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ABSTRACT. Upper estimates for the order of Gâteaux smoothness of bump functions in Orlicz–
Lorentz spacesd(w,M,Γ), Γ uncountable, are obtained. The best possible order of Gâteaux
differentiability in the class of all equivalent norms ind(w,M,Γ) is found.
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1. I NTRODUCTION

The existence of higher order Fréchet smooth norms and bump functions and its impact on
the geometrical properties of a Banach space have been subject to many investigations begin-
ning with the classical result forLp–spaces in [1] and [6]. An extensive study and bibliography
may be found in [2]. As any negative result on the existence of Gâteaux smooth bump func-
tions immediately applies to the problem of existence of Fréchet smooth bump functions and
norms, the question arises of estimating the best possible order of Gâteaux smoothness of bump
functions in a given Banach space. A variational technique (the Ekeland variational principle)
was applied in [2] to show that iǹ1(Γ), Γ uncountable, there is no continuous Gâteaux dif-
ferentiable bump function. Following the same idea and using Stegall’s variational principle,
an extension of this result to Banach spaces with uncountable unconditional basis was given in
[4] and to Banach spaces with uncountable symmetric basis in [9]. As an application in [4] it
was shown that iǹp(Γ), Γ uncountable, there is no continuousp–times Gâteaux differentiable
bump function whenp is odd and there is no continuous([p] + 1)–times Gâteaux differentiable
bump function in the casep 6∈ N. This is essentially different from the case`p(N), p-odd, where
equivalentp–times Gâteaux differentiable and even uniformly Gâteaux differentiable norms are
constructed (see [10] and [8] respectively). As examples of the main result in [9], Orlicz`M(Γ)
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2 B. ZLATANOV

and Lorentzd(w, p,Γ), Γ uncountable are considered and estimates for the order of Gâteaux
smoothness of bump functions are obtained. Recently a deep result on embedding of`p spaces
in Orlicz–Lorentz sequence spacesd0(p, M) have been found in [5]. It is shown there that
`p ↪→ d0(w,M) iff `p ↪→ hM iff p ∈ [αM , βM ]. From this result naturally arises the question
of finding upper estimates for the order of Gâteaux smoothness of bump functions in Orlicz–
Lorentz spaces.

It is worthwhile to mention that results about differentiability of bump functions in`p(Γ)
cannot be used directly for̀M(Γ) and d(w, p,Γ). Indeed, in [3] it is proved that̀p(A) is
isomorphic to a subspace ofd(w, p,Γ) iff A is countable. On the other hand`M(Γ) for M ≡
tp(1 + | log t|)q at zero,p ≥ 1, q 6= 0, contains an isomorphic copy of`p(A) iff A is countable.
The problem of embedding̀p(A) or `M(A) into d(w, M,Γ), Γ uncountable is open.

In this note we give one new application of the main result of [9] in Orlicz–Lorentz spaces
d(w, M,Γ), Γ uncountable for finding upper estimates for the order of Gâteaux smoothness of
bump functions.

Let U be an open set in a Banach spaceX and letf : U → R be continuous. Following [4]
we shall say thatf is G0

ω,k–smooth,k ∈ N in U for someω : (0, 1] → R+, limt→0 t−kω(t) = 0
if for any x ∈ U , y ∈ X the representation holds

f(x + ty) = f(x) +
k∑

i=1

ti

i!
f (i)(x)(yi) + Rk

f (x, y, t),

wheref (i), i = 1, 2, . . . , k arei–linear bounded symmetric forms onX andlim
t→0

|Rk
f (x,y,t)|
ω(|t|) = 0.

If U = X we use the notationG0
ω,[p] instead ofG0

ω,[p](X) andGk, k ∈ N for the set of all con-
tinuousk–times Gâteaux differentiable functions onX, for which limt→0 |Rk

f (x, y, t)|/|t|k = 0.
We say that the norm‖ · ‖ in X is k–times Gâteaux differentiable if it is from the class
Gk(X\{0}).

2. PRELIMINARIES

We use the standard Banach space terminology from [7]. Let us recall that an Orlicz func-
tion M is an even, continuous, non-decreasing convex function such thatM(0) = 0 and
limt→∞ M(t) = ∞. We say thatM is a non–degenerate Orlicz function ifM(t) > 0 for
everyt > 0.

A weight sequencew = {wn}∞n=1 is a positive decreasing sequence such thatw1 = 1 and
limn→∞ W (n) = ∞, whereW (n) =

∑n
j=1 wj, for anyn ∈ N.

The Orlicz–Lorentz spaced(w,M,Γ) is the space of all real functionsx = x(α) defined on
the setΓ, for which

I(λx) = sup

{
∞∑
i=1

wiM(λx(αi))

}
< ∞

for someλ > 0, where the supremum is taken over all sequences{αi}∞i=1 of different elements
on Γ. There exists a sequence{α∗i }∞i=1, such that|x(α∗1)| ≥ |x(α∗2)| ≥ · · · ≥ |x(α∗i )| ≥ · · · ,
limi→∞ x(α∗i ) = 0, |x(α∗)| = 0 if α 6= α∗i for i ∈ N andI(λx) =

∑∞
i=1 wiM(λx(α∗i )). The

spaced(w, M,Γ), equipped with the Luxemburg norm:

‖x‖ = inf
{

λ > 0 : I
(x

λ

)
≤ 1

}
is a Banach space.

By supp x we denote the set{α ∈ Γ : x(α) 6= 0}.
The symboleγ, γ ∈ Γ will stand for the unit vectors.
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GÂTEAUX DIFFERENTIABILITY 3

If M(u) = up, 1 ≤ p < ∞ thend(w,M,Γ) is the Lorentz spaced(w, p,Γ). If wi = 1
for everyi ∈ N thend(w, M,Γ) is the Orlicz spacèM(Γ). In this case we use the notation
I(x) = M̃(x)

To every Orlicz functionM the following numbers are associated:

αM = sup

{
p > 0 : sup

0<u,v≤1

M(uv)

upM(v)
< ∞

}
,

βM = inf

{
q > 0 : inf

0<u,v≤1

M(uv)

uqM(v)
> 0

}
.

We consider only spaces generated by an Orlicz functionM satisfying the∆2–condition at
zero, i.e.,βM < ∞, which implies of course that

(2.1) M(uv) ≥ uqM(v), u, v ∈ [0, 1]

for someq > βM (see [7]).
Finally we mention that the unit vectors{eγ}γ∈Γ form a symmetric basis ofd(w, M,Γ) with

symmetric constant1, which is boundedly complete [5], [7].
For a functiong : (0, 1] → R+ denote:

dM(g) = sup

{
M(uv)

g(u)M(v)
: u, v ∈ (0, 1]

}
.

Let us recall a well known definition. LetX have symmetric basis{eγ}γ∈Γ with a symmetric
constant1 and letz ∈ X, z 6= 0, z =

∑∞
i=1 uieγi

, γi 6= γj for i 6= j. A sequence{zk}∞k=1,
zk =

∑∞
i=1 uieαi,k

, αi,k 6= αj,l for (i, k) 6= (j, l), αi,k ∈ Γ is called a block basis generated by
the vectorz.

We will apply a general result for upper estimates for the order of Gâteaux smoothness of
bump functions in a Banach space with a symmetric, boundedly complete basis with a symmet-
ric constant1, obtained in [9].

Theorem 2.1. [9] Let X be a Banach space, let{eγ}γ∈Γ, ]Γ > ℵ0 be a symmetric, boundedly
complete basis inX with a symmetric constant1 and let:

lim
n→∞

∥∥∥∥∥
n∑

j=1

zj

∥∥∥∥∥n−
1
k = 0

for everyz ∈ X.
Letω : [0, 1] → R+ be such that for everyx ∈ X there existy ∈ X, suppy ∩ suppx = ∅ and

a sequencetn ↘ 0, which satisfy the inequality

‖x + tny‖ − ‖x‖ ≥ ω(tn), n ∈ N.

Then inX there is no continuous:

(i) G0
ω,k–smooth bump whenω(t) = o(tk);

(ii) G0
ω,k+1–smooth bump whenω(t) = o(tk+1), k–even;

(iii) k–times Gâteaux differentiable bump ifω(t) = tk;
(iv) (k + 1)–times Gâteaux differentiable bump ifω(t) = tk+1, k–even.
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3. M AIN RESULT

Theorem 3.1.LetM be an Orlicz function. Iff is a continuousk–times Gâteaux differentiable
bump function ind(w, M,Γ), then

k ≤ EM =

{
[αM ], dM(t[αM ]) < ∞

αM − 1, αM ∈ N, dM(tαM ) = ∞.

4. AUXILIARY LEMMAS

To apply Theorem 2.1 ford(w, M,Γ) we need the following lemmas.

Lemma 4.1. Letp ≥ 1 and letM be an Orlicz function satisfying the conditionslimt→0
M(t)

tp
=

0, dM(tp) = c < ∞. Then every block basis{zj}∞j=1 of the unit vector basis{eγ}γ∈Γ in
d(w, M,Γ), generated by one vector, satisfies

lim
n→∞

∥∥∥∥∥
n∑

j=1

zj

∥∥∥∥∥n−
1
p = 0.

Proof. Let z =
∑∞

i=1 uieγi
∈ d(w, M,Γ). Let {ej,i}∞i=1, j ∈ N be disjoint subsets of{eγ}γ∈Γ.

Then we definezj =
∑∞

i=1 uiej,i. Let µ(t) = M(t)
tp

. It follows that limt→0 µ(t) = 0 and
µ(t1) ≤ cµ(t2) for every0 < t1 < t2 ≤ 1. Let λn(z) =

∑n
j=1 zj. Then

I(λn(z)) =
∞∑
i=1

ni∑
j=n(i−1)+1

wjM(u∗i ).

For everyε > 0 there existsm ∈ N such that
∞∑

i=m+1

ni∑
j=n(i−1)+1

wjM(u∗i ) <
ε

2c
.

By the definition of the functionµ it follows that
∞∑
i=1

ni∑
j=n(i−1)+1

wj|u∗i |pµ
(

u∗i
‖λn(z)‖

)
= ‖λn(z)‖p

∞∑
i=1

ni∑
j=n(i−1)+1

wjM

(
u∗i

‖λn(z)‖

)
= ‖λn(z)‖p.

Using the inequality

1 = I

(
λn(z)

‖λn(z)‖

)
=

∞∑
i=1

ni∑
j=n(i−1)+1

wjM

(
u∗i

‖λn(z)‖

)
≥

n∑
j=1

wjM

(
u∗1

‖λn(z)‖

)
we get thatlimn→∞ ‖λn(z)‖−1 = 0.

For everym ∈ N we have
m∑

i=1

ni∑
j=n(i−1)+1

wj|u∗i |p

n
µ

(
u∗i

‖λn(z)‖

)
≤ w1 + w2 . . . wn

n

m∑
i=1

|u∗i |pµ
(

u∗i
‖λn(z)‖

)
.

Becauselimj→∞ wj = 0 it follows that for everyε > 0 and everym ∈ N there existsN ∈ N
such that for anyn ≥ N holds

m∑
i=1

ni∑
j=n(i−1)+1

wj|u∗i |p

n
µ

(
u∗i

‖λn(z)‖

)
≤ ε

2
.
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GÂTEAUX DIFFERENTIABILITY 5

On the other hand for alln ∈ N such that‖λn(z)‖−1 ≤ 1 we can write the chain of inequalities
∞∑

i=m+1

ni∑
j=n(i−1)+1

wj|u∗i |p

n
µ

(
u∗i

‖λn(z)‖

)
≤ c

∞∑
i=m+1

ni∑
j=n(i−1)+1

wj|u∗i |p

n
µ(u∗i )

≤ c
∞∑

i=m+1

ni∑
j=n(i−1)+1

wj

n
M(u∗i )

≤ ε

2n
.

Therefore for everyε > 0 andn ≥ N we have

‖λn(z)‖p

n
=

∞∑
i=1

ni∑
j=n(i−1)+1

wj|u∗i |p

n
µ

(
u∗i

‖λn(z)‖

)
≤ ε

2
+

ε

2n
< ε

and thus

lim
n→∞

∥∥∥∥∥
n∑

j=1

zj

∥∥∥∥∥n−
1
p = 0

�

Lemma 4.2. Let dM(ω) = ∞ then for anyx ∈ d(w, M,Γ) there existy ∈ d(w, M,Γ) with
supp y ∩ supp x = ∅ and a sequencetn ↘ 0 such that

(4.1) ‖x + tny‖ ≥ ‖x‖+ cω(tn)

for some constantc > 0 and anyn ∈ N.

Proof. We note first that

lim inf
t→0

ω(t)

t
= 0.

If x = 0, choose sequencetn ↘ 0 such thatlimn→∞ ω(tn)/tn = 0. Then (4.1) holds trivially
for anyy 6= 0 with c = ‖y‖ > 0.

WLOG suppose thatM(1) = 1.
Fix an arbitraryx =

∑∞
n=1 xneγn ∈ d(w, M,Γ) and‖x‖ = 1. Just for simplicity of notation

we will assume that|x1| ≥ |x2| ≥ · · · ≥ |xn| ≥ · · · .
We will choose sequencestn ↘ 0 andvn ↘ 0 inductively:

(1) t1 = v1 = u1 = 1, k0 = 0, k1 = 1.
(2) Findk2 > k1, k2 ∈ N such that

1

21
∑k2

j=k1+1 wj

< M(v1) and M(xi) <
M(t1v1)

2

for i ≥ k2.
Find t2 < t1, v2 < v1 such that

M(t2v2)

ω(t2)M(v2)
> 22 and M(v2) <

1

22
∑k2

j=k1+1 wj

.

(3) Findk3 > k2, k3 ∈ N such that

1

22
∑k3

j=k2+1 wj

< M(v2) and M(xi) <
M(t2v2)

2

for i ≥ k3.
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Find t3 < t2, v3 < v2 such that

M(t3v3)

ω(t3)M(v3)
> 23 and M(v3) <

1

23
∑k3

j=k2+1 wj

.

If we have chosentn−1, vn−1 andkn−1 then
(4) Findkn > kn−1, kn ∈ N such that

1

2n−1
∑kn

j=kn−1+1 wj

< M(vn−1) and M(xi) <
M(tn−1vn−1)

2

for i ≥ kn.
Find tn < tn−1, vn < vn−1 such that

M(tnvn)

ω(tn)M(vn)
> 2n and M(vn) <

1

2n
∑kn

j=kn−1+1 wj

.

For a sequence{An}∞n=1 of finite disjoint subsets ofΓ, such thatAn ∩ supp x = ∅, ]An =
kn − kn−1, put

yn = vn

∑
γ∈An

eγ and y =
∞∑

n=1

yn.

Obviously

I(y) =
∞∑

n=1

kn∑
j=kn−1+1

wjM(vn)

= w1M(v1) +
∞∑

n=2

M(vn)
kn∑

j=kn−1+1

wj

≤ 1 +
∞∑

n=2

1

2n
< ∞,

which ensuresy ∈ d(w, M,Γ). We havesupp (x + tny) = supp x ∪ (∪∞n=1An) for anyt 6= 0
and therefore

I(x + tny)− I(x) ≥ I(x + tnyn)− I(x)(4.2)

≥
kn+1∑
j=1

wjM(xj) +

kn+2∑
j=kn+1+1

wjM(tnvn)

+
∞∑

j=kn+2+1

wjM(xj+kn+1−kn+2)−
∞∑

j=1

wjM(xj)

= M(tnvn)

kn+2∑
j=kn+1+1

wj −
kn+2∑

j=kn+1+1

wjM(xj)

+
∞∑

j=kn+2+1

wj(M(xj+kn+1−kn+2)−M(xj))
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≥ 1

2
M(tnvn)

kn+2∑
j=kn+1+1

wj ≥
1

2
2nω(tn)M(vn)

kn+2∑
j=kn+1+1

wj

≥ 2n−1ω(tn)
M(vn)

2n+1M(vn+1)
≥ ω(tn)

4
.

Remove as many elements of the sequence{tn}∞n=1 as necessary to obtain

0 < dn = ‖x + tny‖ − 1 ≤ 1

and keep the same notation for the remaining sequence. Now (2.1) implies

I(x + tny)− I(x) = I

(
‖x + tny‖

x + tny

‖x + tny‖

)
− 1(4.3)

≤ ‖x + tny‖q − 1

= (1 + dn)q − 1 ≤ q2q−1dn,

for someq > βM .
Combining (4.2) and (4.3), we obtain

‖x + tny‖ − 1 ≥ cω(tn),

wherec = 1
q2q+1 .

Now let x 6= 0 be arbitrary. Findy such thatsupp y ∩ supp x = ∅ and
∥∥∥ x
‖x‖ − tny

∥∥∥ − 1

≥ cω(tn). Obviously fory = ‖x‖y we have

‖x + tny‖ − ‖x‖ ≥ c‖x‖ω(tn).

�

5. GÂTEAUX DIFFERENTIABILITY OF BUMPS IN d(w,M,Γ) AND d(w, p,Γ)

Theorem 5.1.LetM be an Orlicz function andω : (0, 1] → R+, dM(ω) = ∞.

(i) If αM 6∈ N then there is no continuousG0
ω,[αM ]–smooth bump function ind(w, M,Γ);

(ii) If αM ∈ N then there is no continuousG0
ω,αM

–smooth bump function, provideddM(tαM )

< ∞ in d(w, M,Γ) and there is no continuousG0
ω,αM−1–smooth bump function, pro-

videddM(tαM ) = ∞ in d(w, M,Γ).

Proof. The proof in all cases is straightforward, applying Lemma 4.1 for appropriatep, Lemma
4.2 and Theorem 2.1. �

Proof of Theorem 3.1.The proof in the two cases is straightforward, applying Theorem 5.1.�

It is well known that in a Banach spaceX a norm of some order of smoothness generates a
bump function with the same order of smoothness (see e.g. [2]), therefore the next corollary is
a direct consequence of Theorem 3.1

Corollary 5.2. LetM be an Orlicz function. If| · | is an equivalent norm ind(w, M,Γ), which
is k–times Gâteaux differentiable thenk ≤ EM .

As a consequence of Theorem 5.1 and Theorem 3.1 we get forM(t) = tp, p ≥ 1 the results
from [9].

Corollary 5.3 ([9, Theorem 3]). Let p ≥ 1, wn ↘ 0,
∑∞

n=1 wn = ∞ andω : (0, 1] → R+ be
such thatω(t) = o(tp). Then there is no continuousG0

ω,[p]–smooth bump function ind(w, p,Γ).
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8 B. ZLATANOV

Proof. Indeed in this caseαM = p anddtp(ω) = ∞. If p 6∈ N then by Theorem 5.1 i), it follows
that there is no continuousG0

ω,[p]–smooth bump ind(w,M,Γ). If p ∈ N thendtp(t
p) = 1 < ∞

and by Theorem 5.1 ii), there is no continuousG0
ω,p–smooth bump ind(w,M,Γ). �

Corollary 5.4 ([9, Corollary 2]). Let p ≥ 1, wn ↘ 0,
∑∞

n=1 wn = ∞. If f is a continuous
k–times Gâteaux differentiable bump function ind(w, p,Γ), thenk ≤ [p].

Proof. In this case it is obvious thatdtp(t
[p]) < ∞ anddtp(t

p) < ∞. Therefore by Theorem 3.1
it follows thatk ≤ [p]. �

REFERENCES

[1] N. BONIC AND J. FRAMPTON, Smooth functions on Banach manifolds,J. Math. Mech.,15
(1966), 877–898.

[2] R. DEVILLE, G. GODEFROYAND V. ZIZLER, Smoothness and Renormings in Banach Spaces,
Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol 64, Logman Scientific and
Technical, Harlow/New York, 1993.

[3] F. HERNANDEZ AND S. TROYANSKI, On representation of uncountable symmetric basic sets
and its applications,Studia Math., 107(1993), 287–304.

[4] F. HERNANDEZAND S. TROYANSKI, On Gâteaux differentiable bump functions,Studia Math.,
118(1996), 135–143.

[5] A. KAMINSKA AND Y. RAYNAUD, Isomorphic`p–subspaces in Orlicz–Lorentz sequence spaces,
Proc. Amer. Math. Soc.,134(2006), 2317–2327.

[6] J. KURZWEIL, On approximation in real Banach space,Studia Math., 14 (1954), 213–231.

[7] J. LINDENSTRAUSSAND L. TZAFRIRI, Classical Banach Spaces I, Sequence Spaces, Springer–
Verlag, Berlin, 1977.

[8] R. MALEEV, Higher order uniformly Gateaux differentiable norms in Orlicz spaces,Rocky Moun-
tain J. Math., 28 (1995), 1117–1136.

[9] R. MALEEV, G. NEDEV AND B. ZLATANOV, Gâteaux differentiability of bump functions in
Banach spaces,J. Math. Anal. Appl., 240(1999), 311–323.

[10] S. TROYANSKI, Gateaux differentiable norms inLp, Math. Ann., 287(1990), 221–227.

J. Inequal. Pure and Appl. Math., 8(4) (2007), Art. 113, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminaries
	3. Main Result
	4. Auxiliary lemmas
	5. Gâteaux Differentiability of Bumps in d(w,M,) and d(w,p,)
	References

