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ABSTRACT. For the classe§ and K of (normalized) univalent and convex analytic functions,
respectively, a number of authors conjectured interesting extensions of certain known distortion
inequalities in terms of a fractional derivative operator. While examining and investigating the
validity of these conjectures, many subsequent works considered various generalizations of the
distortion inequalities relevant to each of these conjectures. The main object of this paper is to
give a direct proof of one of the known facts that these conjectures are false. Several further
distortion inequalities involving fractional derivatives are also presented.
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1. INTRODUCTION AND DEFINITIONS

Let.A denote the class of functiorfy z) normalizedby

(1.1) F)=2+4) an2",

which areanalyticin the openunit disk
U:={z:zeCand|z| <1}.
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2 H.M. SRIVASTAVA, Y1 LING, AND GEJUN BAO

Also, letS and K denote the subclasses dfconsisting of functions which are, respectively,
univalent and convex it¥ (see, for details| |4]/]5], and [12]).

Geometric Function Theong the study of the relationship between #realytic properties
of f (z) and thegeometrigproperties of thémagedomain

D=fU).
An excellent example of this interplay is provided by the following important result which
validates a 1916 conjecture of Ludwig Bieberbach (1896-1982):
Theorem 1. de Branged [3]If the functionf (z) given by(1.1)) is in the classS, then

1.2) la,| <n  (neN\{1}; N:={1,2,3,...}),

where the equality holds true for all € N \ {1} only if f(z) is any rotation of the Koebe
function

(1.3) K (z):= 1_2 an (zel).

The assertior] (112) and itgell-known(rather classical) analogue for the cl&Séct., e.g, [5,
p. 117, Theorem 7]) lead us immediately to known distortion inequalities forttheerivative
of functions in the classeS and C, respectively. Each of the following conjectures, which
were made in an attempt to extend these known distortion inequalities for the cfagrd#C,
involves thefractional derivative operatoD? of order \, defined by ¢f., e.g. [7] and [9])

1 i/Zf@)M’®§A<D

I'(l—-X\ dz z — A
(1.4) DM (2) = ( ) =0
%Di‘_”f(z) msA<n+1,neN),

where the functiory (z) is analytic in a simply-connected region of the compteglane con-
taining the origin, and the multiplicity ofz — C)_A is removed by requiringpg (= — ¢) to be
real whenz — ¢ > 0.

Conjecture 1. [8, p. 88].If the functionf (z) is in the classS, then

m+A+z)) T(n+A+1)
(1 o |Z|)n+)\+2

(zeU; neNy:=NU{0}; 0= A< 1),
where the equality holds true for the Koebe functioniz) defined by(l1.3).
Conjecture 2. [10, p. 225].1f the functionf (z) is in the clasgC, then

(L.6) D2 )] =

(1.5) D2 (2)] <

(zeU;neNy;; 0= A< 1),
where the equality holds true for the functiariz) defined by

:Zz” (zel).

n=1

1.7) L(z):=
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For A\ = 0 andn € Ny, Conjecture§]l and 2 can easily be validated by means of the afore-
mentioned known distortion inequalities. Each of these conjectures has indeed been proven to
be false for0 < A\ < 1 andn € Nj (see, for details/ [1],]2], and [6]; see also a recent work
of Srivastaval[111], which presents varidusther developments and generalizations relevant to
the aforementioned conjectures). Our main objective in this paper is to giirea proof of
the fact that Conjectufg 1 is not true for< A < 1 andn € Ny. We also derive several further
distortion inequalities involving fractional derivatives.

In our present investigation, we shall also make use ohipergeometric functiodefined
by
(1.8) (a,b;c; z) Z ’;

k=0

(a,b,cE(C; ctly = {O,—l,—2,...}),

??‘

where(\), denotes the Pochhammer symbol given, in terms of Gamma functions, by

rov+r |1 (k=0)

&9 W= Try T AA+1)...(A+k—1) (keN).
The hypergeometric function is analyticihand

(1.10) F(a,b;c;z) = F(bya;c; z).

Furthermore, it possesses the following integral representation:

(1.11) F(a,b;c;2) = %/{) A=) (1 = 2t) T dt

(R(c)>R(D)>0; lag(l—2)|Sm—e; 0<e<m).
It is easily seen from the definition (1.4) that

(1.12) D) {1} = %zﬂ‘“ 0 A<1; u>0),
so that
(1.13) DY {1 (1- }— ) )z“ AU (v — A 2)

(O§)\<1,/L>O,VER;ZEU).

Thus, for the extremal function& (z) and L (z) defined by[(1.8) and (1.7), respectively, by
suitably further specializing the fractional derivative form{ila (L W8h ;. = 2, we obtain

1-X
A _ 7 9 ).
(1.14) DK () = oo o= A)1?(2,2,2 A 2)
0=A<1;z€l)
and ¢f. [6])
1-X
(1.15) DL  F(2,1;2— A 2)

z (Z)Zm
0=A<1; zel).

J. Inequal. Pure and Appl. Math2(2) Art. 23, 2001 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 H.M. SRIVASTAVA, Y1 LING, AND GEJUN BAO

2. MAIN RESULTS RELEVANT TO CONJECTURE [1]

We begin by proving
Theorem 2. Let0 < A < 1. Then Conjecturg]is not true forn € N.

Proof. For L (z) € S, it follows from (1.1%) and the definitiOt-.S) that

(2.1) %Z k A+1 o
(O<)\<1,zeLI\{O}),

wherez~ is analytic in/ \ {0} and the multiplicity of:~* is removed by requiringpg = to be
real whenz > 0. Thus, by the definitior{ (1}4), we have

(22)  DIPL(z)= (") Z I‘(I;{(f——)i:i)l) R (Z rr(gfj )\11>) Zk)

1)
- AZ ’” zk O<A<1;zeU\{0}).
By the principle of mathematlcal induction, it can be shown by usging (2.2) that

_ T (k+1)
n+A n—>\ k
(2.3) DL (2) = 2 Ej ek

Zln/\

0<A<lyneN; zelU\{0}).

Upon setting: = r (0 < r < 1) in (2.3), if we letr — 0, it is easily seen that

(2.4) DL (2) —o00 (r—0,0<A<1;neN).

On the other hand, if Conjecturé 1 is true, the claimed asseftion (1.5) readily yields
(2.5) |DIAL(2)| S M (n;A)  (]2] = 0; 0<A<1; neN),

whereM (n; \) is a (finite) constant depending only enand\. This contradiction with[(2]4)
evidently completes the proof of Theoréin 2. O

Next we prove
Theorem 3. Let the functionf (z) be in the classS. Then

1=A ! 1+t
2.6 D> L / dt
(2:6) } fe ’ TA=XNJo 1=01—-rt)?
(r=lzl; zel; 0 <A< 1),
where the equality holds true for the Koebe functioiiz) given by(1.3).

Proof. Suppose that the functioh(z) € S is given by [(1.1). Then, by usinfy (1]12) in conjunc-
tion with (1.3), we obtain

_ T (k+1)
(2.7) AZ TE At ) apz”

(alz—1,0<)\<l,z€U),
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where the multiplicity of:~ is removed as in Theore[’rh 2.
By applying the assertiof (1.2) of Theoréim 1 on the right-hand side df (2.7), we have

_ ['(k+1)
DB LS
7"1 e (Q)k(l)k (k+1)r*

(2.:8) TTR-NZ(2-)), K

k=0

7,1—)\

RS CEY (rF(2,1;2 = \;1))

(r=|z]; zeld; 0< A <1).

Since0 <1 < 2— X (0 < X < 1), we can make use of the integral representafion [1.11), and
we thus find that

(29) (rF (2,12 = Xr)) = (1= ) / (1- ;(1 . )’

which, when substituted for ift (2.8), immediately yields the assefftion (2.6) of Th¢grem 3.
Finally, by taking the Koebe functio’ (z) for f (z) in (2.6), we can see that the result is
sharp. O

Y

Remark 1. Theorenj B can also be deduced by applying the gase) of a known result due
to Choet al. [2, p. 120, Theorem 3].

Remark 2. By comparing the assertions (.6) and [Iv&)h n = 0, it readily follows that
Conjecturg [L is not true also when= 0 and0 < A < 1.

3. ADISTORTION INEQUALITY INVOLVING THE HYPERGEOMETRIC FUNCTION

In this section, we prove a distortion inequality involving the hypergeometric function, which
is given by

Theorem 4. Let the functionf (z) be in the classS. Then
-
-
I'(l—M\) (
(r=lz|; zeUU\{0}; 0< A< 1),

(3.1) |Di+kf (z)‘ < rF(2,1;1—\7))

where the equality holds true for the Koebe functiiiz) given by(1.3).

Proof. For the functionf (z) € S given by [1.1), it follows from[(2]7) and the definitign (1L.4)
that

(32) D1+)\f 71 A Z k + 1 k

(a7 :=1; O<)\<1, ZGL[\{O}),

sincez* is analytic in/ \ {0} .
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Applying the assertiorj (1].2) of Theor{rh 1 once again, we find ffonm (3.2) that
‘D1+>\f _1 by Z k ‘I’ 1

7’% - (Q)k( ), (k+1)7r"

(3:3) TTA-N&= -V, A
7"_>\ ’
= F(l——)\) (rf(2,1;1 = X\;r))

(r=|zl; zelUU\{0}; 0 <A< 1),
which proves the inequality (3.1).

By taking the Koebe functiotk (z) for f (z) in (3.1), we thus complete our direct proof of
Theoreni 4. O

Remark 3. The assertior] (3] 1) of Theorédm 4 can also be proven by appealing to the case
of the aforementioned known result due to Ghi@l. [2, p. 120, Theorem 3].
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