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ABSTRACT. Two equivalence theorems and two corollaries are proved pertaining to the equicon-
vergence of numerical series.
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1. INTRODUCTION

Some papers, seel [11,/[2] arid [5], have dealt with the equivalence of coefficient conditions,
e.g. in [3] it was proved that two conditions which guarantee that a factor-sequence should
be a Weyl multiplier for a certain property of a given orthogonal series is equivalent to one
assumption. An example of these results is the following general theorem proved in [2].

Theorem 1.1.Let0 < p < ¢, {\,} and{c,} be sequences of nonnegative numbers, further-

more letA,, := >",_, A\x. The inequality

(1.1) Si=Y A (Z c§> < 00
n=1 k=n

holds if and only if there exists a nondecreasing sequépgé of positive numbers satisfying
the following conditions

(1.2) S = Zc%,un < o0
n=1
and
00 An ﬁ
(1.3) Sis =) A (u_) < 0.
n=1 n
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In the special case = 1, ¢ = 2, with a,, and),,! in the place of:, and)\,,, the author in[[3]
showed that if

(1.4) pn =N, C-t where O, := (Z ci) ,
k=n
then 1.1) implies[(1]2) and (1.3).

In this special case it is easy to see that,if— 0, then withy! := ¢,u, in place ofyu,, the
condition [1.2) is also satisfied, but it can be that

> A
(1.5) A = 00
2

will occur.

This raises the question: Dp (1.2) afd [1.5) with the sequépg;é also imply [1.1) for
arbitrary{c, }? In [3] we showed that the answer is negative. In other words, this verified the

necessity of conditior (1].3).

This shows that condition (1.2), in general, does not imply the inequlity (1.3).

Thus, we can ask, promptly in connection with the general case considered in Thedrem 1.1:
What is the "optimal sequendg., }" when [1.2) implies[(1]3) and conversely?

We shall show that the optimal sequence is

(1.6) fin = A, CP™7 where C, := (Z CZ) :
k=n

and with this{,,} (1.2) holds if and only if[(1]3) also holds, that is, the assumptipn$ (1.2) and
(1.3) are equivalent.

Since the following symmetrical analogue of Theofem 1.1 was also verified in [2], therefore
we shall set the same question pertaining to the series appearing in it.

Theorem 1.2.1f p, ¢, {\,} and{c,} are asin Theore.l, furthermofe, := S°7° ), then

1.7) Si7 1= i Am <Zm: cZ) q < 00
m=1 k=1

holds if and only if there exists a nondecreasing sequépgé of positive numbers satisfying
conditions|(1.R) and

P

q9—p

> A
(1.8) Sis =Y (f) < 0.
n=1 n

In order to verify our assertions made above, first we shall prove two theorems regarding the
equiconvergence of two special series.

2. RESULTS
We prove the following assertions.
Theorem 2.1.Let0 < a < 1, {a,} and{\,} be sequences of nonnegative numbers, further-
more letA,, := >, A\, A, =Y 10 apandpu, := A, A>~1. Then the sum

(2.1) Sop 1= Zanun <

n=1
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if and only if
(2.2) S =Y Ay A% < 0.

n=1

Theorem 2.2.1f a, {a,} and{\,} are as in Theorem 2|1, furthermale, := > Ai, A, :=
S ar, Ag =0, andji, := A, A2"! then

(23) 523 = Zanﬂn < 0
n=1

if and only if

(2.4) Saa =Y A AL < o0
n=1

Corollary 2.3. If p, ¢, {\,}, {c.} andA,, are as in Theoretn 1.1, and, is defined in[(1)6), then
the sums in[(T]1)[ (1].2) and (1.3) are equiconvergent.

Corollary 2.4. If p,q, {\.}, {c.} and A, are asin Theore.2, furthermore

1
[y 1= Anéﬁ_q, where C, := <Z c%) ,
k=1

then the sums in (1.2], (1.7) arjd (1.8) are equiconvergent.

Remark 2.5. Corollary[2.3 shows that if (I} 1) implies a certain property of a fixed orthogonal
seriesy >~ | c,n (), then there is no exact universal Weyl multiplier concerning this property,
namely the multiplier sequende.,, } depends ofc, }.

Remark 2.6. The interested reader can check that the proofs of the implicafior}s(11J)
and [1.73=(1.9) given by our corollaries are shorter than thoselin [2].

Remark 2.7. As far as we know, Y. Okuyama and T. Tsuchikdra [4]were the first to study
conditions of the typd (1} 7).

3. PROOFS
Proof of Theorer 2} 1First we show tha{ (2]1) implie§ (2.2). Sinde — 0, then
(3.1) Z An A = Z An Z(A% - Agﬁ-l)
n=1 n=1 m=n

- Z(Agm — ALt Z An-
m=1 n=1

An easy consideration yields thatif< « < b, 0 < o < 1 and

b* — a® _
(32) = agt,
then
(3.3) £>al/1=9p = &,

namely ifa = 0 then¢ = &.
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Using the relationg (3]2) and (3.3) we obtain that
(3.4) Ay — Al = apal®T V<a,A%t
This and[(3.1) yield that

o) [e.e] o0
D MALSY an AL A =) afim.
n=1 m=1 m=1

Herewith the implication[ (2]5-(2.9) is proved.
The proof of [2.23-(2.1) is similar. We use the first part ¢f (B.4),< 1 and{ < A,,. Thus

oo oo
a—1
E AmPm = § amAm Am
m=1 m=1

o

= (A — A1) A%TIA,,

m=1
<o i(z‘liﬁ — A1) zm: An
m=1 n=1
= ail Z >\ Z m—i—l)

=a ! Z A A2
n=1

that is, [2.23(2.7) is verified.
The proof of Theorer 2|1 is complete. O

Proof of Theorerh 2]2The proof is almost the same as that of Thedrem 2.1[ By (3.2} and (3.3)
we get that

(3.5) A2 — A2 = a7t < a, AL

m

Utilizing this at the final step we have

Z AnAf{ = Z An (Ag - ZZ1%71)
n=1 n=1 k=1

8

[e.e]

:ZAO‘ A2 ) Z)\n

< Z akfli’lf\k = Z apfir;
k=1

k=1

this proves the implication (2.3}(2.4).
To verify (2.4)=(2.3) we use

aHAL = AL ) > an AR

which follows from the first part 05) by < 1and¢ < A,),.
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Thus we get that

o0 o0

Z anﬂ'n = Z anleg_lj\n

n=1 n=1

Summing up, the proof of Theorgm .2 is complete. O
Proof of Corollary@.We shall use the results of Theor2.1 with= £ anda,, = cf. Then
o = A (52, ) and
S99 = 511 = S35  as wellas Sy = 312,
moreover, by Theorein 2.5;; and Sy, are equiconvergent, herewith Corollary]2.3 is proved.

Proof of Corollary@.Now we utilize Theore2 withe = £ anda,, = cf. Thenji, =
A, (7, ¢ furthermore
524 = 517 = 518 and 523 = 812,

hold. Since, by Theoref 2.3,; andsS,, are equiconvergent, thus Corollary|2.4 is verified]
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