Journal of Inequalities in Pure and

 Applied Mathematics
ON THE VALUE DISTRIBUTION OF $\varphi(z)[f(z)]^{n-1} f^{(k)}(z)$

KIT-WING YU
Rm 205, Kwai Shun Hse., Kwai Fong Est., Hong Kong, China
maykw00@alumni.ust.hk or kitwing@hotmail.com

Received 01 May, 2001; accepted 04 October, 2001.
Communicated by H.M. Srivastava

AbSTRACT. In this paper, the value distribution of $\varphi(z)[f(z)]^{n-1} f^{(k)}(z)$ is studied, where $f(z)$ is a transcendental meromorphic function, $\varphi(z)(\not \equiv 0)$ is a function such that $T(r, \varphi)=$ $o(T(r, f))$ as $r \rightarrow+\infty, n$ and k are positive integers such that $n=1$ or $n \geq k+3$. This generalizes a result of Hiong.

Key words and phrases: Derivatives, Inequality, Meromorphic Functions, Small Functions, Value Distribution.

2000 Mathematics Subject Classification. Primary 30D35, 30A10.

1. Introduction and the Main Result

Throughout this paper, we use the notations $[f(z)]^{n}$ or $[f]^{n}$ to denote the n-power of a meromorphic function f. Similarly, $f^{(k)}(z)$ or $f^{(k)}$ are used to denote the k-order derivative of f.

In 1940, Milloux [5] showed that
Theorem A. Let $f(z)$ be a non-constant meromorphic function and k be a positive integer. Further, let

$$
\phi(z)=\sum_{i=0}^{k} a_{i}(z) f^{(i)}(z),
$$

where $a_{i}(z)(i=0,1, \ldots, k)$ are small functions of $f(z)$. Then we have

$$
m\left(r, \frac{\phi}{f}\right)=S(r, f)
$$

and

$$
T(r, \phi) \leq(k+1) T(r, f)+S(r, f)
$$

as $r \rightarrow+\infty$.
From this, it is easy for us to derive the following inequality which states a relationship between $T(r, f)$ and the 1-point of the derivatives of f. For the proof, please see [4], [7] or [8],

[^0]Theorem B. Let $f(z)$ be a non-constant meromorphic function and k be a positive integer. Then

$$
T(r, f) \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-1}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
$$

as $r \rightarrow+\infty$.
In fact, the above estimate involves the consideration of the zeros and poles of $f(z)$. Then a natural question is: Is it possible to use only the counting functions of the zeros of $f(z)$ and an a-point of $f^{(k)}(z)$ to estimate the function $T(r, f)$? Hiong proved that the answer to this question is yes. Actually, Hiong [6] obtained the following inequality
Theorem C. Let $f(z)$ be a non-constant meromorphic function. Further, let a, b and c be three finite complex numbers such that $b \neq 0, c \neq 0$ and $b \neq c$. Then

$$
\begin{aligned}
T(r, f)<N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f^{(k)}-b}\right)+N\left(r, \frac{1}{f^{(k)}-c}\right) & \\
& -N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow+\infty$.
Following this idea, a natural question to Theorem C is: Can we extend the three complex numbers to small functions of $f(z)$? In [9], by studying the zeros of the function $f(z) f^{\prime}(z)-$ $c(z)$, where $c(z)$ is a small function of $f(z)$, the author generalized the above inequality under an extra condition on the derivatives of $f^{(k)}(z)$. In fact, we have
Theorem D. Suppose that $f(z)$ is a transcendental meromorphic function and that $\varphi(z)(\not \equiv 0)$ is a meromorphic function such that $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$. Then for any finite non-zero distinct complex numbers b and c and any positive integer k such that $\varphi(z) f^{(k)}(z) \not \equiv$ constant, we have

$$
\begin{aligned}
T(r, f)<N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{\varphi f^{(k)}-b}\right)+N & \left(r, \frac{1}{\varphi f^{(k)}-c}\right) \\
& -N(r, f)-N\left(r, \frac{1}{\left(\varphi f^{(k)}\right)^{\prime}}\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow+\infty$.
In this paper, we are going to show that Theorem D is still valid for all positive integers k. As a result, this generalizes Theorem C to small functions completely. More generally, we show that:
Theorem 1.1. Suppose that $f(z)$ is a transcendental meromorphic function and that $\varphi(z)(\not \equiv 0)$ is a meromorphic function such that $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$. Suppose further that b and c are any finite non-zero distinct complex numbers, and k and n are positive integers. If $n=1$ or $n \geq k+3$, then we have

$$
\begin{align*}
T(r, f)<N\left(r, \frac{1}{f}\right)+\frac{1}{n}[N(& \left.\left.r, \frac{1}{\varphi[f]^{n-1} f^{(k)}-b}\right)+N\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}-c}\right)\right] \tag{1.1}\\
& -\frac{1}{n}\left[N(r, f)+N\left(r, \frac{1}{\left(\varphi[f]^{n-1} f^{(k)}\right)^{\prime}}\right)\right]+S(r, f)
\end{align*}
$$

as $r \rightarrow+\infty$.
If $f(z)$ is entire, then $\sqrt{1.1)}$ is true for all positive integers $n(\neq 2)$.
As an immedicate application of our theorem, we have

Corollary 1.2. If we take $n=1$ in the theorem, then we have Theorem D
Corollary 1.3. If we take $n=1, \varphi(z) \equiv 1$ and $f(z)=g(z)-a$, where a is any complex number, then we obtain Theorem C.
Remark 1.4. We shall remark that our main theorem and corollaries are also valid if $f(z)$ is rational since $\varphi(z) \equiv$ constant and $\varphi(z)[f(z)]^{n-1} f^{(k)}(z) \not \equiv$ constant in this case.

Here, we assume that the readers are familiar with the basic concepts of the Nevanlinna value distribution theory and the notations $m(r, f), N(r, f), \bar{N}(r, f), T(r, f), S(r, f)$, etc., see e.g. [1].

2. Lemmae

For the proof of the main result, we need the following three lemmae.
Lemma 2.1. [3] If $F(z)$ is a transcendental meromorphic function and $K>1$, then there exists a set $M(K)$ of upper logarithmic density at most

$$
\delta(K)=\min \left\{\left(2 e^{K-1}-1\right)^{-1},(1+e(K-1)) \exp (e(1-K))\right\}
$$

such that for every positive integer q,

$$
\begin{equation*}
\varlimsup_{r \rightarrow \infty, r \notin M(K)} \frac{T(r, F)}{T\left(r, F^{(q)}\right)} \leq 3 e K . \tag{2.1}
\end{equation*}
$$

If $F(z)$ is entire, then we can replace $3 e K$ by $2 e K$ in (2.1).
Lemma 2.2. Suppose that $f(z)$ is a transcendental meromorphic function and that $\varphi(z)(\not \equiv 0)$ is a meromorphic function such that $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$. Suppose further that k and n are positive integers. If $n=1$ or $n \geq k+3$, then $\varphi(z)[f(z)]^{n-1} f^{(k)}(z) \not \equiv$ constant.
Proof. Without loss of generality, we suppose that the constant is 1 . If $n=1$, then $\varphi f^{(k)} \equiv 1$. Hence, $T(r, \varphi)=T\left(r, f^{(k)}\right)+O(1)$ as $r \rightarrow+\infty$ and this implies that

$$
\varlimsup_{r \rightarrow \infty, r \notin M(K)} \frac{T(r, f)}{T\left(r, f^{(k)}\right)}=\infty
$$

This contradicts Lemma (2.1).
If $n \geq k+3$, then $T\left(r, \varphi f^{(k)}\right)=(n-1) T(r, f)$ as $r \rightarrow+\infty$ and

$$
\begin{equation*}
(n-1) T(r, f) \leq T\left(r, f^{(k)}\right)+S(r, f) \tag{2.2}
\end{equation*}
$$

as $r \rightarrow+\infty$. On the other hand,

$$
\begin{equation*}
T\left(r, f^{(k)}\right) \leq(k+1) T(r, f)+S(r, f) \tag{2.3}
\end{equation*}
$$

as $r \rightarrow+\infty$. By (2.2) and (2.3), we have $n \leq k+2$, a contradiction.
Hence, we have $\varphi[f]^{n-1} f^{(k)} \not \equiv$ constant in both cases and the lemma is proven.
Lemma 2.3. If $f(z)$ is entire, then $\varphi(z)[f(z)]^{n-1} f^{(k)}(z) \not \equiv$ constant for all positive integers $n(\neq 2)$ and k.

Proof. For the case $n=1$, we still have $T(r, \varphi)=T\left(r, f^{(k)}\right)+O(1)$ as $r \rightarrow+\infty$, so a contradiction to Lemma (2.1) again.

For $n \geq 3$, instead of (2.3), we have

$$
\begin{equation*}
T\left(r, f^{(k)}\right) \leq T(r, f)+S(r, f) \tag{2.4}
\end{equation*}
$$

as $r \rightarrow+\infty$.
So by (2.2) and (2.4), we have $n \leq 2$, a contradiction.

3. Proof of the Main Result

Proof. First of all, by the given conditions and Lemma 2.2, we know that $\varphi[f]^{n-1} f^{(k)} \not \equiv$ constant for $n \geq 1$. Therefore, we have

$$
\begin{equation*}
m\left(r, \frac{1}{\varphi[f]^{n}}\right) \leq m\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}}\right)+m\left(r, \frac{f^{(k)}}{f}\right)+O(1) . \tag{3.1}
\end{equation*}
$$

From

$$
\begin{gathered}
m\left(r, \frac{1}{\varphi[f]^{n}}\right)=T\left(r, \varphi[f]^{n}\right)-N\left(r, \frac{1}{\varphi\left[f f^{n}\right.}\right)+O(1), \\
m\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}}\right)=T\left(r, \varphi[f]^{n-1} f^{(k)}\right)-N\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}}\right)+O(1),
\end{gathered}
$$

and (3.1), we have

$$
\begin{align*}
T\left(r, \varphi[f]^{n}\right) \leq N\left(r, \frac{1}{\varphi[f]^{n}}\right)+T\left(r, \varphi[f]^{n-1} f^{(k)}\right)-N(r, & \left.\frac{1}{\varphi[f]^{n-1} f^{(k)}}\right) \tag{3.2}\\
& +m\left(r, \frac{f^{(k)}}{f}\right)+O(1)
\end{align*}
$$

Since $\varphi(z)[f(z)]^{n-1} f^{(k)} \not \equiv$ constant, from the second fundamental theorem,

$$
\begin{align*}
& T\left(r, \varphi[f]^{n-1} f^{(k)}\right)<N\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}}\right)+N\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}-b}\right) \tag{3.3}\\
&+ N\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}-c}\right)-N_{1}(r)+S\left(r, \varphi f^{(k)}\right)
\end{align*}
$$

as $r \rightarrow+\infty$, where b and c are two non-zero distinct complex numbers and, as usual, $N_{1}(r)$ is defined as

$$
N_{1}(r)=2 N\left(r, \varphi[f]^{n-1} f^{(k)}\right)-N\left(r,\left(\varphi[f]^{n-1} f^{(k)}\right)^{\prime}\right)+N\left(r, \frac{1}{\left(\varphi[f]^{n-1} f^{(k)}\right)^{\prime}}\right)
$$

Let z_{0} be a pole of order $p \geq 1$ of f. Then $[f]^{n-1} f^{(k)}$ and $\left([f]^{n-1} f^{(k)}\right)^{\prime}$ have a pole of order $k+n p$ and $k+n p+1$ at z_{0} respectively. Thus $2(k+n p)-(k+n p+1)=k+n p-1 \geq p$ and

$$
\begin{equation*}
N_{1}(r) \geq N(r, f)+N\left(r, \frac{1}{\left(\varphi[f]^{n-1} f^{(k)}\right)^{\prime}}\right)+S(r, f) \tag{3.4}
\end{equation*}
$$

It is clear that $S\left(r, f^{(k)}\right)=S(r, f)$ and $m\left(r, \frac{f^{(k)}}{f}\right)=S(r, f)$. Thus by 3.2, 3.3, and 3.4,

$$
\begin{aligned}
& T\left(r, \varphi[f]^{n}\right)<N\left(r, \frac{1}{\varphi[f]^{n}}\right)+N\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}-b}\right)+N\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}-c}\right) \\
&-N(r, f)-N\left(r, \frac{1}{\left(\varphi[f]^{n-1} f^{(k)}\right)^{\prime}}\right)+S(r, f)
\end{aligned}
$$

as $r \rightarrow+\infty$. Since $T(r, \varphi)=o(T(r, f))$ as $r \rightarrow+\infty$, we have the desired result.
If f is entire, then by Lemma (2.3), we still have $\varphi[f]^{n-1} f^{(k)} \not \equiv$ constant for all positive integers $n(\neq 2),(3.3)$ and (3.4). Thus the same argument can be applied and the same result is obtained.

4. Concluding Remarks and a Conjecture

Remark 4.1. We expect that our theorem is also valid for the case $n=2$ if $f(z)$ is entire.
Remark 4.2. In [10], Zhang studied the value distribution of $\varphi(z) f(z) f^{\prime}(z)$ and he obtained the following result: If $f(z)$ is a non-constant meromorphic function and $\varphi(z)$ is a non-zero meromorphic function such that $T(r, \varphi)=S(r, f)$ as $r \rightarrow+\infty$, then

$$
T(r, f)<\frac{9}{2} \bar{N}(r, f)+\frac{9}{2} \bar{N}\left(r, \frac{1}{\varphi f f^{\prime}-1}\right)+S(r, f)
$$

as $r \rightarrow+\infty$.
Hence, by this remark, we expect the following conjecture would be true.
Conjecture 4.3. Let n and k be positive integers. If $n=1$ or $n \geq k+3, f(z)$ is a non-constant meromorphic function and $\varphi(z)$ is a non-zero meromorphic function such that $T(r, \varphi)=S(r, f)$ as $r \rightarrow+\infty$, then

$$
T(r, f)<\frac{9}{2} \bar{N}(r, f)+\frac{9}{2} \bar{N}\left(r, \frac{1}{\varphi[f]^{n-1} f^{(k)}-1}\right)+S(r, f)
$$

as $r \rightarrow+\infty$.

References

[1] W.K. HAYMAN, Meromorphic Functions, Oxford, Clarendon Press, 1964.
[2] W.K. HAYMAN, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9-42.
[3] W.K. HAYMAN and J. MILES, On the growth of a meromorphic function and its derivatives, Complex Variables, 12 (1989), 245-260.
[4] H. MILLOUX, Extension d'un théorème de M. R. Nevanlinna et applications, Act. Scient. et Ind., no.888, 1940.
[5] H. MILLOUX, Les fonctions méromorphes et leurs dérivées, Paris, 1940.
[6] K.L. HIONG, Sur la limitation de $T(r, f)$ sans intervention des pôles, Bull. Sci. Math., 80 (1956), 175-190.
[7] L. YANG, Value distribution theory and its new researches (Chinese), Beijing, 1982.
[8] H.X. YI and C.C. YANG, On the uniqueness theory of meromorphic functions (Chinese), Science Press, China, 1996.
[9] K.W. YU, A note on the product of a meromorphic function and its derivative, to appear in Kodai Math. J.
[10] Q.D. ZHANG, On the value distribution of $\varphi(z) f(z) f^{\prime}(z)$ (Chinese), Acta Math. Sinica, 37 (1994), 91-97.

[^0]: ISSN (electronic): 1443-5756
 (C) 2002 Victoria University. All rights reserved.

 037-01

