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Abstract

An interpolation theorem of Donoghue is extended to interpolation of tensor
products. The result is related to Korányi’s work on monotone matrix functions
of several variables.
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1. Statement and Proof of the Main Result
Recall the definition of an interpolation function (of one variable). LetA ∈
Mn(C) := L(`n

2 ) be a positive definite matrix. A real functionh defined on
σ(A) is said to belong to the classCA of interpolation functions with respect to
A if

(1.1) T ∈ Mn(C), T ∗T ≤ 1, T ∗AT ≤ A

imply

(1.2) T ∗h(A)T ≤ h(A).

(Here A ≤ B means thatB − A is positive semidefinite). By Donoghue’s
theorem (cf. [4, Theorem 1], see also [1, Theorem 7.1]), the functions inCA are
precisely those representable in the form

(1.3) h(λ) =

∫
[0,∞]

(1 + t)λ

1 + tλ
dρ(t), λ ∈ σ(A),

for some positive Radon measureρ on the compactified half-line[0,∞]. Thus,
by Löwner’s theorem (see [6] or [3]), CA is precisely the set of restrictions
to σ(A) of the positivematrix monotonefunctions onR+, in the sense that
A, B ∈ Mn(C) positive definite andA ≤ B imply h(A) ≤ h(B). Before we
proceed, it is important to note that

(1.4) h ∈ CA implies h
1
2 ∈ CA
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because the functionλ 7→ λ
1
2 is matrix monotone and the class of matrix mono-

tone functions is a semi-group under composition.
Given two positive definite matricesAi ∈ Mni

(C), define the classCA1,A2 of
interpolation functions with respect toA1, A2 as the set of functionsh defined
onσ(A1)× σ(A2) having the following property:

(1.5) Ti ∈ Mni
(C) T ∗

i Ti ≤ 1 T ∗
i AiTi ≤ Ai, i = 1, 2

imply

(1.6) (T1 ⊗ T2)
∗h(A1, A2)(T1 ⊗ T2) ≤ h(A1, A2).

(Here (cf. [8])

h(A1, A2) =
∑

(λ1,λ2)∈σ(A1)×σ(A2)

h(λ1, λ2)Eλ1 ⊗ Fλ2 ,

whereE, F are the spectral resolutions ofA1, A2).
Note that ifh = h1 ⊗ h2 is an elementary tensor wherehi ∈ CAi

, then
h ∈ CA1,A2, because then (1.5) yields

(T1 ⊗ T2)
∗h(A1, A2)(T1 ⊗ T2) = (T ∗

1 h1(A1)T1)⊗ (T ∗
2 h2(A2)T2)

≤ h1(A1)⊗ h2(A2) = h(A1, A2),

i.e. (1.6) holds. Since by (1.3) each function

λ 7→ (1 + t)λ

1 + tλ
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is in CA for anyA, and since the classCA1,A2 is a convex cone, closed under
pointwise convergence, it follows that functions of the type

(1.7) h(λ1, λ2) =

∫
[0,∞]2

(1 + t1)λ1

1 + t1λ1

(1 + t2)λ2

1 + t2λ2

dρ(t1, t2),

whereρ is a positive Radon measure on[0,∞]2 are inCA1,A2 for all A1, A2. We
have thus proved the easy part of our main theorem:

Theorem 1.1. Let h be a real function defined onσ(A1) × σ(A2). Thenh ∈
CA1,A2 iff h is representable in the form (1.7) for some positive Radon measure
ρ.

It remains to prove “⇒”. Let us make some preliminary observations:

(i) ([2, Lemma 2.2]) The classCA1,A2 is unitarily invariant in the sense that
if A1 andA2 are unitarily equivalent toA′

1 andA′
2 respectively, thenh ∈

CA1,A2 impliesh ∈ CA′
1,A′

2
. (Indeed,

h(U∗
1 A1U1, U

∗
2 A2U2) = (U1 ⊗ U2)

∗h(A1, A2)(U1 ⊗ U2)

for all unitariesU1, U2).

(ii) ([2, Lemma 2.1]) The classCA1,A2 respects compressions to invariant sub-
spacesin the sense that iff ∈ CA1,A2 andA′

1, A′
2 are compressions ofA1,

A2 respectively to invariant subspaces, thenh ∈ CA′
1,A′

2
. (Indeed,

(E ⊗ F )h(A1, A2)(E ⊗ F ) = (E ⊗ F )h(EA1E, FA2F )(E ⊗ F )

wheneverE, F are orthogonal projections commuting withA1, A2 respec-
tively).
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(iii) If λ∗2 is any (fixed) eigenvalue ofA2 and the functionhλ∗
2

: σ(A1) → R is
defined byhλ∗

2
(λ1) = h(λ1, λ

∗
2), then

h(A1, λ
∗
2Fλ∗

2
) =

∑
λ1∈σ(A1)

h(λ1, λ
∗
2)(Eλ1 ⊗ Fλ∗

2
)

=

 ∑
λ1∈σ(A1)

hλ∗
2
(λ1)Eλ1

⊗ Fλ∗
2

= hλ∗
2
(A1)⊗ Fλ∗

2
.

(iv) By symmetry, of course (with fixedλ∗1 in σ(A1) andhλ∗
1
(λ2) = h(λ∗1, λ2)),

h(λ∗1Eλ∗
1
, A2) = Eλ∗

1
⊗ hλ∗

1
(A2).

Lemma 1.2. Let h ∈ CA1,A2 and letλ∗1, λ∗2 be fixed eigenvalues ofA1 andA2

respectively. Thenh
1
2
λ∗
1
∈ CA2 andh

1
2
λ∗
2
∈ CA1 .

Proof. By symmetry of the problem, it suffices to prove the statement about

h
1
2
λ∗
2
. If h ∈ CA1,A2, then by (iii),

h(A1, λ
∗
2Fλ∗

2
) = hλ∗

2
(A1)⊗ Fλ∗

2
.

Let f ∗2 be a fixed non-zero vector in the range ofFλ∗
2

and putc = (Fλ∗
2
f ∗2 , f∗2 ) >

0. PutT2 = Fλ∗
2

and letT1 be any matrix fulfillingT ∗
1 T1 ≤ 1 andT ∗

1 A1T1 ≤ A1;
then plainlyT1, T2 satisfy condition (1.5). Thus, sinceh ∈ CA1,λ∗

2Fλ∗
2
, we get
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from (1.6)

((T1 ⊗ T2)
∗h(A1, λ

∗
2Fλ∗

2
)(T1 ⊗ T2)(f1 ⊗ f ∗2 ), f1 ⊗ f ∗2 )

− (h(A1, λ
∗
2Fλ∗

2
)(f1 ⊗ f ∗2 ), f1 ⊗ f ∗2 )

= c((T ∗
1 hλ∗

2
(A1)T1f1, f1)− (hλ∗

2
(A1)f1, f1)) ≤ 0, f1 ∈ Mn1(C).

This yieldsT ∗
1 hλ∗

2
(A1)T1 ≤ hλ∗

2
(A1), T1 ∈ Mn1(C), i.e. hλ∗

2
∈ CA1. In view of

(1.4), h
1
2
λ∗
2
∈ CA1.

Let h be a fixed function in the classCA1,A2. Replacing the matricesA1, A2

by c1A1, c2A2 for suitable constantsc1, c2 > 0, we can assume without loss of
generality that

(1.8) (1, 1) ∈ σ(A1)× σ(A2).

DefineC to be theC∗-algebra of continuous functions[0,∞] → C with the
supremum norm, and denote (for fixedλ ∈ R+) by eλ the function

eλ(t) =
(1 + t)λ

1 + tλ
∈ C, t ∈ [0,∞].

Let two finite-dimensional subspacesV1, V2 be defined by

Vi = span{eλi
: λi ∈ σ(Ai)} ⊂ C, i = 1, 2.

Then (1.8) yields that the unit1 = e1(t) ∈ C belongs toV1 ∩ V2. For fixed
λ∗i ∈ σ(Ai), define two linear functionals

φλ∗
1

: V2 → C, φλ∗
2

: V1 → C
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by

φλ∗
1

 ∑
λ2∈σ(A2)

aλ2eλ2

 =
∑

λ2∈σ(A2)

aλ2hλ∗
1
(λ2)

1
2 ,

and

φλ∗
2

 ∑
λ1∈σ(A1)

aλ1eλ1

 =
∑

λ1∈σ(A1)

aλ1hλ∗
2
(λ1)

1
2

respectively. We then have the following lemma:

Lemma 1.3. The functionalφλ∗
1

is positive onV2 in the sense that ifu ∈ V2

satisfiesu(t) ≥ 0 for all t > 0, thenφλ∗
1
(u) ≥ 0. Similarly, φλ∗

2
is a positive

functional onV1.

Proof of Lemma1.3. This follows from Lemma1.2and Lemma 7.1 of [1].

Proof of Theorem1.1. Consider now the bilinear form

φ : V1 × V2 → C

defined by

(1.9) φ

 ∑
λ1∈σ(A1)

aλ1eλ1 ,
∑

λ2∈σ(A2)

aλ2eλ2


=

∑
(λ∗

1,λ∗
2)∈σ(A1)×σ(A2)

φλ∗
1

 ∑
λ2∈σ(A2)

aλ2eλ2

 φλ∗
2

 ∑
λ1∈σ(A1)

aλ1eλ1

 .
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By Lemma1.3, φ is positiveonV1×V2 in the sense thatui ∈ Vi, ui ≥ 0 implies
φ(u1, u2) ≥ 0. Hence (since theVi’s contain the function1),

(1.10) ‖φ‖ = sup{|φ(u1, u2)| : ui ∈ Vi, ‖ui‖∞ ≤ 1, i = 1, 2} = φ(1, 1).

Now φ lifts to a linear functional

φ̃ : V1 ⊗ V2 → C,

which is positive onV1 ⊗ V2, because

‖φ̃‖ = ‖φ‖ = φ(1, 1) = φ̃(1).

The Hahn–Banach theorem yields an extensionΦ : C ⊗ C = C([0,∞]2) → C
of φ̃ of the same norm. Thus the positivity ofφ̃ yields

‖Φ‖ = ‖φ̃‖ = φ̃(1) = Φ(1),

i.e. Φ is a positive functional onC([0,∞]2). Hence, the Riesz representation
theorem provides us with a positive Radon measureρ on [0,∞]2 such that

(1.11) Φ(u) =

∫
[0,∞]2

u(t1, t2)dρ(t1, t2), u ∈ C([0,∞]2).

A simple rewriting yields that (1.9) equals

∑
(λ∗

1,λ∗
2)∈σ(A1)×σ(A2)

aλ∗
1
aλ∗

2
h(λ∗1, λ

∗
2) +

∑
(λ1,λ2) 6=(λ∗

1,λ∗
2)

aλ1aλ2h(λ∗1, λ2)
1
2 h(λ1, λ

∗
2)

1
2

 .
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Inserting the latter expression into (1.11) yields

h(λ∗1, λ
∗
2) = φ(λ∗1, λ

∗
2)

= Φ(eλ∗
1
⊗ eλ∗

2
)

=

∫
[0,∞]2

(1 + t1)λ
∗
1

1 + t1λ∗1

(1 + t2)λ
∗
2

1 + t2λ∗2
dρ(t1, t2).

Sinceλ∗1, λ∗2 are arbitrary, the theorem is proved.

Remark 1.1. It is easy to modify the above proof to obtain a representation
theorem for interpolation functions of more than two matrix variables (where
the latter set of functions is interpreted in the obvious way).
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2. Korányi’s Theorem
Consider the class of functions which aremonotoneaccording to the definition
of Korányi [8] 1, A1 ≤ A′

1 andA2 ≤ A′
2 imply

(2.1) h(A′
1, A

′
2)− h(A′

1, A2)− h(A1, A
′
2)− h(A1, A2) ≥ 0.

The functions

ht(λ) =
(1 + t)λ

1 + tλ

are monotone of one variable(0 ≤ t ≤ ∞), whence withht1t2 = ht1 ⊗ ht2 (cf.
[8, p. 544]),

ht1t2(A
′
1, A

′
2)− ht1t2(A

′
1, A2)− ht1t2(A1, A

′
2)− ht1t2(A1, A2)

= (ht1(A
′
1)− ht1(A1))⊗ (ht2(A

′
2)− ht2(A2)) ≥ 0,

i.e. ht1t2 is monotone. Since the class of monotone functions of two variables
is closed under pointwise convergence, the latter inequality can be integrated,
which yields that all functions of the form (1.7) are monotone. Hence we have
proved the easy half of the following theorem of A. Korányi, cf. [8, Theorem
4], cf. also [9].

Theorem 2.1. Let h be a positive function onR2
+. Assume that(a) the first

partial derivatives and the mixed second partial derivatives ofh exist and are
continuous. Thenh is monotone iffh is representable in the form (1.7) for some
positive Radon measureρ on [0,∞]2.

1A different definition of monotonicity of several matrix variables was recently given by
Frank Hansen in [7].
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Remark 2.1. According to Korányi the differentiability condition(a) was im-
posed “in order to avoid lengthy computations which are of no interest for the
main course of our investigation” ([8, bottom of p. 541]).

Let us denote a functionh defined onR2
+ an interpolation functionif h ∈

CA1,A2 for any positive matricesA1, A2. Theorem1.1 and Theorem2.1 then
yield the following corollary, which nicely generalizes the one-variable case.

Corollary 2.2. The set of interpolation functions coincides with the set of mono-
tone functions satisfying(a).

http://jipam.vu.edu.au/
mailto:yacin@math.uu.se
http://jipam.vu.edu.au/


Interpolation Functions of
Several Matrix Variables

Y. Ameur

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 13 of 13

J. Ineq. Pure and Appl. Math. 4(5) Art. 88, 2003

http://jipam.vu.edu.au

References
[1] Y. AMEUR, The Calderón problem for Hilbert couples,Ark. Mat., 41

(2003), 203–231.

[2] J.S. AUJLA, Matrix convexity of functions of two variables,Linear Algebra
Appl., 194(1993), 149–160.

[3] W. DONOGHUE,Monotone Matrix Functions and Analytic Continuation,
Springer, 1974.

[4] W. DONOGHUE, The interpolation of quadratic norms,Acta Math., 118
(1967), 251–270.
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