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Abstract

The lower bound of Cramér and Rao is generalized to pairs of families of prob-
ability distributions, one of which is escort to the other. This bound is optimal
for certain families, called ¢-exponential in the paper. Their dual structure is
explored. They satisfy a variational principle with respect to an appropriately
chosen entropy functional, which is the dual of a free energy functional.
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The aim of this paper is to translate some new results of statistical physics into
the language of statistics. It is well-known that the exponential family of prob-
ability distribution functions (pdfs) plays a central role in statistical physics.
When Gibbs §] introduced the canonical ensemble in 1901 he postulated a dis-
tribution of energies” of the form

(1.1) p(E) = exp(G — BE), _
Estimators, Escort
Probabilities, and  ¢-Exponential

whereG is a normalization constant and where the control paraneieithe T [ G

inverse temperature. Only recently/], a proposal was made to repladel)

by a more general family of pdfs. The resulting domain of research is known
under the name of Tsallis’ thermostatistics. Some of the pdfs of Tsallis’ ther-
mostatistics are known in statistics under the name of Amasfamily [3]. Title Page
The latter have been introduced in the context of geometry of statistical man-

Jan Naudts

Contents
ifolds [8]. The appearance of the same family of pdfs in both domains is not
accidental. The apparent link between both domains is clarified in the present 4 dd
paper. < >
The new notion introduced in Tsallis’ thermostatistics is that of pairs of fam- o Back
O bac

ilies of pdfs, one of which is thescort of the other {{]. Some basic concepts
of statistics can be generalized by replacing at well-chosen places the pdf by its Close
escort. In particular, we show in the next section how to generalize Fisher’s in- Quit
formation and, correspondingly, how to generalize the well-known lower bound
of Cramér and Rao. Sectidhstudies the statistical manifold of a family for Page 3 of 35
which there exists an escort family satisfying the condition under which the

generalized Cramér-Rao bound is optimal. This optimizing family has an affing 2 nea: Pure and Appl. Math. 5(4) Art. 102, 2004
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geometry. Since this is usually the characteristic property of an exponential
family a generalization of the latter seems indicated.

Section4 shows how a strictly positive non-decreasing functipof R,
determines a function which shares some properties with the natural logarithm
and therefore is called belowgalogarithm. The inverse function is called the
¢-exponential. In Sectioh it is used to define the-exponential family in the
obvious way, by replacing the exponential functiep by the ¢-exponential
function. The standard exponential family is then recovered by the choice

o(z) = z, the a-family of Amari by ¢(x) = 2(1*%)/2, the equilibrium pdfs Estimators, Escort
of Tsallis’ thermostatistics by the choiggz) = 9. Probabilties, and ¢ Exponential
. . . . Families in Statistical Physics
The next three sections are used to establish the dual parametrization of the
¢-exponential family and to discover the role of entropy functionals. Seétion Jan Naudts
introduces a divergence of the Bregman type. In Seciidns used to prove
the existence of an information function (or entropy functional) which is max- Title Page

imized by theg-exponential pdfs. Sectiod introduces dual parameters — in

statistical physics these are energy and temperature. The paper ends with a short Contents
discussion in Sectiof. <44 >»
There have been already some attempts to study Tsallis’ thermostatistics < >
from a geometrical point of view. Trasarti-Battistoriiq] conjectured a deep
connection between non-extensivity and geometry. He also gives general ref- Go Back
erences to the use of geometric ideas in statistical physics. Several authors Close
[1, 16, 14] have introduced a divergence belonging to Csiszar’s class- of _
divergences, which leads to a generalization of the Fisher information metric Quit
adapted to the context of Tsallis’ thermostatistics. The relation with the present Page 4 of 35
work is unclear since here the geometry is determined by a divergence of the
Bregman type. Also the recent work of Abg feems to be unrelated. 3. Ineq. Pure and Appl. Math. 5(4) Art. 102, 2004

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:Jan.Naudts@ua.ac.be
http://jipam.vu.edu.au/

Fix a measure spade, . Let M;(u) denote the convex set of all probability
distribution functions (pdfsp normalized w.r.ty

(2.1) | duta)pie) = 1.

Expectations w.r.tp are denoted b¥,

&f—lﬁM@ﬂ@ﬂw.

Fix an open domairD of R™. Consider a family of pdfgy, parametrized
with 6 in D. The notationE, will be used instead oE,,. Simultaneously, a
second family of pdf$ P )ecp is considered. It is called th®cort family. The
notationFy will be used instead dE p, .

Recall that the Fisher information is given by

Iu(0) = Ey (% 10g(P6)) (%bg(m))

:/d@ L Opo Ops
o P a(@) 96% gt

A generalization, involving the two families of pdfs, is

(2.2)

B 1 Ope Opy
) = | o) 7 g

(2.3)
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Clearly, the expression coincides with?) if Py = py.

The following definition is a slight generalization of the usual definition of

an unbiased estimator.

Definition 2.1. An estimator of the family(py)¢cp is a vector of random vari-
ablesc, with the property that there exists a functiénsuch that

Egck:—F(Q), k:L...,n.

The functionF" will be called thescale function of the estimator.

The estimator is unbiased K(0) = %le’f so thatEyc, = 6,. The well-

known lower bound of Cramér and Rao can be written as
ukul []Egckcl — (Egck) (E@Cl)} > 1
2 = kol ’
[0/ ] v hu(®)
for arbitraryu andv in R”.
A similar lower bound, involving the information matrix; instead of Fisher’s
I;,;, is now formulated.

Theorem 2.1. Let be given two families of pdfgy)ecp and (Fp)sep and cor-
responding expectatioris andF,. Letc be an estimator ofpy)gcp, With scale
function F'. Assume that the regularity condition

19
Fr— —
°Py(z) O6%" o(z)

(2.4)
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holds. Letgy,(0) be the information matrix introduced before. Then, for«all
andv in R™ is
ukul [Fgckcl — (F@Ck) (F@Cl)] > 1

[l e F(60)] — vMlgu(6)

The bound is optimal (in the sense that equality holds whenevep) if there
exist a normalization functio@ > 0 and a functionz such that

(2.5)

(2.6) %pe(l‘) = Z(Q)Pg(l’)% [G(@) — chl(a:)]
holds for allk in [1,...,m], forall € D, and foru-almost allz. In that case,
c is an estimator of )< p With scale functiorG
Foc,, = %
Proof. Let
X, = iipg and Y, = ¢, — Fycy.
Py 06%

From Schwartz’s inequality follows
(Fout Yo' X)) < (Fou YY) (Fpv® Xp' X)) .
The |.h.s. equals, using @),

a 2
(Fgukkale) g (ukvl @Eeco

k.l 82 ’
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The first factor of the r.h.s. equals
Fou*YiulY; = vl [Fgckcl — (Fgck) (Fgcl)} )
The second factor of the r.h.s. equals
Fov* X0 X; = vF0' g (6).

This proves 2.5).
Assume now thatZ.6) holds. Combining it with the regularity condition
(2.4) shows that: is an estimator for the escort family, with scaling funct@n et s (S

This makes it possible to WritQ(G) as Probabilities, and  ¢-Exponential
1 9 Families in Statistical Physics

(2-7) Z(Q)PQ(ZL‘) 89kp9<$> = Foc, — Ck(x)' Jan Naudts
In this way one obtains :
. (9) Title Page
u-u
(28) ukul [Feckcl — (Fgck) (F@Cl)] = % Contents
On the other hand we have b dd
0? 0 < >
—F(Q) = —Egck
0000k 00! o Go Back
0
= /leu(l‘) w(x)ck (.ZU) Close
0 l Quit
= 2(6) | dp() Pa(w)en(@) 55z [G0) - bar(w)]
Q Page 8 of 35
(29) = —Z(@) [F@Ckcl - (F@Ck) (FQC[)} .
Together with 2.8) this shows equality in4.5) wheneven = v. ] 3-Inea. Pure and Appl. Math. 5(4) Art. 102, 2004

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:Jan.Naudts@ua.ac.be
http://jipam.vu.edu.au/

It has not been investigated wheth2rq) is a necessary condition. For prac-
tical application of the lower bound one has to assumectlsadlso an estimator
of the escort family( )4 p, With scale functionz. The previous proposition
shows that this is automatically the case wh2m)(is satisfied.

Let 1« be the Lebesgue measure restrictefia-oo) and let

o= 3-3),

with # > 0 and[u], = max{u,0}. The Fisher informatior (¢) is divergent.
Hence, the usual lower bound of Cramér and Rao is useless.
Consider now the escort family

(2.10)

1
(2.11) Py(z) = 56_"”/9.

Then one calculates

(2.12) 1

g(0) = §(5€ —13).
This fixes the r.h.s. of the inequalit®.©).

Let us estimaté via its first moment, with:(z) = 3z. One hasEyc = 6,
Eqc? = (3/2)0%, F(0) = 6%/2, Fc = 30 andFc* = 1862. Then @.5) boils down
to
1

——0* ~ 0.46%
4(be — 13)

(2.13) Fé — (Fe)® = 96 >
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The well-known example of a family with optimal estimator is the exponential
family

(3.1) pol) = exp (G(8) — 8*er(x)
with
(3.2) G(O) =— log/ du(z) e 0Fer(@), Estimators, Escort
Q Probabilities, and  ¢-Exponential

Families in Statistical Physics
One sees immediately that

Jan Naudts
(33) 2 @) = po(e) (e GO) — o)

' aorP? PoRE)\ gk RET ) Title Page
which is 2.7) with Z(0) identically 1 and the escort pdf, equal topy. This Contents
example motivates also the geometric interpretatior2dd)(in the form @.7), pp S
as a linear map between tangent planes. The score variableg, /06" of the
standard statistical manifold are replaced by the variables < 4

1 ) Go Back
(34) —P9<[L‘) %p,g(I) Close
They are tangent vectors of the concave functifti) — 6'c;. The metric tensor Quit
of the latter function is a constant random variable. The geometry of the mani- Page 10 of 35
fold of random variableéG(@) — Glcl) o p 1S transferred onto the family of pdfs
(pg) J. Ineq. Pure and Appl. Math. 5(4) Art. 102, 2004
0eD’ http://jipam.vu.edu.au
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Note that the score variables have vanishing expecté&orit is now obvi-
ous to define an inner product of random variables by

(A, BYy = F,AB.

1 0ps 1 0pe\ _ 0)
Py 008 By o0t ), T

Let ¢*(0) denote the inverse afy;(0) (assume it exists). Then a projection

Then one has

operatorr, onto the orthogonal complement of the tangent plane is defined by  propapiites . o Exponenta
1o 1o Families in Statistical Physics
- kl Peo Po
7T9A—A—g <FGW,A>GFOw—]F9A Jan Naudts
If (26) iS SatiSﬁed, then Title Page
0 1 Opy 0z >’ G c
R ——(F _ 7(0) ——— ontents
o0 By 008 {ael (Fock = ) + 200) 5oraq « )
_9Z e . . lm(g)(i% ) 1 9
= 891 0CEL k g Pg 80[7 k GPG 80m | >
_ E)_Z Foce — o1 1 % Go Back
o0 |7t Z(0) Py 06 Close
p— 0' .
Quit
This follows also immediately from Page 11 of 35
8 1 apg 1 8Z 1 8p9 82G
wﬁgw - %wﬁ% + ( )W J. Ineq. Pure and Appl. Math. 5(4) Art. 102, 2004
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That the derivatives of the score variables are linear combinations of the score
variables and the constant random variable is usually the characteristic feature
of the exponential family. This is a motivation to introduce a generalized notion
of exponential family.

Estimators, Escort
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In the next section the notion of exponential family is generalized to a rather
large class of families of pdfs. This is done by replacing the exponential func-
tion by some other function satisfying a minimal number of requirements. The

latter function will be called a deformed exponential and will be denotgy].

This has the advantage that the resulting expressions look very familiar, resem-

bling those of the exponential family.
Fix an increasing functiog of [0, +oc0), strictly positive on(0, +00). Itis
used to define the-logarithmln, by

v 1

(4.2) In,(u) /1 dv o) u > 0.
Clearly, In,, is a concave function which is negative @ 1) and positive on
(1,+00). The inverse of the functioh, is denoteckxp,. It is defined on the
range ofln,. The definition can be extended to all®fy puttingexp,,(u) = 0
if u is too small andxp, = +oo if u is too large. In case(u) = u for all
u thenlng coincides with the natural logarithm arep, coincides with the
exponential function.

Given g, introduce a function) of R by

Y(u) = ¢(expy(u)) if wisinthe range ofin,
=0 if » is too small
(4.2) = 400 if u is too large

Clearly isg(u) = ¢ (Ing(u)) for all u > 0.
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Proposition 4.1. One has for allz in R
0 < expy(u) =1 +/ dvyp(v)
0

(4.3) = /u dvyp(v) < +o0.

—00

Proof. First consider the case thgt «) belongs to the range dfi;,. Then a
substitution of integration variables= In,(w) is possible. One finds, using

do/dw = 1/6(w) andu(v) = ¢( exp,(v)) = B(w),

U expy (u)
/ dvy(v) = / dw
0 1

= expy(u) — 1.

Usingexp,(—oo) = 0 one concludes(3).
In caseM = sup, In,(v) is finite andu > M theny(v) = 400 forv €

[M, u]. One has
/0 S dvp() > /0 doip(v)

+o0
= / dw
1

= +o0.

But also the I.h.s. 0f4.3) is infinite. Hence the equality holds.
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Finally, if m = inf, Ins(v) is finite andu < m theny(v) = 0 holds for

v < m. Hence
u m 0
/0 dvp(v) :/0 dv ¢ (v) :/1 dw = —1.

This ends the proof. O

Proposition 4.2. The functiorexp,, is continuous on the open interval of points
where it does not diverge.

Proof. Let m and M be as in the proof of the previous proposition. Tkep,,
is differentiable on(m, M). If m = —oo this ends the proof. Ifn is finite
then it suffices to verify thatxp,(u) is continuous inu = m. But this is
straightforward. ]

Let ¢(u) = u? with ¢ > 0. This function is increasing and strictly positive on
(0,400). Hence, it defines a-logarithm which will be denoteth, and is given

by
lnq(u):/ dvi
1

Estimators, Escort
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This deformed logarithm has been introduced in the context of nonextensive
statistical physics inl[c]. The inverse function is denotestp, and is given by

exp,(u) = [14 (1 — q)u]i/(lfq).

The functiony is then given by

Let¢p(x) = [x], the smallest integer not smaller thanThis piecewise constant
function is increasing and strictly positive ¢f, +o00). Hence In, is piecewise
linear. The function) is given by

P(x) =0 ifz < -1
=¢(1+x) otherwise

The ¢-exponentiabxp, is also piecewise linear and satisfies

expy(z) =0 if v < —1.
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Let ¢ be given as in the previous section. Fix a measure sfjageand a set of

random variables;, k = 1,...,n. The¢-exponential family of pdfs{pg)eeD
is defined by
(5.1) po(@) = expy (G(6) — 0*cr(x)).

The domainD is an open set of for which G(#) exists such thaty( 1) is prop-
erly normalized, i.epy € M;(r). The distributions§.1) are the equilibrium
pdfs of generalized thermostatistics as introduced in 7).

Proposition 5.1. The function#(¢) is concave orD.

Proof. Assumef), n and\d + (1 — X\)n in D for someA in [0, 1]. Then, using
the convexity ofexp,,

exp, (AG(0) + (1 = N)G(n) — [M" + (1 — Nn*er(z))
< Apg(x) + (1 = Npy(2).

Hence
/n du(z) expy (AG(0) + (1 — N)G(n) — (A" + (1 — A\)n*]er(z)) < 1.

Compare this with

/n du(z) expy (GAG + (1 — A\)n) — [A0F + (1 = A)p*]ex(2)) = 1.
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Sinceexp, is increasing one concludes that

AG(0) + (1 — NG(n) < GO+ (1 — \)n).

This means that! is concave. O

Proposition 5.2. Let ) be determined by via (4.2). If the integral
20) = | duta) w(G(6) - )
Q
converges for alb € D, then(py),_,, has an escort family7),_,, given by
1

Fyla) = Zo(ml@)  ifmla) >0
=0 otherwise
Condition @.6) is satisfied.
Proof. One has
¢ (po(2)) = ¢ (exp, (G(0) — 0" cr(2)))
=1 (G(0) — 0" c(z)).

Because)(py(x)) cannot be zero for-almost allz one concludes that (6) >

0 and thatP, is properly normalized.
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From the properties of the functiemp, follows immediately that

%pg(x) = ¢(G(9) — chk(as))
0
o6

9
20!

(G(0) = 0" c(2)).

(G(Q) o 9m6m<x))
= Z(0)P(x)

This proves tha{ /) ,_,, satisfies 2.6). O

2
Let ¢(u) = u? as in Example2 above. The pdfg, are given by

(5.2) po(x) = [1+ (1 = q)(G(8) — O cu(2))] /"7,
for 6 in a suitable domai). The escort probabilities are
63 Bl = g [+ 9(G0) — ()2
with
Z(0) = /Q du(z) [L+ (1 q)(G(B) — 6Fer(x))] 7"

(assuming convergence of these integrals). The fafpy,_,, coincides with
Amari’s a-family [2], with o given bya = 2¢ — 1.
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1
Examplel is theq = 0-limit of Example2. Let¢(u) = 1 for all u > 0. Then

Ing(u) =u—1
expy(u) = [1+ul+
P(u) =1 if u>—1;
=0 otherwise

Estimators, Escort
One has Probabilities, and  ¢-Exponential

2 T 2 o20r Families in Statistical Physics
= — 1 _— —:| p— —_—— 1 —_—— .
pe(ﬂf) 0 [ 0 + expd) (9 (92) Jan Naudts
This is ag-exponential family with parameté& = 1/62, estimatorc(z) = 2z
and scale functioii?(©) = 21/6. The escort probabilities, making inequality Title Page
(2.5 optimally satisfied, are given by Contents
1
P@(I) _ §H0§x§9- 44 44
| >
The information matrixg(©) equalsé*/3. Further isFoc = 6 andFgc? =
9 Go Back
46*/3 and
0 Close

—_F(0) =Eoc = 20/3 = 2/3V0O.
00 Quit

It is now straightforward to verify that the inequality.p) is optimally satisfied.
9 fy g 5.0 P y Page 20 of 35
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Divergences of the Bregman type are needed for what follows. In the form given

below they have been introduced .|
Fix a strictly positive increasing functiamof [0, +occ). Introduce

p(x)
61)  Dypll) = / () / dut (Ing (1) — Ing (9 (x))].

'(z)
Dy(pllp") > 0 follows becausén, is an increasing function. Also convexity in
the first argument follows becauke, is an increasing function.

Let (pg)e 1, beg-exponential. Then infinitesimal variation of the divergence
Dy(p||p") reproduces the metric tensay(#), up to a scalar function. Indeed,
one has

0
WDQS(WHZM)‘”:@ =0
0
a—mDas(pern){n:g =0
and

82
WDN?M IPy)

= oz [ @t g () = 0 ()] )

n=0
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Z/Qdu(x)d)(

1

1

Z(G)gkl(e)'

Similar calculations give

82
—aek—ﬁnll)a&(m!lpn)

n=0

po())

2

- onkont

Dy (pollpy)

n=0

1

Z(0)

gri(0).
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In [10] the definition of a deformed logarithm contains the additional condition

that the integral
A [ gt
du Ing(u) = du — < 400
1 ¢( ) 0 o(u)

converges. This condition is needed in the definition of entropy functional /
information content based on the deformed logarithm. Introduce another strictly
increasing positive functiog by

Estimators, Escort
] -1 Probabilities, and  ¢-Exponential

1/v U Families in Statistical Physics
x(v) = du ——
0 P(u

The motivation for introducing this function comes from the fact that it satisfies

Jan Naudts

the following property. Title Page
Lemma 7.1. Contents
d Lo u «“« Y
(7.2) —uovln,(1/v) = —Ing(v —/ du ——.
dU X( / ) ¢>< ) 0 ¢(u) 4 }
Proof.
Go Back
d 1
Evlnx(l/v) =1In,(1/v) — (/o) Close
1/v 1 1 [v Quit
= / du —— — —/ du ——
1 x(u) v Jg d(u) Page 23 of 35
1/v 1/u P 1 v u
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/du—/ dz — /duﬁ

/0 & 5y~ el

which is the desired result. O

Define the information content (also called entropy functiofglp) of a pdf
pin My(u) by

Estimators, Escort

]¢(p) — /Qdﬂ(x)p(l’) lnx(l/p(x)) Proba_t?ilitit_es, anq _qﬁ-Expon_entiaI

Families in Statistical Physics

whenever the integral converges. Using the lemma one verifies immediately Jan Naudts
that/,(p) is a concave function gf. A short calculation gives
( ) ( ) ( ) 1/p(a) ] Title Page
Is(p / du / du — Contents
¢ 1 x(u)

/ / p(z)  q dl 4« 44
0 1 x(1/v) v < >
p(:v) U
/d,u [/ duy —— ] d= Go Back
Q 0 ¢(u)

Close
1
dp(x — —Iny (p(x) Quit
/Q [ )x(l/p(ﬂf)) O (e(a)
p(z) Page 24 of 35
= —— dp / du Ing(u).
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This implies that
) p(z)
Iy(p) — 14(p) = — / du(z) / du Ing(u),
Q p'(z)

and hence

(7.2) D¢(p||p’)=1¢(p’)—f¢(p)—/du(x) (p(x) = p'(x)) Iny (p'(2)).

Q

This relation links the divergende,(p||p’) with the information functior,(p).

The following result shows that thg-exponential family is a conditional
maximizer ofl,. It also shows that the scale functiéhis the Legendre trans-
form of the information content,

Theorem 7.2. Let (pg)aeD be ¢-exponential, with estimatar and scale func-
tions /' andG. Then there exists a constafy such that

(7.3) F(0) = Fy + min ){]EPchk — I4(p)}-.

PEM1 (1

The minimum is attained fgr = p,. In particular, F'(9) is a concave function
of # andp, maximized,(p) under the constraint that

Epékck = ]Eg&kck.
Proof. Let us first show that for any pagf

(7.4) E,0%c, — 1,(p) > Egb¥cy, — I4(po).
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One has
/Q dpa() (p(x) — po()) Ing (po())

= [ an@) (o@) = ) [66) - 0]
= —(Ep - Eg)@kck.
Hence, {.2) becomes now

Dy(pllpe) = 15(po) — 15(p) + (B, — Eg)0"cy.

But one has alway®,(p||ps) > 0. Therefore, {.4) follows.
Next calculate, using the lemma,

%%(pe) Z/du(ff) (—1% (po(2)) —/01 du ﬁ) %pe(x)

1
_ _ ! _ u \ 9
_/d,u(x) ( G(0) + 8'¢i(x) /0 du gb(u)) 80kp6(x)
0
0
= a0t {
Because: is an estimator with scale functidn one obtains

0
W (EQQZCZ — I¢(p9)) =

Eg@lcl) — Eng.

)
PO

Estimators, Escort
Probabilities, and  ¢-Exponential
Families in Statistical Physics

Jan Naudts

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 26 of 35

J. Ineq. Pure and Appl. Math. 5(4) Art. 102, 2004

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:Jan.Naudts@ua.ac.be
http://jipam.vu.edu.au/

Hence there exists a constdntfor which
(7.5) F(0) = Fy + Eg0'c, — 1y(pe).

In combination with {.4) this results in 7.3). O

Without restriction one can assumg = 0. In statistical physics the function
F(0) is free energy divided by temperature.

Estimators, Escort
Probabilities, and  ¢-Exponential
Families in Statistical Physics

Let ¢(u) = u>~9/q, with 0 < ¢ < 2. This is of course only a re-parametrization

d
of Example2, which is done to recover expressions found in the literature. The o e
deformed logarithm is given by
Title Page
Ing (u) = #(U(]—l - 1) ifqg#1 Contents
= log(u) if ¢ =1. << >
One obtaing((v) = v? and hence ¢ >
( ) ) Go Back
1—p(x)"™
(7.6) Iy(p) = /d,u(:p)p(x)q_—l Close
Quit

This is the entropy functional proposed by Tsaliis][as a basis for nonexten-
sive thermostatistics, and reported earlier in the literature by Havrda and Char-
vat [/] and by Dardczy §]. The corresponding expression for the divergence
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~ / du(z) [p(x) — § (@) ()7,

By Theorem?7.2, the pdfp, minimizes ‘free energyE,0*c;, — Is(p). But
note that, due to the re-parametrizatippis not given by %.2), but equals

po=[1+(1—¢)(G() - chk(x))]i/(l‘”
with ¢ = 1/q. The latter expression coincides with that of the escort pdi(
with ¢ replaced by, and with incorporation of the normalizatidf(#) into the
scale function7(#). The Tsallis literature[9] associates with each pgfan
escort pdfP by the relationP ~ p?. Then, expressiorv(6) is optimized under
the constraint thaEpc, have given values. The resulting formalism differs
slightly from the present one.
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Introduce dual coordinates

oF
(81) Ne = E@Ck = %
Assume 2.6) holds. Then, one obtains fror.Q)
8nk 0
260~ 0B
82
B 89189’fF(9)
= —Z(9> [Fgckcl — (Fgck) (]Fgcl)]
1
= —mgkl(e)'

To obtain the last line a&-exponential family has been assumed. This relation
implies

o0
ony
These are the orthogonality relations between the two sets of coordihabels
7. Next we derive the dual relation d8.Q1).

(82) —Z(0)4"(6).

Proposition 8.1. Let (pg)eeD be ¢-exponential. Assume the regularity condi-
tion (2.4) is satisfied. Then
0

(8.3) 0" = 5 Tolmn)
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Proof. One calculates (assume integration and partial derivative can be inter-
changed), using Lemmal,

0 ! 0
o0 = = [ uto) ns (o) + [ au ] ot
1
0
= —/Qd,u(x) [G(@) — 0'¢)() +/D du %] ng(x)
:/d,u(x) QlCl(fb)%]M(l’). Estimators, Escort
Q Probabilities, and  ¢-Exponential

. . . . Families in Statistical Physics
To obtain the last line the regularity condition has been used. Use nowgthat

satisfies 2.6). One obtains Jan Naudts
0 :
wfqﬁ(]?e) = Z(0)Fob'ci(Foci — cx) e e
_ _Z(e)elglk<0)- Contents
o . . 44 >
In combination with 8.2) this gives p R
0 0 o0k
— = =7 - Go Back
anl ¢(p9) (891 ¢(p9)) 0771
1 Close
_(_ m o kl
= (200" (0) (- 51560 out
—y Page 30 of 35
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Equation 8.3 is the dual relation of§.1). Expression {.5 can now be
written as

(8.4) F(0) + E(n) = 0"

with E(n) = I, (ps).
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The present paper introduces generalized exponential families, and calls them
¢-exponential because they depend on the choice of a strictly positive non-
decreasing functiow of (0,+occ0). Several properties, known to hold for the
exponential family, can be generalized. The paper starts with a generalization of
the well-known lower bound of Cramér and Rao, involving the concept of escort
probability distributions. See Theorel It is shown that the>-exponential
family optimizes this generalized lower bound. The metric tensor, which gener- Estimators. Escort
alizes the Fisher information, depends on both the family of pdfs and the escort probabilities, and  ¢-Exponential
family, and determines the geometry of the statistical manifold. IS0 ST A
The final part of the paper deals with the dual structure of the statistical man- Jan Naudts
ifold, which survives in the more general context¢ggexponential families. It
is shown in TheorenY.2 that the¢-exponential family satisfies a variational
principle with respect to a suitably defined entropy functional. The well-known
duality of statistical physics, between energy and temperature and between en-
tropy and free energy, is recovered. < b
Throughout the paper the number of parametehas been assumed to be

Title Page

Contents

finite. A non-parametrized approach to statistical manifolds is found ip [ S 4
The extension of the present work to this more abstract context has not been Go Back
considered.
Close
Quit
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