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ABSTRACT. This note studies how certain problems in quantum theory have motivated some
recent research in pure Mathematics in matrix and operator theory. The mathematical key is that
of a commutator. We introduce the notion of the p@alr B) of operators having the Fuglede-
Putnam’s property in the ideal of all compact operators. The characterization of this class leads
us to generalize some recent results. We also give some applications of these results.
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1. INTRODUCTION

Let H denote a separable infinite-dimensional complex Hilbert space. Let
L(H)DK(H)DC, D> F(H)

(0 < p < o0 ) denote, respectively, the class of all bounded linear operators, the class of com-
pact operators, the Schattgrtlass, and the class of finite rank operatorsFnAll operators
herein are assumed to be linear and bounded. [|Lgt, |-||, denote, respectively, the)-
norm and theC(H )-norm. LetZ be a proper bilateral ideal df(H). It is well known that if
T # {0}, thenkC(H) D7 D F(H). For A, B € L(H) we define the generalized derivation
04, as follows

Sap(X)=AX — XB
for X € L(H) (sothatvy 4 = d4). In [1, Theorem 1.7], J. Anderson shows thatifs normal
and commutes witfi" then,

(1.1) 1T = (AX = XA)| = |7,
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2 SALAH MECHERI

forall X € L(H). In [11] we generalized this inequality, showing that if the gair B) has
the Fuglede-Putnam’s property (in particuladifand B are normal operators) amtll’ = T'B,
then for allX € L(H),

IT = (AX = XB)| = |[T].
The related inequality (I.1) was obtained by P.J. Maher [13, Theorem 3.2] showing thiat if
normal andAT' = T'A, whereT' € C,, then

T = (AX = XA)[|, = T,
forall X € L(H), whereC, is the von Neumann-Schatten class,
1 < p < oo and||-[, its norm. In [12] we generalized P.J. Maher’s result, proving that if the
pair (A, B) has the Fuglede-Putnam’s propeffyP)c,, then

1T = (AX = XB)[, = T,
forall X € £L(H), and foralll’ € C,Nkerd g. In [9] F. Kittaneh shows that if the paj#d, B)
has the Fuglede-Putnam’s propertyd(H) then

1T = (AX = XB)|[; = |T1],
forall X € £L(H), and for allT" € I Nkerd, . In order to generalize these results, we prove
that if the pair(A, B) has the(F P)x ) property (the Fuglede-Putnam’s propertykiiif)),
then

1T = (AX = XB)| = T
forall X € IC(H) and for allT € IC(H) Nkerd4 . Thatis, the zero generalized commutator
is the generalized commutator A H ) of T'.

A.H. Almoadijil [2] shows that ifA is normal and for everX € L(H), A2X = X A% and
A3X = X A3, thenAX = X A. However F. Kittaneh']7] generalizes the Almoadijil's theorem
by choosingA and B* subnormal. There are of course other co-prime pairs of powefsawid
B, such a2 and2n + 1 or 3 and2n + 1 (with 3 and2n + 1 co-prime), for which a similar result
can be proved. Notice here that for such co-prime power$ ahd B, the hypothesis that the
pair (A, B) has the(F'P) ) property implies tha#’} (X) = 0 for some integer > 1, and
the conclusionX € kerda 5 is a consequence of the following general result: &gt denote
anm—times application of 4 p. If the pair(A, B) has thg F'P) ) property and’y 5(X) = 0
for some integem > 1, thend 4 p(X) = 0.

2. ORTHOGONALITY

We begin by the following definition of the orthogonality in the sense of G. Birkhoff [3]
which generalizes the idea of orthogonality in Hilbert space.

Definition 2.1. Let C be the field of complex numbers and Iétbe a normed linear space. Let
x,y € E.If ||z — A\y|| > || A\y|| for all A € C, thenz is said to be orthogonal tp Let F' andG
be two subspaces if. If ||z + y|| > ||y||, for all z € F and for ally € G, thenF is said to be
orthogonal taG.

Definition 2.2. Let A, B € L(H). We say that the paii4, B) satisfieg F'P) ., if AC = CB
whereC' € C(H) impliesA*C' = CB*.

Theorem 2.1.Let A, B € L(H). If A and B are normal operators, then
15 = (AX = XB)l[ = 5]l
forall X € £L(H)andforallS € kerds 5 NK(H).
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Proof. Let S = U |S| be the polar decomposition ¢f, whereU is an isometry such that
ker U = ker |S|. Since

1U"Sl o0 < N1U o 151loe = 151l
forall S € K(H),

(2.1) IS = (AX = XB)llo, 2 sup |(U7[S = (AX = XB)|pn, n)|
= sup([|S| — U (AX = XB)lgn, ¢n)

for any orthonormal basigp, },~, of H. SinceAS = SB andA, B are normal operators, then
it follows from the Fuglede-Putnam’s theorem ti$atd = B.S*; consequenths*AS = BS*S

or S*SB = BS*S, i.e, B|S| = |S| B. Since|S| is a compact normal operator and commutes
with B, there exists an orthonormal basig. } U {g,,} of H such thaf f; } consists of common
eigenvectors ofB and|S|, and{g,,} is an orthonormal basis dfer |S|. Since{f.} is an
orthonormal basis of the normal operai®ythen there exists a scalay, such thatf, = a, f3
andB* f,, = @, fx ; consequently

(UH(AX = XB) [y, 5] fr)

(S"(AX = XB) fi, fr)
(B(S™X) = (5" X)B) fi, fr) = 0.

Thatis,(U*(AX — X B) fy, fr) = 0. In (2.1) take{,,} = {f1x} U{gm} as an orthonormal basis
of H. Then

|S — (AX — XB)|l, > sup([|S| = U (AX — X B)]pn, ¥n)
= SkUPHS’ fir fr) + (U (AX — X B) g, gm)]

> Sgp(|5|fk, Ix)
= [[IS]l] = 115l

Theorem 2.2.Let A, B € L(H). If the pair (A, B) satisfies th¢ ' P) ) property, then
(2.2) 104,5(X) + 5] = 5]

forall X € K(H), andfor allS € K(H) Nker(da ). In particular we have

(2.3) R(6a,5 |xn) Nker(0a,p ) = {0},

whereR (4 5) andker(d4 5) denote the range and the kernelifs.

Proof. It is well known that if the pair( A, B) satisfies thg /' P)x ) property, then?(S) re-
ducesA, ker" S reducesB and A @) B liert s @re normal operators. Letting, : kert S
— R(S) be the quasi-affinity defined by settisgz = Sz for eachz € ker™ S, then it results
that(SAl,Bl (So) = 5A’1‘,Bf (SQ) =0.LetA = A& AQ, with respect toH = R(S) ©® R(S)L,

B = B; @ B,, with respect toH = ker(S)*® ker S and X : R(S) @ R(S)L — ker(S)*t®
ker S have the matrix representation

Then we have

IS — (AX — XB)| —'H
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The result of I.C. Gohberg and M.G. Krein [6] guarantees that

1S — (AX — XB)| = ||S1 — (41X, — X1 By)

SinceA; and B, are two normal operators, it results from Theofen 2.2 that
151 = (A1 Xh — XiB1)|[ = 51l = [15]]o0

o
and
IS — (AX — XB)|| > |51 — (AiX1 — XiB1)|| > ISill = I1S]l -

We can ask “Is the sufficient condition in Theorem| 2.2 necessary?”

3. EXAMPLES AND APPLICATIONS

The related topic of approximation by commutatdry — X A or by generalized commutator
AX — X B, which has attracted much interest, has its roots in quantum theory. The Heinsnberg
Uncertainly principle may be mathematically formulated as saying that there existsA4 pair
of linear transformations and a non-zero scaldéor which

(3.1) AX — XA =al.

Clearly, [3.1) cannot hold for square matricésind X and for bounded linear operatafsand
X. This prompts the question:

How close camd X — X A be the identity?

Williams [17] proved that ifA is normal, then, for allX in B(H),

(3.2) [ = (AX = XA)[| > [|]].

Mecheri [14] generalized Williams inequality (B.2): he proved that i3 are normal, then
forall X € B(H)

(3.3) I = (AX = XB)[| = |[1]].

Andersonl[1] generalized Williams inequalify (B.2): he proved th4tig normal and commutes
with B then, for allX € B(H)

(3.4) 1B = (AX = XA)[| > ||B]]

Maher [13] obtained th€’, variants of Anderson’s result. Mecheri [14] studied approximation
by generalized commutatorsX — X C': he showed that the following inequality holds

(3.5) 1B = (AX = XO)l, = [|Bllp,

forall X € C, ifand only if B € kerd,4 5. In Theorenj 22 we obtained ttg /) of Maher
and Mecheri’s results.

In the previous inequality (3.5) the zero generalized commutator is a generalized commutator
approximant inC'p of B.

Now we are ready to give some operators for which the inequality (2.2) holds.

Corollary 3.1. Let A, B € L(H). Then the pai(A, B) has the(F'P) ) property in each of
the following cases:

(1) If A, B € L(H) such that|Az|| > ||z| > ||Bz| forall z € H.
(2) If Aisinvertible andB such that| A~ || B|| < 1.
(3) If A = B is a cyclic subnormal operator.
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Proof. The result of Y. Tong([16, Lemma 1] guarantees that the above condition implies that
forall T € ker(da4.5 | K(H)), R(T) reducesA, ker(T)* reducesB, and A |7 @nd B [ier(r)-

are unitary operators. Hence it results from Thedrerh 2.2 that the pai®) has the property
(FP)kmy and the result holds by the above theorem. The above inequality holds in particular
if A= B isisometric, in other wordgAzx| = ||z|| forall z € H.

(2) In this case it suffices to také, = |B|| "' AandB; = ||B| "' B, then||Az|| > |jz| >

| B1z|| and the result holds by (1) for all € H.

(3) SinceT’ commutes with4, it follows that7" is subnormall[18]. But any compact subnormal
operator is normal. Hencg is normal. NowAT = T A implies A*T' = T A*, i.e, the pair

(A, A) has the(F'P) iy property. O
Theorem 3.2.Let A, B € L(H) such that the pair§A, A) and (B, B) have the(F P)i )
property. Ifo(A) No(B) = ¢, then

1T = daep.ae8(X)l = 1Tl
forall X € K(H), and forallT € K(H) Nker(da p).

Proof. It suffices to show that the paid ® B, A ® B) has th€F P)x ) property. Let

[
kR

be |n’C(H SP) H) If (A S5 B)T = T(A S%) B), thenAT1 = TlA, BT, = T4B, ATQ =1,B
and BTy = T3A. Sincec(A) No(B) = ¢, thend, g, 05 4 are invertible[[12]. Consequently
T, = T3 = 0 and since(A, A) and (B, B) have the(F'P)x ) property, ATy = Ty¥A and
BT; = T; B, thatis,(A® B)T* = T*(A® B). O

4. ON THE COMMUTANT OF A AND ITS POWERS

In this section we will be interested on the investigation of the relation between the commu-
tant of a bounded linear operatdrand its powers.

Lemmad4.l.LetA, B € L(H). Then
R(0a8) Nkerdap = {0} < kerdy' 5 = kerda p,
forall m > 1.
Proof. Suppose thaRk(d4,5) Nkerds s = {0} . It suffices to prove that
ker 53‘73 C kerdga p.

If X € kerd? p, thendyp(X) € R(dap) Nkerdap = {0}, i.e. X € kerdyp. Conversely
if Y € R(0ap) Nkerdsp, thenY = §4p5(X) for someX € L(H) anddsp(Y) = 0.
Consequently we havi, ;(X) = 0,i.e. X € ker 03 5 = ker d4 5. Then we obtaid 4 5(X) =
0,i.,e.Y =0. O

Lemma 4.2.If R(d45) Nkerdys p = {0}, then

kerdap = ﬂkeréA@Bi.

1=2

Proof. Note thatker 04 5 C (.2, ker d 4 p:. Hence it suffices to prove the opposite inclusion.
If X € N kerdaipi, thenA2X = XB? and A’X = XB3 HenceA’XB = XB?® and
AXB? = A3X.LetC = AX — XB. Then,

A’C = A3X — A’°XB=XB*— XB%=0;
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CB* = AXB* - XB’ = A’X — A°X =0;
ACB = A’XB - AXB*=XB> - XB’ =0;

hence
(4.1) A(AC — CB) = A’C — ACB = 0;
(4.2) (AC — CB)B = ACB - CB?* =0.

Thus [4.1) and (4]2) imply that
AC —CB € R(0ap)Nkerdap = {0},
from which it results thalC' = C'B. Hence
C € R(6a) Nkerda g,
thatis,C = 0 and thusAX = X B, i.e, X € kerd p. O
Theorem 4.3.1f (A, B) has the(F P)xy) property, then

kerdy' p =kerdap = ﬂker(SAi’Bi, m > 1.
1=2
In particular if A2X = XB?andA3X = X B3 for someX € K(H), thenAX = XB.
Proof. This is an immediate consequence of Lenima 4.1, Lemnja 4.2 and Thieotem 2.2

Remark 4.4. The above theorem generalizes the results of F. Kittaneh [9] and Almaadijil [2].
In [8] F. Kittaneh shows that if the paitd, B) has the(# P).) property, then for alll" €
ker(d4 5 |7) and forallX € Z,

194,5(X) + Sz =[5 -

In Theoren] 2.2 we show that it suffices that the gair B) has the(F P) ) property for
which R(d4,5 |xm)) is orthogonal tdker(d4,5 |(m)). The results of this paper are also true in
the case wherk (H) is replaced by a two sided ideal 6f /). Hence Theorein 2.2 generalizes
the results of F. Kittaneh [8], [9] and of S. Mecheri[12].
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