Journal of Inequalities in Pure and Applied Mathematics

INTERPOLATION FUNCTIONS OF SEVERAL MATRIX VARIABLES

Y. AMEUR
Karlsrogatan 83A
S-752 39 UpPSALA,
Sweden.
yacin@math.uu.se

Received 16 March, 2003; accepted 14 November, 2003
Communicated by F. Hansen

Abstract

An interpolation theorem of Donoghue is extended to interpolation of tensor products. The result is related to Korányi's work on monotone matrix functions of several variables.

Key words and phrases: Interpolation, Tensor product, Hilbert space, Korányi’s theorem.

2000 Mathematics Subject Classification. Primary: 46B70, Secondary: 46C15, 47A80.

1. Statement and Proof of the Main Result

Recall the definition of an interpolation function (of one variable). Let $A \in M_{n}(\mathbb{C}):=\mathcal{L}\left(\ell_{2}^{n}\right)$ be a positive definite matrix. A real function h defined on $\sigma(A)$ is said to belong to the class C_{A} of interpolation functions with respect to A if

$$
\begin{equation*}
T \in M_{n}(\mathbb{C}), \quad T^{*} T \leq 1, \quad T^{*} A T \leq A \tag{1.1}
\end{equation*}
$$

imply

$$
\begin{equation*}
T^{*} h(A) T \leq h(A) . \tag{1.2}
\end{equation*}
$$

(Here $A \leq B$ means that $B-A$ is positive semidefinite). By Donoghue's theorem (cf. [4] Theorem 1], see also [1, Theorem 7.1]), the functions in C_{A} are precisely those representable in the form

$$
\begin{equation*}
h(\lambda)=\int_{[0, \infty]} \frac{(1+t) \lambda}{1+t \lambda} d \rho(t), \quad \lambda \in \sigma(A), \tag{1.3}
\end{equation*}
$$

for some positive Radon measure ρ on the compactified half-line $[0, \infty]$. Thus, by Löwner's theorem (see [6] or [3]), C_{A} is precisely the set of restrictions to $\sigma(A)$ of the positive matrix monotone functions on \mathbb{R}_{+}, in the sense that $A, B \in M_{n}(\mathbb{C})$ positive definite and $A \leq B$ imply $h(A) \leq h(B)$. Before we proceed, it is important to note that

$$
\begin{equation*}
h \in C_{A} \quad \text { implies } \quad h^{\frac{1}{2}} \in C_{A} \tag{1.4}
\end{equation*}
$$

[^0]because the function $\lambda \mapsto \lambda^{\frac{1}{2}}$ is matrix monotone and the class of matrix monotone functions is a semi-group under composition.

Given two positive definite matrices $A_{i} \in M_{n_{i}}(\mathbb{C})$, define the class $C_{A_{1}, A_{2}}$ of interpolation functions with respect to A_{1}, A_{2} as the set of functions h defined on $\sigma\left(A_{1}\right) \times \sigma\left(A_{2}\right)$ having the following property:

$$
\begin{equation*}
T_{i} \in M_{n_{i}}(\mathbb{C}) \quad T_{i}^{*} T_{i} \leq 1 \quad T_{i}^{*} A_{i} T_{i} \leq A_{i}, \quad i=1,2 \tag{1.5}
\end{equation*}
$$

imply

$$
\begin{equation*}
\left(T_{1} \otimes T_{2}\right)^{*} h\left(A_{1}, A_{2}\right)\left(T_{1} \otimes T_{2}\right) \leq h\left(A_{1}, A_{2}\right) . \tag{1.6}
\end{equation*}
$$

(Here (cf. [8])

$$
h\left(A_{1}, A_{2}\right)=\sum_{\left(\lambda_{1}, \lambda_{2}\right) \in \sigma\left(A_{1}\right) \times \sigma\left(A_{2}\right)} h\left(\lambda_{1}, \lambda_{2}\right) E_{\lambda_{1}} \otimes F_{\lambda_{2}},
$$

where E, F are the spectral resolutions of A_{1}, A_{2}).
Note that if $h=h_{1} \otimes h_{2}$ is an elementary tensor where $h_{i} \in C_{A_{i}}$, then $h \in C_{A_{1}, A_{2}}$, because then (1.5) yields

$$
\begin{aligned}
\left(T_{1} \otimes T_{2}\right)^{*} h\left(A_{1}, A_{2}\right)\left(T_{1} \otimes T_{2}\right) & =\left(T_{1}^{*} h_{1}\left(A_{1}\right) T_{1}\right) \otimes\left(T_{2}^{*} h_{2}\left(A_{2}\right) T_{2}\right) \\
& \leq h_{1}\left(A_{1}\right) \otimes h_{2}\left(A_{2}\right)=h\left(A_{1}, A_{2}\right),
\end{aligned}
$$

i.e. (1.6) holds. Since by (1.3) each function

$$
\lambda \mapsto \frac{(1+t) \lambda}{1+t \lambda}
$$

is in C_{A} for any A, and since the class $C_{A_{1}, A_{2}}$ is a convex cone, closed under pointwise convergence, it follows that functions of the type

$$
\begin{equation*}
h\left(\lambda_{1}, \lambda_{2}\right)=\int_{[0, \infty]^{2}} \frac{\left(1+t_{1}\right) \lambda_{1}}{1+t_{1} \lambda_{1}} \frac{\left(1+t_{2}\right) \lambda_{2}}{1+t_{2} \lambda_{2}} d \rho\left(t_{1}, t_{2}\right), \tag{1.7}
\end{equation*}
$$

where ρ is a positive Radon measure on $[0, \infty]^{2}$ are in $C_{A_{1}, A_{2}}$ for all A_{1}, A_{2}. We have thus proved the easy part of our main theorem:

Theorem 1.1. Let h be a real function defined on $\sigma\left(A_{1}\right) \times \sigma\left(A_{2}\right)$. Then $h \in C_{A_{1}, A_{2}}$ iff h is representable in the form (1.7) for some positive Radon measure ρ.

It remains to prove " \Rightarrow ". Let us make some preliminary observations:
(i) ([2, Lemma 2.2]) The class $C_{A_{1}, A_{2}}$ is unitarily invariant in the sense that if A_{1} and A_{2} are unitarily equivalent to A_{1}^{\prime} and A_{2}^{\prime} respectively, then $h \in C_{A_{1}, A_{2}}$ implies $h \in C_{A_{1}^{\prime}, A_{2}^{\prime}}$. (Indeed,

$$
h\left(U_{1}^{*} A_{1} U_{1}, U_{2}^{*} A_{2} U_{2}\right)=\left(U_{1} \otimes U_{2}\right)^{*} h\left(A_{1}, A_{2}\right)\left(U_{1} \otimes U_{2}\right)
$$

for all unitaries U_{1}, U_{2}).
(ii) ([2] Lemma 2.1]) The class $C_{A_{1}, A_{2}}$ respects compressions to invariant subspaces in the sense that if $f \in C_{A_{1}, A_{2}}$ and $A_{1}^{\prime}, A_{2}^{\prime}$ are compressions of A_{1}, A_{2} respectively to invariant subspaces, then $h \in C_{A_{1}^{\prime}, A_{2}^{\prime}}$. (Indeed,

$$
(E \otimes F) h\left(A_{1}, A_{2}\right)(E \otimes F)=(E \otimes F) h\left(E A_{1} E, F A_{2} F\right)(E \otimes F)
$$

whenever E, F are orthogonal projections commuting with A_{1}, A_{2} respectively).
(iii) If λ_{2}^{*} is any (fixed) eigenvalue of A_{2} and the function $h_{\lambda_{2}^{*}}: \sigma\left(A_{1}\right) \rightarrow \mathbb{R}$ is defined by $h_{\lambda_{2}^{*}}\left(\lambda_{1}\right)=h\left(\lambda_{1}, \lambda_{2}^{*}\right)$, then

$$
\begin{aligned}
h\left(A_{1}, \lambda_{2}^{*} F_{\lambda_{2}^{*}}\right) & =\sum_{\lambda_{1} \in \sigma\left(A_{1}\right)} h\left(\lambda_{1}, \lambda_{2}^{*}\right)\left(E_{\lambda_{1}} \otimes F_{\lambda_{2}^{*}}\right) \\
& =\left(\sum_{\lambda_{1} \in \sigma\left(A_{1}\right)} h_{\lambda_{2}^{*}}\left(\lambda_{1}\right) E_{\lambda_{1}}\right) \otimes F_{\lambda_{2}^{*}} \\
& =h_{\lambda_{2}^{*}}\left(A_{1}\right) \otimes F_{\lambda_{2}^{*}} .
\end{aligned}
$$

(iv) By symmetry, of course (with fixed λ_{1}^{*} in $\sigma\left(A_{1}\right)$ and $h_{\lambda_{1}^{*}}\left(\lambda_{2}\right)=h\left(\lambda_{1}^{*}, \lambda_{2}\right)$),

$$
h\left(\lambda_{1}^{*} E_{\lambda_{1}^{*}}, A_{2}\right)=E_{\lambda_{1}^{*}} \otimes h_{\lambda_{1}^{*}}\left(A_{2}\right) .
$$

Lemma 1.2. Let $h \in C_{A_{1}, A_{2}}$ and let λ_{1}^{*}, λ_{2}^{*} be fixed eigenvalues of A_{1} and A_{2} respectively. Then $h_{\lambda_{1}^{*}}^{\frac{1}{2}} \in C_{A_{2}}$ and $h_{\lambda_{2}^{*}}^{\frac{1}{2}} \in C_{A_{1}}$.

Proof. By symmetry of the problem, it suffices to prove the statement about $h_{\lambda_{2}^{*}}^{\frac{1}{2}}$. If $h \in C_{A_{1}, A_{2}}$, then by (iii),

$$
h\left(A_{1}, \lambda_{2}^{*} F_{\lambda_{2}^{*}}\right)=h_{\lambda_{2}^{*}}\left(A_{1}\right) \otimes F_{\lambda_{2}^{*}} .
$$

Let f_{2}^{*} be a fixed non-zero vector in the range of $F_{\lambda_{2}^{*}}$ and put $c=\left(F_{\lambda_{2}^{*}} f_{2}^{*}, f_{2}^{*}\right)>0$. Put $T_{2}=F_{\lambda_{2}^{*}}$ and let T_{1} be any matrix fulfilling $T_{1}^{*} T_{1} \leq 1$ and $T_{1}^{*} A_{1} T_{1} \leq A_{1}$; then plainly T_{1}, T_{2} satisfy condition 1.5 . Thus, since $h \in C_{A_{1}, \lambda_{2}^{*} F_{\lambda_{2}^{*}}}$, we get from (1.6)

$$
\begin{array}{r}
\left(\left(T_{1} \otimes T_{2}\right)^{*} h\left(A_{1}, \lambda_{2}^{*} F_{\lambda_{2}^{*}}\right)\left(T_{1} \otimes T_{2}\right)\left(f_{1} \otimes f_{2}^{*}\right), f_{1} \otimes f_{2}^{*}\right)-\left(h\left(A_{1}, \lambda_{2}^{*} F_{\lambda_{2}^{*}}\right)\left(f_{1} \otimes f_{2}^{*}\right), f_{1} \otimes f_{2}^{*}\right) \\
=c\left(\left(T_{1}^{*} h_{\lambda_{2}^{*}}\left(A_{1}\right) T_{1} f_{1}, f_{1}\right)-\left(h_{\lambda_{2}^{*}}\left(A_{1}\right) f_{1}, f_{1}\right)\right) \leq 0, \quad f_{1} \in M_{n_{1}}(\mathbb{C}) .
\end{array}
$$

This yields $T_{1}^{*} h_{\lambda_{2}^{*}}\left(A_{1}\right) T_{1} \leq h_{\lambda_{2}^{*}}\left(A_{1}\right), T_{1} \in M_{n_{1}}(\mathbb{C})$, i.e. $h_{\lambda_{2}^{*}} \in C_{A_{1}}$. In view of 1.4$), h_{\lambda_{2}^{*}}^{\frac{1}{2}} \in$ $C_{A_{1}}$.

Let h be a fixed function in the class $C_{A_{1}, A_{2}}$. Replacing the matrices A_{1}, A_{2} by $c_{1} A_{1}, c_{2} A_{2}$ for suitable constants $c_{1}, c_{2}>0$, we can assume without loss of generality that

$$
\begin{equation*}
(1,1) \in \sigma\left(A_{1}\right) \times \sigma\left(A_{2}\right) \tag{1.8}
\end{equation*}
$$

Define C to be the C^{*}-algebra of continuous functions $[0, \infty] \rightarrow \mathbb{C}$ with the supremum norm, and denote (for fixed $\lambda \in \mathbb{R}_{+}$) by e_{λ} the function

$$
e_{\lambda}(t)=\frac{(1+t) \lambda}{1+t \lambda} \in C, \quad t \in[0, \infty] .
$$

Let two finite-dimensional subspaces V_{1}, V_{2} be defined by

$$
V_{i}=\operatorname{span}\left\{e_{\lambda_{i}}: \lambda_{i} \in \sigma\left(A_{i}\right)\right\} \subset C, \quad i=1,2 .
$$

Then (1.8) yields that the unit $1=e_{1}(t) \in C$ belongs to $V_{1} \cap V_{2}$. For fixed $\lambda_{i}^{*} \in \sigma\left(A_{i}\right)$, define two linear functionals

$$
\phi_{\lambda_{1}^{*}}: V_{2} \rightarrow \mathbb{C}, \quad \phi_{\lambda_{2}^{*}}: V_{1} \rightarrow \mathbb{C}
$$

by

$$
\phi_{\lambda_{1}^{*}}\left(\sum_{\lambda_{2} \in \sigma\left(A_{2}\right)} a_{\lambda_{2}} e_{\lambda_{2}}\right)=\sum_{\lambda_{2} \in \sigma\left(A_{2}\right)} a_{\lambda_{2}} h_{\lambda_{1}^{*}}\left(\lambda_{2}\right)^{\frac{1}{2}},
$$

and

$$
\phi_{\lambda_{2}^{*}}\left(\sum_{\lambda_{1} \in \sigma\left(A_{1}\right)} a_{\lambda_{1}} e_{\lambda_{1}}\right)=\sum_{\lambda_{1} \in \sigma\left(A_{1}\right)} a_{\lambda_{1}} h_{\lambda_{2}^{*}}\left(\lambda_{1}\right)^{\frac{1}{2}}
$$

respectively. We then have the following lemma:
Lemma 1.3. The functional $\phi_{\lambda_{1}^{*}}$ is positive on V_{2} in the sense that if $u \in V_{2}$ satisfies $u(t) \geq 0$ for all $t>0$, then $\phi_{\lambda_{1}^{*}}(u) \geq 0$. Similarly, $\phi_{\lambda_{2}^{*}}$ is a positive functional on V_{1}.
Proof of Lemma 1.3. This follows from Lemma 1.2 and Lemma 7.1 of [1].
Proof of Theorem 1.1. Consider now the bilinear form

$$
\phi: V_{1} \times V_{2} \rightarrow \mathbb{C}
$$

defined by

$$
\begin{align*}
\phi\left(\sum_{\lambda_{1} \in \sigma\left(A_{1}\right)} a_{\lambda_{1}} e_{\lambda_{1}}\right. & \left., \sum_{\lambda_{2} \in \sigma\left(A_{2}\right)} a_{\lambda_{2}} e_{\lambda_{2}}\right) \tag{1.9}\\
& =\sum_{\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right) \in \sigma\left(A_{1}\right) \times \sigma\left(A_{2}\right)} \phi_{\lambda_{1}^{*}}\left(\sum_{\lambda_{2} \in \sigma\left(A_{2}\right)} a_{\lambda_{2}} e_{\lambda_{2}}\right) \phi_{\lambda_{2}^{*}}\left(\sum_{\lambda_{1} \in \sigma\left(A_{1}\right)} a_{\lambda_{1}} e_{\lambda_{1}}\right)
\end{align*}
$$

By Lemma 1.3, ϕ is positive on $V_{1} \times V_{2}$ in the sense that $u_{i} \in V_{i}, u_{i} \geq 0$ implies $\phi\left(u_{1}, u_{2}\right) \geq 0$. Hence (since the V_{i} 's contain the function 1),

$$
\begin{equation*}
\|\phi\|=\sup \left\{\left|\phi\left(u_{1}, u_{2}\right)\right|: u_{i} \in V_{i},\left\|u_{i}\right\|_{\infty} \leq 1, i=1,2\right\}=\phi(1,1) \tag{1.10}
\end{equation*}
$$

Now ϕ lifts to a linear functional

$$
\tilde{\phi}: V_{1} \otimes V_{2} \rightarrow \mathbb{C}
$$

which is positive on $V_{1} \otimes V_{2}$, because

$$
\|\tilde{\phi}\|=\|\phi\|=\phi(1,1)=\tilde{\phi}(1)
$$

The Hahn-Banach theorem yields an extension $\Phi: C \otimes C=C\left([0, \infty]^{2}\right) \rightarrow \mathbb{C}$ of $\tilde{\phi}$ of the same norm. Thus the positivity of $\tilde{\phi}$ yields

$$
\|\Phi\|=\|\tilde{\phi}\|=\tilde{\phi}(1)=\Phi(1)
$$

i.e. Φ is a positive functional on $C\left([0, \infty]^{2}\right)$. Hence, the Riesz representation theorem provides us with a positive Radon measure ρ on $[0, \infty]^{2}$ such that

$$
\begin{equation*}
\Phi(u)=\int_{[0, \infty]^{2}} u\left(t_{1}, t_{2}\right) d \rho\left(t_{1}, t_{2}\right), \quad u \in C\left([0, \infty]^{2}\right) \tag{1.11}
\end{equation*}
$$

A simple rewriting yields that (1.9) equals

$$
\sum_{\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right) \in \sigma\left(A_{1}\right) \times \sigma\left(A_{2}\right)}\left(a_{\lambda_{1}^{*}} a_{\lambda_{2}^{*}} h\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)+\sum_{\left(\lambda_{1}, \lambda_{2}\right) \neq\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right)} a_{\lambda_{1}} a_{\lambda_{2}} h\left(\lambda_{1}^{*}, \lambda_{2}\right)^{\frac{1}{2}} h\left(\lambda_{1}, \lambda_{2}^{*}\right)^{\frac{1}{2}}\right)
$$

Inserting the latter expression into 1.11 yields

$$
\begin{aligned}
h\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right) & =\phi\left(\lambda_{1}^{*}, \lambda_{2}^{*}\right) \\
& =\Phi\left(e_{\lambda_{1}^{*}} \otimes e_{\lambda_{2}^{*}}\right) \\
& =\int_{[0, \infty]^{2}} \frac{\left(1+t_{1}\right) \lambda_{1}^{*}}{1+t_{1} \lambda_{1}^{*}} \frac{\left(1+t_{2}\right) \lambda_{2}^{*}}{1+t_{2} \lambda_{2}^{*}} d \rho\left(t_{1}, t_{2}\right)
\end{aligned}
$$

Since $\lambda_{1}^{*}, \lambda_{2}^{*}$ are arbitrary, the theorem is proved.
Remark 1.4. It is easy to modify the above proof to obtain a representation theorem for interpolation functions of more than two matrix variables (where the latter set of functions is interpreted in the obvious way).

2. Korányi's Theorem

Consider the class of functions which are monotone according to the definition of Korányi [8] ${ }^{1}$, $A_{1} \leq A_{1}^{\prime}$ and $A_{2} \leq A_{2}^{\prime}$ imply

$$
\begin{equation*}
h\left(A_{1}^{\prime}, A_{2}^{\prime}\right)-h\left(A_{1}^{\prime}, A_{2}\right)-h\left(A_{1}, A_{2}^{\prime}\right)-h\left(A_{1}, A_{2}\right) \geq 0 . \tag{2.1}
\end{equation*}
$$

The functions

$$
h_{t}(\lambda)=\frac{(1+t) \lambda}{1+t \lambda}
$$

are monotone of one variable $(0 \leq t \leq \infty)$, whence with $h_{t_{1} t_{2}}=h_{t_{1}} \otimes h_{t_{2}}$ (cf. [8, p. 544]),

$$
\begin{aligned}
& h_{t_{1} t_{2}}\left(A_{1}^{\prime}, A_{2}^{\prime}\right)-h_{t_{1} t_{2}}\left(A_{1}^{\prime}, A_{2}\right)-h_{t_{1} t_{2}}\left(A_{1}, A_{2}^{\prime}\right)-h_{t_{1} t_{2}}\left(A_{1}, A_{2}\right) \\
&=\left(h_{t_{1}}\left(A_{1}^{\prime}\right)-h_{t_{1}}\left(A_{1}\right)\right) \otimes\left(h_{t_{2}}\left(A_{2}^{\prime}\right)-h_{t_{2}}\left(A_{2}\right)\right) \geq 0
\end{aligned}
$$

i.e. $h_{t_{1} t_{2}}$ is monotone. Since the class of monotone functions of two variables is closed under pointwise convergence, the latter inequality can be integrated, which yields that all functions of the form (1.7) are monotone. Hence we have proved the easy half of the following theorem of A. Korányi, cf. [8, Theorem 4], cf. also [9].

Theorem 2.1. Let h be a positive function on \mathbb{R}_{+}^{2}. Assume that (a) the first partial derivatives and the mixed second partial derivatives of h exist and are continuous. Then h is monotone iff h is representable in the form (1.7) for some positive Radon measure ρ on $[0, \infty]^{2}$.
Remark 2.2. According to Korányi the differentiability condition (a) was imposed "in order to avoid lengthy computations which are of no interest for the main course of our investigation" ([8, bottom of p. 541]).

Let us denote a function h defined on \mathbb{R}_{+}^{2} an interpolation function if $h \in C_{A_{1}, A_{2}}$ for any positive matrices A_{1}, A_{2}. Theorem 1.1 and Theorem 2.1 then yield the following corollary, which nicely generalizes the one-variable case.

Corollary 2.3. The set of interpolation functions coincides with the set of monotone functions satisfying (a).

References

[1] Y. AMEUR, The Calderón problem for Hilbert couples, Ark. Mat., 41 (2003), 203-231.
[2] J.S. AUJLA, Matrix convexity of functions of two variables, Linear Algebra Appl., 194 (1993), 149-160.
[3] W. DONOGHUE, Monotone Matrix Functions and Analytic Continuation, Springer, 1974
[4] W. DONOGHUE, The interpolation of quadratic norms, Acta Math., 118 (1967), 251-270.
[5] C. FOIAŞ and J.L. LIONS, Sur certains théorèmes d'interpolation, Acta Sci. Math., 22 (1961), 269-282.
[6] K. LÖWNER, Über monotone matrixfunktionen, Math. Z., 38 (1934), 177-216.
[7] F. HANSEN, Operator monotone functions of several variables, Math. Ineq. Appl., 6 (2003), 1-17.

[^1][8] A. KORÁNYI, On some classes of analytic functions of several variables, Trans. Amer. Math. Soc., 101 (1961), 520-554.
[9] H. VASUDEVA, On monotone matrix functions of two variables, Trans. Amer. Math. Soc., 176 (1973), 305-318.

[^0]: ISSN (electronic): 1443-5756
 (C) 2003 Victoria University. All rights reserved.

 037-03

[^1]: ${ }^{1}$ A different definition of monotonicity of several matrix variables was recently given by Frank Hansen in [7].

