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ABSTRACT. A function f = u + iv defined in the domai® C C is harmonic inD if u, v are

real harmonic. Such functions can be representefl-as: + g whereh, g are analytic inD. In

this paper the class of harmonic functions constructed by the Hadamard product in the unit disk,
and properties of some of its subclasses are examined.
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1. INTRODUCTION

Let U denote the open unit disk i@ and letf = u + iv be a complex valued harmonic
function onU. Sinceu andv are real parts of analytic functiong,admits a representation
f = h + g for two functionsh andg, analytic onU.

The Jacobian off is given by J;(z) = |W/(2)|* — |¢'(2)|*>. The necessary and sufficient
conditions forf to be local univalent and sense-preserving;&) > 0, z € U [1].

Many mathematicians studied the class of harmonic univalent and sense-preserving functions
onU and its subclasses|[2, 5].

Here we discuss two classes obtained by the Hadamard product.

2. THE CLASS P9 («)

Let Py denote the class of all functiorfs= h + g so thatRe f > 0 and f(0) = 1 whereh
andg are analytic ort/.
If the functionf, + f- = k' + ¢’ belongs taPy for the analytic and normalized functions

(2.1) h(z)=z+ Z anz" and  g(z) = Z b, 2",
n=2 n=2

ISSN (electronic): 1443-5756
(© 2002 Victoria University. All rights reserved.
040-01


http://jipam.vu.edu.au/
mailto:ometin@uludag.edu.tr
http://www.ams.org/msc/

2 METIN OzTURK, SIBEL YALGIN, AND MUMIN YAMANKARADENIZ

then the class of functions = h + g is denoted by?g [5].
The function

(2.2) ta(2) =2 + !

o Z2+...+mzn+...
is analytic onlU whena is a complex number different from1, —3, %, e
For f € PY%, we denote, by?! (), the class of functions deflned by
(2.3) F=fx*(ty+1ta).
Heref « (t, + t,) is the Hadamard product of the functiofsndt,, + ¢,. Therefore

(2.4) F(z) = H(z)+G(2)

= ap J— b,
B Z+;1—|—(n—1)az +Zl—|—(n—1)az

= z+iAnz”+iW, zeU
n=2 n=2

3
[|
N

isin PY(a).
N Conlflferiely, ifF" is in the form ), witha,,, b, being the coefficients of € ﬁg, thenF €
Ph(e). ~ ~ ~

Furthermore, ife = 0, then asF’ = f, we haveP;;(0) = Pj. Moreover Pjj(c0) = {I :
I(z) =z, z € U} and sincd € Py, Py N PY(a) # ¢.
Theorem 2.1.1f F' € PY%(«) then there exist§ € PY so that
(2.5) alzF,(2) + ZF:(2)| + (1 — a)F(2) = f(2).
Conversely, for any functiofi € ]519[, there existd” € ]52(04) satisfying ).
Proof. Let F' € P%(a). If f € PY, then since

azty(2) + (1 = a)ta(2) = to(2),
asF = [« (t, + t,) we obtain that
F(2) = alf(2) * (2to(2) + 2t,())] + (1 = @)[f(2) * (ta(2) +Tal2))].
Therefore,
f(z) =al[zF.(2) + ZF=(2)] + (1 — @) F(2).

Conversely, forf € Pg, from (2 ) .) an.S)
z—i—Zanz —i—Zb z":z—l—Zl—i— (n—1)a]A,z" —1—2 + (n — 1)a] B, 2™

From these one obtalns

(2.6) A, =

.
14+ (n—1)a
Therefore,

o a/n oo
F = e "  .n
(2) Z+;1+(n—1)a2 +Zl+(n—1)az
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Corollary 2.2. A functionF' = H + G of the form ) belongs tég(a), if and only if
(2.7 Re{z(aH"(z) + aG"(2)) + H'(2) + G'(2)} >0, zeU.
Proof. If F = H + G € PY(a), then from Theorerh 2|1
alzH'(2) + 2G'(2)] + (1 — @) [H(2) + G(z)] = h(z) + g(z) € P}
andh’' + ¢’ € Py. Hence
0 < Re{WW(2)+d(2)}
= Re{azH"(z) +aH'(2) + (1 — a)H'(2)
+azG"(2) +aG'(z) + (1 —@)G'(2)}
= Re{z(aH"(2) +aG"(z))+ H'(z) + G'(2)}.

Conversely, if the functio’ = H + G of the form [2.4) satisfie$ (2.7), then by Theorlen] 2.1,
h' + ¢’ € Py and the function

f(2) = h(z) +g(2) = alzH'(z) + 2G'(2)] + (1 = @) (H(2) + G(2))
is from the class”). Hence by Theore@.]&? — H+G e PY(a). O

Proposition 2.3. PY(«a) is convex and compact.
Proof. Let F, = H, + G,, Fy = Hy + G5 € P%(a) and let\ € [0, 1]. Then
Re{z[a(AH{(2) + (1 = M) Hy (2)a(AGY(2) + (1 = A)G5(2))]
+A[Hi(2) + G1(2)] + (1 = M[Hy(2) + Go(2)]}
= ARe{z[aH{(2) + aG{(2)] + H{(2) + G}(2)}
+ (1 = M) Re{z[aHY (2) + aG5(2)] + Hy(2) + G5(2)}
> 0.
Hence, from Corollary 2|2y F, + (1 — A\)F, € PY(«). Therefore PY () is convex.
On the other hand, Ief, = H, + G,, € ﬁg(a) and letF,, — F = H+G. By Corollar,
alzH,(2) + 2GL ()] + (1 = a)[Ha(2) + Gu(2)] € Py
SincePY is compact,[[5],
a[zH (z) + 2G (2)] + (1 — @) [H(z) + G(z)] € PY,.
Hence, by Theoreln 2.% = H + G € PY(«). Therefore,P(«) is compact. O
Proposition 2.4.1f F = H + G € P%(a) and|z| = r < 1 then
—r+2In(1 +7) < Re{a[zH'(2) + 2G'(2)] + (1 — a)[H(2) + G(2)]}
< —r—2In(1l—r).
Equality is obtained for the functiop (2.3) where
f(z)=2z+In(l —2)—-3z2—-3In(1—-%2), zeUl.
Proof. From Theorel, it" = H + G € P%(a), then there exist§ = h + g € PY so that
a[zH (2) +2G (2)] + (1 = @)[H(2) + G(2)] = f(2).
Since by [5, Proposition 2.2]
—r+2In(l1+7r) <Ref(z) < —r—2In(1 —r),
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the proof is complete. O

Proposition 2.5.If F = H + G € PY%(a) andRe a > 0, then there exists afi € PY so that

(2.8) /g 2f(20)d¢, zelU.
Proof. Since
/ C IC| <1, Rea >0,
andforf =h+ge P
z _ h(z(Q) z  g(z0)
M) o =m0 i = T
we have
1t .
1) =) +ta(z) = o [ GEoh(a0) d
and
6(2) = g(2) / ¢h2g(z
Hencef' is type [2.8). O

Theorem 2.6.1f Rea > 0, thenP? (o) C PY. Further, foranyd < Reay < Reay, PY(as) C
PI(}(OQ).

Proof. Let F' € ]519[(@) andRe « > 0. Then there exist$ € ]519[ so that
F=H+G=fx(og+1a)=(hxty)+ (g*ta).

Hence,0 < Re{h' + ¢’} = Re{l + ¢’} and sinceRear > 0, Re{H' + G’} > 0, and H(0) =
0, H'(0) =1, G(0) = G'(0) = 0 and hence” = H + G € Py
For0 < Rea; < Reay, if ' € PY(as), from Corollar

0 < Re{z(aH"(2) +@G"(z))+ H'(2) + G'(2)}
< Re{z(a1H"(2) + a1G"(2)) + H'(2) + G'(2)}

we getF € P (o). O
Remark 2.7. For some values of, ]5}}(04) C ]3}} is not true. Itis known([5, Corollary 2.5] that

the sharp inequalities

2n —1 2n — 3

(2.9 la,| < and |b,| <

are true. Hence, for example, the function

o0 o

n=2 n=2

belongs taPY. In this case
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S 2n — 1 S 2n —3
F(z) = n n
(2) Z+;n[1—l—(n—1 © +Zn1—|— (n—1a ]Z

n=

belongs to the clasBY (a) fora € C, o # —1/n, n € N. However, forRe o € ( “"—, > ,
—1,—3,... as the coefficient conditions (ﬁ“ given in ) are not satisfied, ¢ P}}. Hence
foreachaeCW|thReae< lo? > a#—1,-1 . Pya) - Py #¢.
Theorem 2.8.LetF = H + G € PY%(a). Then
: 2
I An - Bn < ) 2 1
O 1Al = 1Bl < i = ™
(i) If Fis sense-preserving, then
2n —1 1
14, < 2 C on=1,2...
n |1+ (n—1)qf
and 2n —3 1
|By| < n n=273,...

n |1+ (n—1)al
Equality occurs for the functions of tyge (2.3) where

2z 3z — 22
f(z)—l_z+ln(1—z) — —3In(l—-2), zeUl.
Proof. By (2.6),
1
A, — |Bul| = ————|lan| — |ba]] -
142l = 1Bl = 1y lonl = Il

Also by |5, Theorem 2.3], we have

Han| - |bn|| <

S

the required results are obtained. ~
On the other hand, fro.6) and from the coefficient relation&ngiven in ), we
obtain the coefficient inequalities fét} (). O

3. THE CLASS Py (5, )

Let f = h + g for analytic functions

z)=1+4 i anz" and g(z) = i byz"
n=1 n=1

onU. The classPy () of all functions withRe f(z) > 3, 0 < § < 1 and f(0) = 1 is studied

in [5].
Let us consider the function
1 1 1
3.1 ko(2) = T C, —1,—, ...
(3.1) (2) 1—1—042 +1—|—nozz * @€ a7 2

which is analytic orU.
For f € Py (), let us denote the class of functions

(3.2) F=fx(ka+ka)=(h*ks)+ (g%ka)=H+G,
by Py (3, «). If a =0, then sincel" = f, Py(3,0) = Py (5).
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Therefore,
(3.3) F(z) = H(2)+G(2)

> an, " > b, .
- 1+;1+naz +;1+naz

= 1+§:Anz”+§:m, zeU
n=1 n=1

Theorem 3.1.1f F' € Py (3, ) then there exists afi € Py (), so that

(3.4) alzF,(2) + ZF5(2)]| + F(2) = f(2).

Conversely, forf € Py(3), there is a solution of (3]4) belonging o, (5, ).

Proof. Sinceky(z) = azk!,(z) + ka(2), for f € Py(53), using the fact thatf = f * (ko + ko),

f(2) = alf(2) x (2ke(2) + 2k4,(2))] + [f(2) * (ka(2) + ka(2))]
is obtained. Hence, faF € Py (53, o)
f(z) = alzF.(2) + ZFz(2)] + F(2).
Conversely, leff = h + g € Py(/3) be given by[(3.4). Hence, we can write
(3.5) h(z) = azH'(2) + H(2), g(z) = azG'(2) + G(2).
From the systenj (3.5) the analytic functiadsandG are in the form

An

H(z) =1+ Z 1 +naz” = h(z2) * ko(2),

G(z) = Z . _Ennaz" = g(2) * ko(2).

Hence the functio” = H + G belongs to the clasBy; (3, a). O

Corollary 3.2. The necessary and sufficient conditions for a functioof form (3.3) to belong
to Py (5, «) are

(3.6) Re{z(aH'(z) +aG'(2)) + H(z) + G(2)} > B8, z¢€U.
Proof. If F' € Py(f3, ) then by Theorerp 3]1,

B < Re{f(2)}
= Re{a[zF.(z) +ZFz(2)] + F(2)}
= Re{z(aH'(2) +aG'(2))+ H(z) + G(2)}, z € U.
Conversely, if a functio” = H + G of form (3.3) satisfieq (36), then
zaH'(2) + H(z) + azG'(2) + G(z) € Py(B).
Hence, from Theorefn 3.1, we ha¥e= H + G € Py (3, ). O
Proposition 3.3.If F' € Py (5, ), Rea > 0 then there exists afi € Py () so that

(3.7) F(z) = 1 /1 ta" f(zt)dt, z€U.
0

«

The converse is also true.
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Proof. Since

andforf =h+g € Py(B),

1 1
h(z) * T h(zt) and g(z)x* T g(zt),
we obtain X
H(z) = h(z) * ka(2) = - / (o) dt
@ Jo
and
1!
G2) = g(2) % ha(2) = + / LoVt
@ Jo
Therefore, ;' = H + G is of type [3.7). O
Theorem 3.4.Let F' € Py(3,«). Then

2(1-7)

() |[An] = [Bnl| < > 1

11+ na|’ -
(i) If F'is sense- preserving, then for=1,2, ...
1-— 1 — —1
PRI i) [ ) RPN [ 1)
|1+ nol 11+ naf
Equality is valid for the functions of type (8.2) where
(3.8) f(z)—Re{M}+iIm{l+z}.
1—2z 1—2z

Proof. Let F' € Py(3, ). Then from|[(3.B), as the coefficient relation By () is
[lan| = [bal] < 2(1 = 5)
[5, Proposition 3.4], the required inequalities are obtained.
On the other hand, from (3.3), as the coefficient relationgp(3) are
jan| < (1 =B)(n+1) and b < (1—p5)(n—1)
the required inequalities are obtained. O
Proposition 3.5.If F = H + G € Py(3,a),thenforX = {n:|n| =1} andz € U,

H(z) + G(z) = 2(1 - B) / Fa(12) du(1).

Inl=1
Here 1. is the probability measure defined on the Borel sets{on

Proof. From [5, Corollary 3.3] there exists a probability measudefined on the Borel sets on
X so that
1+ (1—2p)

zn
dp(n).
— 1(n)

b+ 92) = [

In|=1

Taking the Hadamard product of both sidesihyz), we get

He 6 = [ ll{(’fa(z)*l_lzn)ﬂl—%)n (koo =2 ) bt
-/ (ko) + 0280502 i
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O

Theorem 3.6.If Reaw > 0, then Py (5, a) C Py (3). Further if 0 < Rea; < Reaw, then
P (B,2) C Pu(83,a1).

Proof. Let F' € Py (3, ) andRea > 0. Then aRe{h' + ¢’} > 3, we haveRe{H' + G’} > 3
andF'(0) = 1. HenceF' € Py(f3). Further a®) < Reay < Reay, for F' € Py (5, as)

B < Re{z(aoH'(z) +@G'(2)) + H(z) + G(2)}
< Re{z(a1H'(2) + a1G'(2)) + H(z) + G(2)}.
Therefore, by Corollary 3|25 € Py (3, a1). O

For f € Py, the classBy(«) consisting of the functions' = f * (k. + k) is studied in[[2].
The relation between the classeg(3, ) and By («a) is given as follows.

Proposition 3.7. For Rea > 0, Py (5, a) C Bu(a).

Proof. If F € Py(f3, ) then there exists afi € Py () so thatF = f x (k, + ko). Since
Re f(z) > 3, f(0) = 1and0 < 8 < 1, Re f(z) > 0. Hence,f € Py. By the definition of
BH(Oé),FGBH(Oé). O
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