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ABSTRACT. Let λ(z) be a complex valued function defined in the unit discE and letp(z) be
a function analytic inE with p(0) = 1 andp(z) 6= 0 in E. In this article, we determine the
largest constantsγk, k = 1, 2, 3, . . . and conditions onλ(z) such that for givenα, β andδ, the
non-autonomous differential subordination

(p(z))β

[
1 + λ(z)

zp′(z)
pk(z)

]α

≺
(

1 + z

1− z

)γk

, z ∈ E,

implies

p(z) ≺
(

1 + z

1− z

)δ

in E. Here the symbol ‘≺ ’ stands for subordination. Almost all the previously known results
on differential subordination concerning a sector follow as particular cases of our results.
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1. I NTRODUCTION

LetA denote the class of functionsf which are analytic in the unit discE = {z : |z| < 1}
and satisfyf(0) = 0, f ′(0) = 1. Denote byA′, the class of functionsp analytic inE for which
p(0) = 1 andp(z) 6= 0 in E.

If f andg are analytic inE, we say thatf is subordinate tog in E, written asf(z) ≺ g(z) in
E, if g is univalent inE, f(0) = g(0) andf(E) ⊂ g(E).

Let h be a univalent function inE and letψ : C2 → C, whereC is the complex plane. If an
analytic functionp satisfies the differential subordination

(1.1) ψ(p(z), zp′(z)) ≺ h(z), h(0) = ψ(p(0), 0), z ∈ E,
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2 SUKHJIT SINGH AND SUSHMA GUPTA

then a univalent functionq is said to be the dominant of the differential subordination (1.1), if
p(0) = q(0) andp ≺ q for all p satisfying (1.1). Differential subordination (1.1) is said to be
non-autonomous if a function ofz is allowed to be present on the left hand side, in addition to
the termsp(z) andzp′(z).

Since 1981, when a formal study of differential subordination started with a remarkable paper
of Miller and Mocanu [5], several results concerning differential subordination in a sector have
been proved (e.g. see [6], [9] and [3]).

In the present paper, we establish the following two theorems.

Theorem 1.1.Letα ∈ [0, 1] be fixed and letδ ∈ (0, δ0], whereδ0 is the solution of the equation

βδπ = 2π − α
(π

2
+ arctanη

)
for β ≥ 0 and for a suitable fixedη > 0 such thatλ(z) : E → C satisfies

(1.2)
δReλ(z)

1 + δ|Imλ(z)|
≥ η, z ∈ E.

If p ∈ A′ satisfies the non-autonomous differential subordination

(1.3) (p(z))β
[
1 + λ(z)

zp′(z)

p(z)

]α
≺

(
1 + z

1− z

)γ1

, z ∈ E,

then,

p(z) ≺
(

1 + z

1− z

)δ

in E,

where,

(1.4) γ1 = βδ +
2α

π
arctan η, 0 < δ ≤ δ0.

Theorem 1.2.Letk = 2, 3, 4, . . . , α ∈ [0, 1], δ ∈
(
0, 1

k−1

)
be fixed. Also letβ ≥ 0 be such that

0 ≤ βδ ≤ 2. For a suitable fixedη > 0, letλ(z) : E → C be a function satisfying

(1.5)
δ|λ(z)| cosψ

x+ δ|λ(z)|| sinψ|
≥ η, z ∈ E,

where,

(1.6) |ψ − Argλ(z)| = (k − 1)
δπ

2

and,

(1.7) x = (1− (k − 1)δ)
1−(k−1)δ

2 (1 + (k − 1)δ)
1+(k−1)δ

2 .

If p ∈ A′ satisfies the non-autonomous differential subordination

(1.8) (p(z))β
[
1 + λ(z)

zp′(z)

pk(z)

]α
≺

(
1 + z

1− z

)γk

, z ∈ E,

then,

p(z) ≺
(

1 + z

1− z

)δ

in E,

where,

(1.9) γk = βδ +
2α

π
arctan η.
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NON-AUTONOMOUS DIFFERENTIAL SUBORDINATIONS RELATED TO A SECTOR 3

We claim that our results unify most of the previously known results related to differential
subordinations in a sector. Some special cases of Theorem 1.1 and Theorem 1.2 have been
discussed in Section 3. In Section 4, we give some applications of our results to the univalent
functions.

We shall need the following lemma to prove our results.

Lemma 1.3. LetF be analytic inE and letG be analytic and univalent inE except for points
ζ such thatlimz→ζF (z) = ∞, with F (0) = G(0). If F 6≺ G in E, then there exist points
z0 ∈ E, ζ0 ∈ ∂E (boundary ofE) and anm ≥ 1 for which

(a) F (|z| < |z0|) ⊂ G(E),
(b) F (z0) = G(ζ0) and
(c) z0F

′(z0) = mζ0G
′(ζ0).

Lemma 1.3 is due to Miller and Mocanu [5].

2. PROOFS OF M AIN THEOREMS

Proof of Theorem 1.1.Let q(z) =
(

1+z
1−z

)δ
. Then we need to prove that (1.3) impliesp(z) ≺

q(z) in E. Suppose, on the contrary, thatp 6≺ q in E. Then, by Lemma 1.3, there exist
pointsz0 ∈ E, ζ0 ∈ ∂E and anm ≥ 1 such thatp(z0) = q(ζ0) andz0p

′(z0) = mζ0q
′(ζ0).

Sincep(z0) = q(ζ0) 6= 0, it follows that ζ0 6= ±1. Thus 1+ζ0
1−ζ0 = ri for r 6= 0. Writing

λ(z0) = Reiφ, |φ| < π/2, a simple calculation gives

(p(z0))
β

[
1 + λ(z0)

z0p
′(z0)

p(z0)

]α
= (q(ζ0))

β

[
1 + λ(z0)

mζ0q
′(ζ0)

q(ζ0)

]α
= (ri)βδ

[
1 +

imδReiφ

2

(
r2 + 1

r

)]α
= Ψ0 say.

Then,

(2.1) ArgΨ0 = ±βδπ
2

+ α arctan

[
mδRcosφ

2r
r2+1

−mδRsinφ

]
.

Here a positive sign corresponds tor > 0 and a negative sign tor < 0.
LetA = A(m, r) = mδR cosφ

x(r)−mδR sinφ
, wherex(r) = 2r

r2+1
. Then, Max|x(r)| = 1 for all values of

r whether positive or negative.
If we define,

B = B(m, r) =
mδRcosφ

|x(r)|+mδR|sinφ|
,

thenB is an increasing function ofm for each fixedr, and therefore, form ≥ 1, we have

B ≥ δRcosφ

|x(r)|+ δR|sinφ|
≥ δRcosφ

1 + δR|sinφ|
≥ η, (using (1.2)).

Now, It is easy to check the following six cases:

(i) Whenr > 0 andsinφ ≤ 0, we haveA = B.
(ii) When r > 0 andx(r) > mδRsinφ > 0, we getA > B.

(iii) When r > 0 andx(r) < mδRsinφ, we getA < −B.
(iv) Whenr < 0 andsinφ ≥ 0, we haveA = −B.
(v) Whenr < 0 andmδRsinφ < −|x(r)|, we haveA > B.

(vi) Whenr < 0 and0 > mδRsinφ > −|x(r)|, we getA < −B.
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4 SUKHJIT SINGH AND SUSHMA GUPTA

Since arctan is an increasing function of its argument, therefore, in view of cases (i) and (ii),
we get from (2.1),

ArgΨ0 ≥
βδπ

2
+ α arctanB

≥ βδπ

2
+ α arctan η

=
γ1π

2
.

For the case (iii), we get

ArgΨ0 <
βδπ

2
+ α arctan(−B)

≤ βδπ

2
− α arctan η

= βδπ − γ1π

2

≤ 2π − γ1π

2
, since0 ≤ βδ ≤ βδ0 < 2.

For cases (iv) and (vi), we get

ArgΨ0 ≤ −
βδπ

2
+ α arctan(−B)

≤ −βδπ
2
− α arctan η

= −γ1π

2
.

In case (v), we have

ArgΨ0 > −
βδπ

2
+ α arctanB

≥ −βδπ
2

+ α arctan η

= −
(
βδπ − γ1π

2

)
≥ −

(
2π − γ1π

2

)
, since0 ≤ βδ ≤ βδ0 < 2.

Combining all the above cases, we obtain
γ1π

2
≤ |Arg Ψ0| ≤ 2π − γ1π

2
,

which is a contradiction to (1.3). Hencep(z) ≺
(

1+z
1−z

)δ
. The proof of the theorem is complete.

�

Proof of Theorem 1.2.Proceeding as in the proof of Theorem 1.1, we get

(p(z0))
β

[
1 + λ(z0)

z0p
′(z0)

pk(z0)

]α
= (ri)βδ

[
1 +

imδR

2
(r2 + 1)r−1−(k−1)δei(φ−(k−1)δπ/2)

]α
= Θ0 say.

Now, if ψ − φ = −(k − 1) δπ
2

, then we get

(2.2) Arg Θ0 =
βδπ

2
+ α arctan

[
mδRcosψ

2r1+(k−1)δ

r2+1
−mδRsinψ

]
.
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NON-AUTONOMOUS DIFFERENTIAL SUBORDINATIONS RELATED TO A SECTOR 5

LetA = A(m, r) =
[

mδRcosψ
x(r)−mδRsinψ

]
, wherex(r) = 2r1+(k−1)δ

r2+1
. Since(k − 1)δ < 1, it is easy to

verify that forr > 0 (and, of course, also forr < 0),

max |x(r)| = (1− (k − 1)δ)
1−(k−1)δ

2 (1 + (k − 1)δ)
1+(k−1)δ

2 = x, using (1.7).

Now, if we define,

B = B(m, r) =
mδRcosψ

|x(r)|+mδR|sinψ|
,

then,B is an increasing function ofm and, therefore, form ≥ 1, we have

B ≥ δRcosψ

|x(r)|+ δR|sinψ|
≥ δRcosψ

x+ δR|sinψ|
≥ η, using (1.5).

Now, one can easily verify the following three cases:

Case (i).A = B, whensinψ ≤ 0.
Case(ii).A > B, whensinψ > 0 andx(r) > mδRsinψ.

Case (iii).A < −B, whensinψ > 0 andx(r) < mδRsinψ.

Since arctan is an increasing function of its argument, therefore, in view of cases (i) and (ii),
we get from (2.2)

ArgΘ0 ≥
βδπ

2
+ α arctan η

=
γkπ

2
, using (1.9).

For the case (iii), we obtain

ArgΘ0 <
βδπ

2
+ α arctan(−B)

≤ βδπ

2
− α arctan η

≤ βδπ − γkπ

2

≤ 2π − γkπ

2
, sinceβδ ≤ 2.

Now, consider the case whenr < 0. Writing r = −a, a > 0 we have

(p(z0))
β

[
1 + λ(z0)

z0p
′(z0)

pk(z0)

]α
= aβδe

−iβδπ
2

[
1− imδR

2

(a2 + 1)ei(φ+(k−1)δπ/2)

a1+(k−1)δ

]α
= Φ0 say.

If ψ − φ = (k − 1) δπ
2

, then

ArgΦ0 =
−βδπ

2
+ α arctan C,

whereC = C(m, r) = mδRcosψ
−|x(r)|−mδRsinψ

.

It is now elementary to check the following three cases:

Case (a). Whensinψ ≥ 0, we haveC = −B.
Case (b). Whensinψ < 0 andmδR sinψ < −|x(r)|, we obtainC > B.
Case (c). Forsinψ < 0 andmδRsinψ > −|x(r)|, we haveC < −B.
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6 SUKHJIT SINGH AND SUSHMA GUPTA

For cases (a) and (c), we get

ArgΦ0 ≤
−βδπ

2
+ α arctan(−B)

≤ −βδπ
2

− α arctan η

= −γkπ
2
.

In case (b), we have

ArgΦ0 >
−βδπ

2
+ α arctan B

≥ −βδπ
2

+ α arctan η

= −(βδπ − γkπ

2
)

≥ −(2π − γkπ

2
), sinceβδ ≤ 2.

Combining the above six cases, three forr > 0 and three forr < 0, we have

γkπ

2
≤

∣∣∣∣Arg(
(p(z0))

β

[
1 + λ(z0)

z0p
′(z0)

pk(z0)

]α)∣∣∣∣ ≤ 2π − γkπ

2
,

which is a contradiction to (1.8). Hencep(z) ≺
(

1+z
1−z

)δ
. This completes the proof. �

3. SPECIAL CASES

(i) Taking α = β = 1 in Theorem 1.1, we get the result of S. Ponnusamy [9, p. 399,
Lemma 1].

(ii) Setting α = β = 1 andλ(z) = λ, a positive real number, in Theorem 1.1, we get
Theorem 5 of Miller and Mocanu [6, p. 532].

(iii) Putting β = 1 andλ(z) = 1 in Theorem 1.1, we get the result of A. Lecko et.al. [4, p.
198, Theorem 2.1].

(iv) In Theorem 1.1, takingα = 1, we get the following result:
Let β ≥ 0 and letδ0 be the solution of the equation

βδπ =
3π

2
− arctan η,

for a suitable fixedη > 0 such thatλ(z) : E → C is a function satisfying

δReλ(z)

1 + δ| Imλ(z)|
≥ η, z ∈ E.

If p ∈ A′ satisfies the non-autonomous differential subordination

pβ(z) + λ(z)pβ−1(z)zp′(z) ≺
(

1 + z

1− z

)γ

, z ∈ E,

then,

p(z) ≺
(

1 + z

1− z

)δ

in E,

where,

γ = βδ +
2

π
arctan η, 0 < δ ≤ δ0.
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NON-AUTONOMOUS DIFFERENTIAL SUBORDINATIONS RELATED TO A SECTOR 7

(v) In Theorem 1.2, takingλ(z) = 1 andβ = 1, we get the result of A. Lecko [3, p. 344,
Theorem 2.1].

(vi) Puttingα = β = 1 andk = 2 in Theorem 1.2, we obtain the following result:
For0 < δ < 1 andη > 0, letλ(z) : E → C be a function satisfying

δ|λ(z)|cosψ

x+ δ|λ(z)||sinψ|
≥ η, z ∈ E,

where|ψ − Argλ(z)| = δπ
2

andx = (1 + δ)
1+δ
2 (1− δ)

1−δ
2 .

If p ∈ A′ satisfies,

p(z) + λ(z)
zp′(z)

p(z)
≺

(
1 + z

1− z

)γ2

in E, then,

p(z) ≺
(

1 + z

1− z

)δ

in E, whereγ2 = δ + 2
π
arctan η.

Takingλ(z) = λ, a positive real number in the above result, we get the well-known
differential subordination (see [7, p. 268, 5.1-40]).

(vii) Taking β + α in place ofβ, λ(z) = 1, k = 2 andp(z) = zf ′(z)
f(z)

, wheref ∈ A, in
Theorem 1.2, we get the following (Also see Darus and Thomas [2, p. 1050, Theorem
1]):

Letα ∈ [0, 1], δ ∈ (0, 1) andβ ≥ 0 be such that0 ≤ (β+α)δ ≤ 2. If f ∈ A satisfies(
zf ′(z)

f(z)

)β [
1 +

zf ′′(z)

f ′(z)

]α
≺

(
1 + z

1− z

)γ2

,

then,
zf ′(z)

f(z)
≺

(
1 + z

1− z

)δ

in E,

where,

γ2 = βδ +
2α

π
arctan

[
tan

δπ

2
+

δ

(1 + δ)
1+δ
2 (1− δ)

1−δ
2 cos δπ

2

]
.

(viii) Writing β = 1, α = 1, λ(z) = 1, k = 2 andp(z) = zf ′(z)/f(z), wheref ∈ A, in
Theorem 1.2, we get well-known result of Nunokawa and Thomas [8, p. 364, Theo-
rem1].

4. APPLICATIONS TO UNIVALENT FUNCTIONS

In this section, we give some applications of our results to univalent functions and obtain
some new conditions for univalence, starlikeness and strongly starlikeness.

A functionf ∈ A is said to be strongly starlike of orderα, 0 < α ≤ 1, if∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < απ

2
in E.

We denote the set of all such functions byS∗(α). The classS∗(α) was introduced and studied
independently by Brannan and Kirwan [1] and Stankiewicz [10]. Note thatS∗(1) is the usual
class of starlike functionsf in A satisfying

Re

[
zf ′(z)

f(z)

]
> 0, z ∈ E.
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8 SUKHJIT SINGH AND SUSHMA GUPTA

We denote this class bySt.
First of all, we note that iff ∈ A, then the functionalsf(z)

z
, f ′(z) and zf ′(z)

f(z)
are all members

of the classA′.

Theorem 4.1.Letα ∈ [0, 1] and letδ0 = 0.6165 . . . be the unique root of the equation

(4.1) 2 arctan(1− δ) + π(1− 2δ) = 0.

Further, let β ≥ 0 be such thatβδ ≤ βδ0 ≤ 2 for 0 < δ ≤ δ0. If a functionf ∈ A,
f ′(z) 6= 0, z ∈ E, satisfies

(4.2) (f ′(z))β
[
1 +

zf ′′(z)

f ′(z)

]α
≺

(
1 + z

1− z

)γ

, z ∈ E,

thenf ∈ St whereγ = βδ + 2α
π

arctan δ.

Proof. In Theorem 1.1, takingλ(z) = 1 andp(z) = f ′(z), the subordination (4.2) implies

(4.3) f ′(z) ≺
(

1 + z

1− z

)δ

, z ∈ E,

whereγ = βδ+ 2α
π

arctan δ. Again using Theorem 1.1 withα = β = λ(z) = 1 andp(z) = f(z)
z

,
we get from (4.3),

f(z)

z
≺

(
1 + z

1− z

)µ

, z ∈ E,

whereδ = µ+ 2
π

arctanµ which is equivalent to (4.1) withµ = 1− δ. Now∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ ≤ |argf ′(z)|+
∣∣∣∣arg

f(z)

z

∣∣∣∣
≤ (δ + µ)

π

2
=
π

2
,

and the desired result follows. �

Writing p(z) = f(z)
z

andλ(z) = 1 in Theorem 1.1, we get:

Lemma 4.2. Letα ∈ [0, 1]be fixed and letδ ∈ (0, δ0], whereδ0 is the solution of the equation

βδπ = 2π − α
(π

2
+ arctan δ

)
for fixedβ ≥ 0. If f ∈ A, f(z)

z
6= 0, z ∈ E, satisfies(

f(z)

z

)β−α

(f ′(z))α ≺
(

1 + z

1− z

)γ

in E,

then,
f(z)

z
≺

(
1 + z

1− z

)δ

, z ∈ E,

whereγ = βδ + 2α
π

arctan δ.

Theorem 4.3. Let α ∈ [0, 1], β ≥ 0 be fixed. Suppose thatγ0, α/2 < γ0 ≤ α, is the unique
root of the equation

(4.4) β = (α− γ)cot

[(
2γ − α

α

)
π

2

]
.
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NON-AUTONOMOUS DIFFERENTIAL SUBORDINATIONS RELATED TO A SECTOR 9

Letf ∈ A, f(z)
z
6= 0, z ∈ E, satisfy

(4.5)

(
f(z)

z

)β−α

(f ′(z))α ≺
(

1 + z

1− z

)γ

in E.

Thenf ∈ St.

Proof. In view of (4.5) and Lemma 4.2, we have

f(z)

z
≺

(
1 + z

1− z

)δ

, z ∈ E,

whereδ is given by the equation

(4.6) γ = βδ +
2α

π
arctan δ.

We observe that (4.6) is equivalent to (4.4) withδβ = α− γ. Now

α

∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ ≤
∣∣∣∣∣arg(f ′(z))α

(
f(z)

z

)β−α
∣∣∣∣∣ +

∣∣∣∣∣arg

(
f(z)

z

)β
∣∣∣∣∣

≤ γπ

2
+
βδπ

2
=
απ

2
,

and the conclusion follows. �

Remark 4.4. Takingα = 1 in Theorem 4.3, we get the Theorem 1 of Ponnusamy [9, p. 403].

Takingα = β = 1
2

in Theorem 4.3, we get

Example 4.1.Forf ∈ A, the differential subordination√
f ′(z) ≺

(
1 + z

1− z

)γ

in E,

implies thatf is starlike inE whereγ = 0.3082 . . . is given by2 arctan (1−2γ)+π(1−4γ) = 0.

Settingp(z) = f ′(z) andα = λ(z) = 1 in Theorem 1.1, we obtain

Corollary 4.5. For β ≥ 0, if an analytic functionf in A satisfies

(f ′(z))β + (f ′(z))β−1zf ′′(z) ≺
(

1 + z

1− z

) 2β+1
2

in E,

then

f ′(z) ≺ 1 + z

1− z
in E,

and, hence,f is univalent inE.

Writing p(z) = zf ′(z)
f(z)

, k = 2 and(β + α) in place ofβ in Theorem 1.2, we get the following
result:

Theorem 4.6.Letα ∈ [0, 1] andβ ≥ 0 be fixed. Letδ ∈ (0, 1) be such that0 ≤ (β + α)δ ≤ 2.
For a fixedη > 0, letλ(z) : E → C be a function satisfying

δ|λ(z)|cosψ

x+ δ|λ(z)||sinψ|
≥ η, z ∈ E,

where|ψ − Arg λ(z)| = δπ
2

andx = (1 + δ)
1+δ
2 (1− δ)

1−δ
2 .
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If f ∈ A satisfies the differential subordination(
zf ′(z)

f(z)

)β [
(1− λ(z))

zf ′(z)

f(z)
+ λ(z)

(
1 +

zf ′′(z)

f ′(z)

)]α
≺

(
1 + z

1− z

)γ2

in E, then
zf ′(z)

f(z)
≺

(
1 + z

1− z

)δ

in E i.e. f ∈ S∗(δ) in E, whereγ2 = (β + α)δ + 2α
π

arctan η.

Takingβ = 0, α = 1, λ(z) = λ, λ real, in Theorem 4.6, we obtain the well-known result [7,
p. 266, Cor. 5. 1i. 1].
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