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ABSTRACT. We propose to extend Talenti’s estimates on theL2 norm of the second order deriva-
tives of the solutions of a uniformly elliptic PDE with measurable coefficients satisfying the
Cordes condition to the non-uniformly elliptic case.
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1. I NTRODUCTION

The Cordes conditions first were used by H. O. Cordes [1] and later by G. Talenti [5] to
proveCα, C1,α andW 2,2 estimates for the solutions of second order linear and elliptic partial
differential equations in non-divergence form

Au =
n∑

i,j=1

aij(x)Diju,

whereA = (aij) ∈ L∞(Ω, Rn×n) is a symmetric matrix function. As an introductory remark
about the Cordes condition we can say that by using the normalization (see [5])

n∑
i=1

aii(x) = 1
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2 ANDRÁS DOMOKOS

or strictly positive lower and upper bounds (see [1])

0 < p ≤
n∑

i=1

aii(x) ≤ P

we get a condition equivalent to the uniform ellipticity condition inR2 and stronger than it
in Rn, n ≥ 3. At the same time it seems to be the weakest condition which implies thatA
is an isomorphism between the spacesW 2,2

0 (Ω) andL2(Ω) and implicitly gives existence and
uniqueness for boundary value problems with measurable coefficients [4]. As an application it
was used to prove the second order differentiability ofp−harmonic functions [3].

If we assume that the Cordes condition is satisfied, then it is possible to give an optimal
upper bound of theL2 norm of the second order derivatives to the solutionu ∈ W 2,2

0 (Ω) of the
problem

Au = f, f ∈ L2(Ω)

in terms of a constant times theL2 norm of f . An interesting method, that connects linear
algebra to PDE’s, has been developed in [5]. In this paper we will extend this method to not
necessarily uniformly elliptic problems and as an application we will also show a change in Tal-
enti’s constant. More exactly, estimate (1.2) below holds in the case of operators with constant
coefficients, but needs a change to cover the general case.

Let us consider the bounded domainΩ ∈ Rn with a sufficiently regular boundary and the
Sobolev space

W 2,2(Ω) =
{

u ∈ L2(Ω) : Diju ∈ L2(Ω) , ∀ i, j ∈ {1, . . . , n}
}

endowed with the inner-product

(u, v)W 2,2 =

∫
Ω

(
u(x)v(x) +

n∑
i,j=1

Diju(x) ·Dijv(x)

)
dx.

LetW 2,2
0 (Ω) be the closure ofC∞0 (Ω) in W 2,2(Ω) and denote byD2u the matrix of the second

order derivatives.
We state now Talenti’s result using our setting.

Theorem 1.1([5]). Let us suppose that for a fixed0 < ε < 1 and almost everyx ∈ Ω the
following conditions hold:

(1.1)
n∑

i=1

aii(x) = 1 and
n∑

i,j=1

(
aij(x)

)2

≤ 1

n− 1 + ε
.

Then, for allu ∈ W 2,2
0 (Ω) we have

(1.2) ||D2u||L2(Ω) ≤
√

n− 1 + ε

ε

(√
n− 1 + ε +

√
(1− ε)(n− 1)

)
||Au||L2(Ω) .

2. M AIN RESULT

Consider the matrix valued mappingA : Ω → Mn(R), whereA(x) = (aij(x)) with aij ∈
L∞(Ω), and let

(2.1) Au =
n∑

i,j=1

aij(x)Dij(u).
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W 2,2 ESTIMATES 3

We use the notations||a|| =
√

a2
1 + · · ·+ a2

n for a = (a1, . . . , an) ∈ Rn and trace A =∑n
i=1 aii for the trace of ann× n matrixA = (aij). Also, we denote by〈A, B〉 =

∑n
i,j=1 aijbij

the inner product and by||A|| =
√∑n

i,j=1 a2
ij the Euclidean norm inRn×n.

Definition 2.1 (Cordes conditionKε). We say thatA satisfies the Cordes conditionKε if there
existsε ∈ (0, 1] such that

(2.2) 0 < ||A(x)||2 ≤ 1

n− 1 + ε

(
trace A(x)

)2

,

for almost everyx ∈ Ω and
1

trace A
∈ L2

loc(Ω).

Remark 2.1. We observe that inequality (2.2) implies that for

σ(x) =

√
n

trace A(x)

we have

(2.3) 0 <
1

σ2(x)
≤ ||A(x)||2 ≤ 1

n− 1 + ε

(
trace A(x)

)2

with σ(·) ∈ L2
loc(Ω). Therefore without a strictly positive lower bound fortrace A(x), the

Cordes conditionKε does not imply uniform ellipticity. As an example we can mention

A(x, y) =

[
y

√
xy
2√

xy
2

x

]
defined on

Ω =
{

(x, y) ∈ R2 : x > 0, y > 0, 0 < x2 + y2 < 1, 1 <
y

x
< 2
}

.

In this case inequality (2.2) looks like

x2 + xy + y2 <
1

1 + ε
(x + y)2.

Considering the linesy = mx we see that

ε = inf

{
m

m2 + m + 1
: 1 < m < 2

}
=

2

7

and

σ(x) =

√
2

x + y
.

Remark 2.2. In the case when we want to have a strictly positive lower bound fortrace A we
should use a Cordes conditionKε,γ that asks for the existence of a numberγ > 0 such that

(2.4) 0 <
1

γ
≤ 1

σ2(x)
≤ ||A(x)||2 ≤ 1

n− 1 + ε

(
trace A(x)

)2

for almost everyx ∈ Ω. In this way the normalized condition (1.1) corresponds to theKε,n,
since

∑n
i=1 aii = 1 implies thatγ = n.

We recall the following lemma from [5].
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Lemma 2.3. Leta = (a1, . . . , an) ∈ Rn. Suppose that

(2.5) (a1 + · · ·+ an)2 > (n− 1)||a||2.
If for α > 1 andβ > 0 the condition

(2.6) (a1 + · · ·+ an)2 ≥
(

n− 1 +
1

α

)
||a||2 +

1

β

(
n− 1 +

1

α

)
(α− 1),

holds, then we have

(2.7) ||k||2 + 2α
∑
i<j

kikj ≤ β(a1k1 + · · ·+ ankn)2

for all k = (k1, . . . , kn) ∈ Rn.

The next lemma is the nonsymmetric version of the original one in Talenti’s paper [5]. By
nonsymmetric version we mean that we drop the assumption thatA is symmetric. On the other
hand, it is easy to see that Lemma 2.4 below will not hold for arbitrary nonsymmetric matrices
P , even in the case whenA is diagonal. For the completeness of our paper we include the proof,
which can be considered as a natural extension of the original one.

Lemma 2.4. LetA = (aij) be ann× n real matrix. Suppose that

(2.8) (trace A)2 > (n− 1)||A||2.
If for α > 1 andβ > 0 the condition

(2.9) (trace A)2 ≥
(

n− 1 +
1

α

)
||A||2 +

1

β

(
n− 1 +

1

α

)
(α− 1)

holds, then we have

(2.10) ||P ||2 + α
n∑

i,j=1

∣∣∣∣ pii pij

pij pjj

∣∣∣∣ ≤ β 〈A, P 〉2

for all real and symmetricn× n matricesP = (pij).

Proof. Consider an arbitrary but fixed real and symmetric matrixP . It follows that there exists
a real orthogonal matrixC and a diagonal matrix

D =

 k1 0
...

0 kn


such thatP = C−1DC. Observe that

−1

2

n∑
i,j=1

∣∣∣∣ pii pij

pij pjj

∣∣∣∣
is the coefficient ofλn−2 in the characteristic polynomial ofP , therefore

1

2

n∑
i,j=1

∣∣∣∣ pii pij

pij pjj

∣∣∣∣ =
∑
i<j

kikj.

Moreover,

(2.11)
n∑

i,j=1

p2
ij = trace(P 2) =

n∑
i=1

k2
i .
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Hence, inequality (2.10) can be rewritten as

(2.12) |k|2 + 2α
∑
i<j

kikj ≤ β

(
n∑

i,j=1

aijpij

)2

.

Let B = CAC−1. Thentrace B = trace A and

〈A, P 〉 = trace(AP )(2.13)

= trace(CAPC−1)

= trace(CAC−1CPC−1)

= trace(BD)

=
n∑

i=1

biiki.

Also, becauseB andA are unitary equivalent, we have
n∑

i=1

b2
ii ≤

n∑
ij

b2
ij =

n∑
i,j=1

a2
ij.

Therefore,b = (b11, . . . , bnn), α andβ satisfy the condition (2.6) from Lemma 2.3, and hence
n∑

i=1

k2
1 + 2α

∑
i<j

kikj ≤ β(b11k1 + · · ·+ bnnkn)2 = β〈A, P 〉2.

Using (2.11) – (2.13) we get (2.10). �

Theorem 2.5. Suppose thatA satisfies the Cordes conditionKε. Then for allu ∈ C∞0 (Ω) we
have

(2.14) ||D2u||L2(Ω) ≤
1

ε

(√
n− 1 + ε +

√
(1− ε)(n− 1)

)
||σAu||L2(Ω).

Proof. Fix x ∈ Ω such that (2.3) holds and consider an arbitraryα > 1/ε. Then(
n∑

i=1

aii(x)

)2

>

(
n− 1 +

1

α

)
||A(x)||2.

In order to chooseβ(x) > 0 such that

(2.15)

(
n∑

i=1

aii(x)

)2

≥
(

n− 1 +
1

α

)
||A(x)||2 +

1

β(x)

(
n− 1 +

1

α

)
(α− 1),

observe that conditionKε is equivalent to(
n∑

i=1

aii(x)

)2

≥
(

n− 1 +
1

α

)
||A(x)||2 +

(
ε− 1

α

)
||A(x)||2.

Therefore we have to askβ(x) to satisfy(
ε− 1

α

)
||A(x)||2 ≥ 1

β(x)

(
n− 1 +

1

α

)
(α− 1),

and hence

(2.16) β(x) ≥ σ2(x)
(n− 1)α2 + (2− n)α− 1

εα− 1
.
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Considering the functionf : (1/ε, +∞) → R defined by

f(α) =
(n− 1)α2 + (2− n)α− 1

εα− 1
,

we get that its minimum point is

α =
n− 1 +

√
(n− 1)(1− ε)(n− 1 + ε)

(n− 1)ε
.

Therefore, the minimum value ofσ2(x) f(α), which is coincidentally the best choice ofβ(x),
is

β(x) = σ2(x)
2ε− εn + 2n− 2 +

√
(n− 1)(1− ε)(n− 1 + ε)

ε2

=
σ2(x)

ε2

(√
n− 1 + ε +

√
(1− ε)(n− 1)

)2

.

Applying Lemma 2.4 in the case ofu ∈ C∞0 (Ω) andpij = Diju(x), we get

(2.17)
∫

Ω

n∑
i,j=1

(Diju(x))2dx + α
∑
i6=j

∫
Ω

∣∣∣∣ Diiu(x) Diju(x)
Diju(x) Djju(x)

∣∣∣∣ dx ≤
∫

Ω

β(x)(Au(x))2dx.

But, integrating by parts two times we get

(2.18)
∫

Ω

Diiu(x)Djju(x)dx =

∫
Ω

Diju(x)Diju(x)dx,

and hence

(2.19)
∫

Ω

∣∣∣∣ Diiu(x) Dij(x)
Diju(x) Djju(x)

∣∣∣∣ dx = 0.

Therefore, for allu ∈ C∞0 (Ω) we have

||D2u||L2(Ω) ≤
1

ε

(√
n− 1 + ε +

√
(1− ε)(n− 1)

)
||σAu||L2(Ω).

�

Theorem 2.5 clearly implies the following result.

Corollary 2.6. Suppose thatA satisfies Cordes conditionKε,γ. Then for allu ∈ W 2,2
0 (Ω) we

have

(2.20) ||D2u||L2(Ω) ≤
√

γ

ε

(√
n− 1 + ε +

√
(1− ε)(n− 1)

)
||Au||L2(Ω).

Remark 2.7. In the case oftrace A = 1 we get that

(2.21) ||D2u||L2(Ω) ≤
√

n

ε

(√
n− 1 + ε +

√
(1− ε)(n− 1)

)
||Au||L2(Ω).

If we compare estimate (1.2) with ours from (2.21) we realize that our constant on the right
hand side is larger. The interesting fact is that the two constants in (1.2) and (2.21) coincide in
the case whenA = 1

n
I andε = 1, and give (see [2])

||D2u||L2(Ω) ≤ ||∆u||L2(Ω), for all u ∈ W 2,2
0 (Ω) .

Looking at Talenti’s paper [5] we realize that the way in which the constantB is chosen on page
303 leads to

(2.22) ||A(x)||2 ≥ 1

n− 1 + ε
.
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Comparing this inequality to (1.1) which gives
1

n
≤ ||A(x)||2 ≤ 1

n− 1 + ε

and therefore

||A(x)||2 =
1

n− 1 + ε
,

we conclude that (2.22) (and hence (1.2)) holds for constant matricesA but may fail for a
nonconstantA(x) on a subset ofΩ with positive Lebesgue measure. Therefore, the estimate
(2.21) is the right one for nonconstant matrix functionsA(x) satisfying (1.1).

Remark 2.8. Another interesting fact is found when applying our method to the case of convex
functionsu. In this case we can further generalize the Cordes condition in the following way:
We say thatA satisfies the conditionKε(x) if

1

trace A
∈ L2

loc(Ω)

and there exists a measurable functionε : Ω → R such that0 < ε(x) ≤ 1 for a.e.x ∈ Ω and
1
ε
∈ L2(Ω), and the following inequalities hold:

(2.23) 0 <
1

σ2(x)
=

(
trace A(x)

)2

n
≤ ||A(x)||2 ≤

(
trace A(x)

)2

n− 1 + ε(x)
.

Inequality (2.17) in this case looks like∫
Ω

n∑
i,j=1

(Diju(x))2 dx +
∑
i6=j

∫
Ω

α(x)

∣∣∣∣ Diiu(x) Diju(x)
Diju(x) Djju(x)

∣∣∣∣ dx ≤
∫

Ω

β(x)(Au(x))2dx .

Observe that the convexity ofu implies thatD2u(x) is positive definite, which makes the deter-
minants ∣∣∣∣ Diiu(x) Diju(x)

Diju(x) Djju(x)

∣∣∣∣
positive. We conclude in this way that under the Cordes conditionKε(x) for all convex functions
u ∈ W 2,2(Ω) we still have

||D2u||L2(Ω) ≤
∥∥∥∥1

ε

(√
n− 1 + ε +

√
(1− ε)(n− 1)

)
σAu

∥∥∥∥
L2(Ω)

.
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