Journal of Inequalities in Pure and

 Applied MathematicsVolume 6, Issue 3, Article 70, 2005

ON SOME SUBCLASSES OF UNIVALENT FUNCTIONS

MUGUR ACU AND SHIGEYOSHI OWA
University "Lucian Blaga" of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
Department of Mathematics
School of Science and Engineering Kinki University
Higashi-Osaka, OsaKa 577-8502, Japan
owa@math.kindai.ac.jp

Received 17 February, 2005; accepted 01 June, 2005
Communicated by N.E. Cho

AbStract. In 1999, S. Kanas and F. Ronning introduced the classes of functions starlike and convex, which are normalized with $f(w)=f^{\prime}(w)-1=0$ and w is a fixed point in \mathbb{U}. The aim of this paper is to continue the investigation of the univalent functions normalized with $f(w)=f^{\prime}(w)-1=0$, where w is a fixed point in \mathbb{U}.

Key words and phrases: Close-to-convex functions, α-convex functions, Briot-Bouquet differential subordination.
2000 Mathematics Subject Classification. 30C45.

1. Introduction

Let $\mathcal{H}(\mathbb{U})$ be the set of functions which are regular in the unit disc $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, $A=\left\{f \in \mathcal{H}(\mathbb{U}): f(0)=f^{\prime}(0)-1=0\right\} \quad$ and $\quad S=\{f \in A: f$ is univalent in $\mathbb{U}\}$.

We recall here the definitions of the well-known classes of starlike, convex, close-to-convex and α-convex functions:

$$
\begin{gathered}
S^{*}=\left\{f \in A: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{U}\right\}, \\
S^{c}=\left\{f \in A: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathbb{U}\right\}, \\
C C=\left\{f \in A: \exists g \in S^{*}, \operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, z \in \mathbb{U}\right\},
\end{gathered}
$$

[^0]$$
M_{\alpha}=\left\{f \in A: \frac{f(z) f^{\prime}(z)}{z} \neq 0, \operatorname{Re} J(\alpha, f: z)>0, z \in \mathbb{U}\right\}
$$
where
$$
J(\alpha, f ; z)=(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

Let w be a fixed point in \mathbb{U} and $A(w)=\left\{f \in \mathcal{H}(\mathbb{U}): f(w)=f^{\prime}(w)-1=0\right\}$.
In [3], S. Kanas and F. Ronning introduced the following classes:

$$
\begin{gathered}
S(w)=\{f \in A(w): f \text { is univalent in } \mathbb{U}\} \\
S T(w)=S^{*}(w)=\left\{f \in S(w): \operatorname{Re}\left(\frac{(z-w) f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{U}\right\} \\
C V(w)=S^{c}(w)=\left\{f \in S(w): 1+\operatorname{Re}\left(\frac{(z-w) f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathbb{U}\right\} .
\end{gathered}
$$

The class $S^{*}(w)$ is defined by the geometric property that the image of any circular arc centered at w is starlike with respect to $f(w)$ and the corresponding class $S^{c}(w)$ is defined by the property that the image of any circular arc centered at w is convex. We observe that the definitions are somewhat similar to the ones for uniformly starlike and convex functions introduced by A. W. Goodman in [1] and [2], except that in this case the point w is fixed.

It is obvious that there exists a natural "Alexander relation" between the classes $S^{*}(w)$ and $S^{c}(w)$:

$$
g \in S^{c}(w) \text { if and only if } f(z)=(z-w) g^{\prime}(z) \in S^{*}(w)
$$

Let $\mathcal{P}(w)$ denote the class of all functions

$$
p(z)=1+\sum_{n=1}^{\infty} B_{n}(z-w)^{n}
$$

that are regular in U and satisfy $p(w)=1$ and $\operatorname{Re} p(z)>0$ for $z \in \mathbb{U}$.
The purpose of this note is to define the classes of close to convex and α-convex functions normalized with $f(w)=f^{\prime}(w)-1=0$, where w is a fixed point in \mathbb{U}, and to obtain some results concerning these classes.

2. Preliminary Results

It is easy to see that a function $f \in A(w)$ has the series expansion:

$$
f(z)=(z-w)+a_{2}(z-w)^{2}+\cdots .
$$

In [7], J.K. Wald gives the sharp bounds for the coefficients B_{n} of the function $p \in \mathcal{P}(w)$ as follows.

Theorem 2.1. If $p \in \mathcal{P}(w)$,

$$
p(z)=1+\sum_{n=1}^{\infty} B_{n}(z-w)^{n}
$$

then

$$
\begin{equation*}
\left|B_{n}\right| \leq \frac{2}{(1+d)(1-d)^{n}}, \tag{2.1}
\end{equation*}
$$

where $d=|w|$ and $n \geq 1$.
Using the above result, S. Kanas and F. Ronning [3] obtain the following:

Theorem 2.2. Let $f \in S^{*}(w)$ and $f(z)=(z-w)+a_{2}(z-w)^{2}+\cdots$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{2}{1-d^{2}}, \quad\left|a_{3}\right| \leq \frac{3+d}{\left(1-d^{2}\right)^{2}}, \tag{2.2}\\
\left|a_{4}\right| \leq \frac{2}{3} \frac{(2+d)(3+d)}{\left(1-d^{2}\right)^{3}}, \quad\left|a_{5}\right| \leq \frac{1}{6} \frac{(2+d)(3+d)(3 d+5)}{\left(1-d^{2}\right)^{4}} \tag{2.3}
\end{gather*}
$$

where $d=|w|$.
Remark 2.3. It is clear that the above theorem also provides bounds for the coefficients of functions in $S^{c}(w)$, due to the relation between $S^{c}(w)$ and $S^{*}(w)$.

The next theorem is the result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [4], [5], [6]).

Theorem 2.4. Let h be convex in \mathbb{U} and $\operatorname{Re}[\beta h(z)+\gamma]>0$, $z \in \mathbb{U}$. If $p \in \mathcal{H}(\mathbb{U})$ with $p(0)=h(0)$ and p satisfies the Briot-Bouquet differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z), \quad z \in \mathbb{U},
$$

then $p(z) \prec h(z), z \in \mathbb{U}$.

3. Main Results

Let us consider the integral operator $L_{a}: A(w) \rightarrow A(w)$ defined by

$$
\begin{equation*}
f(z)=L_{a} F(z)=\frac{1+a}{(z-w)^{a}} \int_{w}^{z} F(t)(t-w)^{a-1} d t, \quad a \in \mathbb{R}, a \geq 0 \tag{3.1}
\end{equation*}
$$

We denote by

$$
D(w)=\left\{z \in \mathbb{U}: \operatorname{Re}\left(\frac{w}{z}\right)<1 \quad \text { and } \quad \operatorname{Re}\left(\frac{z(1+z)}{(z-w)(1-z)}\right)>0\right\}
$$

with $D(0)=\mathbb{U}$, and

$$
s(w)=\{f: D(w) \rightarrow \mathbb{C}\} \cap S(w),
$$

where w is a fixed point in \mathbb{U}. Denoting $s^{*}(w)=S^{*}(w) \cap s(w)$, where w is a fixed point in \mathbb{U}, we obtain

Theorem 3.1. Let w be a fixed point in \mathbb{U} and $F(z) \in s^{*}(w)$. Then $f(z)=L_{a} F(z) \in S^{*}(w)$, where the integral operator L_{a} is defined by (3.1).

Proof. By differentiating (3.1), we obtain

$$
\begin{equation*}
(1+a) F(z)=a f(z)+(z-w) f^{\prime}(z) \tag{3.2}
\end{equation*}
$$

From (3.2), we also have

$$
\begin{equation*}
(1+a) F^{\prime}(z)=(1+a) f^{\prime}(z)+(z-w) f^{\prime \prime}(z) \tag{3.3}
\end{equation*}
$$

Using (3.2) and (3.3), we obtain

$$
\begin{equation*}
\frac{(z-w) F^{\prime}(z)}{F(z)}=\frac{(1+a)(z-w) \frac{f^{\prime}(z)}{f(z)}+(z-w)^{2} \frac{f^{\prime \prime}(z)}{f(z)}}{a+(z-w) \frac{f^{\prime}(z)}{f(z)}} . \tag{3.4}
\end{equation*}
$$

Letting

$$
p(z)=\frac{(z-w) f^{\prime}(z)}{f(z)}
$$

where $p \in \mathcal{H}(\mathbb{U})$ and $p(0)=1$, we have

$$
(z-w) p^{\prime}(z)=p(z)+(z-w)^{2} \cdot \frac{f^{\prime \prime}(z)}{f(z)}-[p(z)]^{2}
$$

and thus

$$
\begin{equation*}
(z-w)^{2} \frac{f^{\prime \prime}(z)}{f(z)}=(z-w) p^{\prime}(z)-p(z)[1-p(z)] \tag{3.5}
\end{equation*}
$$

Using (3.4) and (3.5), we obtain

$$
\begin{equation*}
\frac{(z-w) F^{\prime}(z)}{F(z)}=p(z)+\frac{(z-w) p^{\prime}(z)}{a+p(z)} \tag{3.6}
\end{equation*}
$$

Since $F \in s^{*}(w)$, from (3.6), we have

$$
p(z)+\frac{z-w}{a+p(z)} p^{\prime}(z) \prec \frac{1+z}{1-z} \equiv h(z)
$$

or

$$
p(z)+\frac{1-\frac{w}{z}}{a+p(z)} z p^{\prime}(z) \prec \frac{1+z}{1-z} .
$$

From the hypothesis, we have

$$
\operatorname{Re}\left(\frac{1}{1-\frac{w}{z}} h(z)+\frac{a}{1-\frac{w}{z}}\right)>0
$$

and thus from Theorem 2.4, we obtain

$$
p(z) \prec \frac{1+z}{1-z}, \quad z \in \mathbb{U}
$$

or

$$
\operatorname{Re}\left(\frac{(z-w) f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{U} .
$$

This means that $f \in S^{*}(w)$.
Definition 3.1. Let $f \in S(w)$ where w is a fixed point in \mathbb{U}. We say that f is w-close-to-convex if there exists a function $g \in S^{*}(w)$ such that

$$
\operatorname{Re}\left(\frac{(z-w) f^{\prime}(z)}{g(z)}\right)>0, \quad z \in \mathbb{U}
$$

We denote this class by $C C(w)$.
Remark 3.2. If we consider $f=g, g \in S^{*}(w)$, then we have $S^{*}(w) \subset C C(w)$. If we take $w=0$, then we obtain the well-known close-to-convex functions.
Theorem 3.3. Let w be a fixed point in \mathbb{U} and $f \in C C(w)$, where

$$
f(z)=(z-w)+\sum_{n=2}^{\infty} b_{n}(z-w)^{n}
$$

with respect to the function $g \in S^{*}(w)$, where

$$
g(z)=(z-w)+\sum_{n=2}^{\infty} a_{n}(z-w)^{n} .
$$

Then

$$
\left|b_{n}\right| \leq \frac{1}{n}\left[\left|a_{n}\right|+\sum_{k=1}^{n-1}\left|a_{k}\right| \cdot \frac{2}{(1+d)(1-d)^{n-k}}\right]
$$

where $d=|w|, n \geq 2$ and $a_{1}=1$.
Proof. Let $f \in C C(w)$ with respect to the function $g \in S^{*}(w)$. Then there exists a function $p \in \mathcal{P}(w)$ such that

$$
\frac{(z-w) f^{\prime}(z)}{g(z)}=p(z)
$$

where

$$
p(z)=1+\sum_{n=1}^{\infty} B_{n}(z-w)^{n} .
$$

Using the hypothesis through identification of $(z-w)^{n}$ coefficients, we obtain

$$
\begin{equation*}
n b_{n}=a_{n}+\sum_{k=1}^{n-1} a_{k} B_{n-k}, \tag{3.7}
\end{equation*}
$$

where $a_{1}=1$ and $n \geq 2$. From (3.7), we have

$$
\left|b_{n}\right| \leq \frac{1}{n}\left[\left|a_{n}\right|+\sum_{k=1}^{n-1}\left|a_{k}\right| \cdot\left|B_{n-k}\right|\right], \quad a_{1}=1, n \geq 2 .
$$

Applying the above and the estimates (2.1), we obtain the result.
Remark 3.4. If we use the estimates (2.2), we obtain the same estimates for the coefficients b_{n}, $n=2,3,4,5$.

Definition 3.2. Let $\alpha \in \mathbb{R}$ and w be a fixed point in \mathbb{U}. For $f \in S(w)$, we define

$$
J(\alpha, f, w ; z)=(1-\alpha) \frac{(z-w) f^{\prime}(z)}{f(z)}+\alpha\left[1+\frac{(z-w) f^{\prime \prime}(z)}{f^{\prime}(z)}\right] .
$$

We say that f is $w-\alpha$-convex function if

$$
\frac{f(z) f^{\prime}(z)}{z-w} \neq 0, \quad z \in \mathbb{U}
$$

and $\operatorname{Re} J(\alpha, f, w ; z)>0, z \in \mathbb{U}$. We denote this class by $M_{\alpha}(w)$.
Remark 3.5. It is easy to observe that $M_{\alpha}(0)$ is the well-known class of α-convex functions.
Theorem 3.6. Let w be a fixed point in $\mathbb{U}, \alpha \in \mathbb{R}, \alpha \geq 0$ and $m_{\alpha}(w)=M_{\alpha}(w) \cap s(w)$. Then we have
(1) If $f \in m_{\alpha}(w)$ then $f \in S^{*}(w)$. This means $m_{\alpha}(w) \subset S^{*}(w)$.
(2) If $\alpha, \beta \in \mathbb{R}$, with $0 \leq \beta / \alpha<1$, then $m_{\alpha}(w) \subset m_{\beta}(w)$.

Proof. From $f \in m_{\alpha}(w)$, we have $\operatorname{Re} J(\alpha, f, w ; z)>0, z \in \mathbb{U}$. Putting

$$
p(z)=\frac{(z-w) f^{\prime}(z)}{f(z)}
$$

with $p \in \mathcal{H}(\mathbb{U})$ and $p(0)=1$, we obtain

$$
\operatorname{Re} J(\alpha, f, w ; z)=\operatorname{Re}\left[p(z)+\alpha \frac{(z-w) p^{\prime}(z)}{p(z)}\right]>0, \quad z \in \mathbb{U}
$$

or

$$
p(z)+\frac{\alpha\left(1-\frac{w}{z}\right)}{p(z)} z p^{\prime}(z) \prec \frac{1+z}{1-z} \equiv h(z) .
$$

In particular, for $\alpha=0$, we have

$$
p(z) \prec \frac{1+z}{1-z}, \quad z \in \mathbb{U} .
$$

Using the hypothesis, we have for $\alpha>0$,

$$
\operatorname{Re}\left(\frac{1}{\alpha\left(1-\frac{w}{z}\right)} h(z)\right)>0, \quad z \in \mathbb{U}
$$

and from Theorem 2.4, we obtain

$$
p(z) \prec \frac{1+z}{1-z}, \quad z \in \mathbb{U} .
$$

This means that

$$
\operatorname{Re}\left(\frac{(z-w) f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{U}
$$

for $\alpha \geq 0$ or $f \in S^{*}(w)$.
If we denote by $A=\operatorname{Re} p(z)$ and $B=\operatorname{Re}\left((z-w) p^{\prime}(z) / p(z)\right)$, then we have $A>0$ and $A+B \alpha>0$, where $\alpha \geq 0$. Using the geometric interpretation of the equation $y(x)=A+B x$, $x \in[0, \alpha]$, we obtain

$$
y(\beta)=A+B \beta>0 \quad \text { for every } \beta \in[0, \alpha] .
$$

This means that

$$
\operatorname{Re}\left(p(z)+\beta \frac{(z-w) p^{\prime}(z)}{p(z)}\right)>0, \quad z \in \mathbb{U}
$$

or $f \in m_{\beta}(w)$.
Remark 3.7. From Theorem 3.6, we have

$$
m_{1}(w) \subseteq s^{c}(w) \subseteq m_{\alpha}(w) \subseteq s^{*}(w),
$$

where $0 \leq \alpha \leq 1$ and $s^{c}(w)=S^{c}(w) \cap s(w)$.

References

[1] A.W. GOODMAN, On Uniformly Starlike Functions, J. Math. Anal. Appl., 155 (1991), 364-370.
[2] A.W. GOODMAN, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[3] S. KANAS and F. RONNING, Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie - Sklodowska Section A, 53 (1999), 95-105.
[4] S.S. MILLER AND P.T. MOCANU, Differential subordonations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[5] S.S. MILLER AND P.T. MOCANU, Univalent solutions of Briot-Bouquet differential equations, J. Diff. Eqns., 56 (1985), 297-309.
[6] S.S. MILLER AND P.T. MOCANU, On some classes of first-order differential subordinations, Michigan Math. J., 32 (1985), 185-195.
[7] J.K. WALD, On Starlike Functions, Ph. D. thesis, University of Delaware, Newark, Delaware (1978).

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 042-05

