences, Publ. Math. (Debrecen), 58 (2001), 791-796.
[6] H.S. ÖZARSLAN , On almost increasing sequences and its applications, Internat. J. Math. and Math. Sci, 25(5) (2001), 293-298.
[7] S.K. SAXENA AND S.K. SAXENA, A note on $\left|\bar{N}, p_{n}^{\alpha} ; \delta\right|_{k}$ summability factors, Soochow J. Math., 33(4) (2007), 829-834.

Quasi β-Power Increasing Sequences
Santosh Kr. Saxena
vol. 10, iss. 2, art. 56, 2009

Title Page
Contents

Page 11 of 11
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

