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Abstract

We provide good bounds on binomial coefficients, generalizing known ones,
using some results of H. Robbins and of Sasvári.
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1. Motivation
Analytic techniques can be often used to obtain asymptotics for simply-indexed
sequences. Asymptotic estimates for doubly(multiply)-indexed sequences are
considerably more difficult to obtain (cf. [4], p. 204). Very little is known about
how to obtain asymptotic estimates of these sequences. The estimates that are
known are based on summing over one index at a time. For instance, according
to the same source, the formula(

n

k

)
∼ 2ne−

(n−2k)2

2n√
nπ
2

is valid only when|2n− k| ∈ o(n
3
4 ).

We raise the question of getting good bounds for the binomial coefficient,
which should be valid for anyn, k.

In the August-September 2000 issue of American Mathematical Monthly, O.
Krafft proposed the following problem (P10819):

For m ≥ 2, n ≥ 1, we have(
mn

n

)
≥ mm(n−1)+1

(m− 1)(m−1)(n−1)
n−

1
2 .

In this note, we are able to improve this inequality (by replacing1 in the
right-hand side by a better absolute constant) and also generalize the inequality
to

(
mn
pn

)
.

We also employ a method of Sasvári [5] (see also [2]), to derive better lower
and upper bounds, with the absolute constants replaced by appropriate functions
of m, n, p.
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2. The Results
The following double inequality for the factorial was shown by H. Robbins in
[3] (1955), a step in a proof of Stirling’s formulan! ∼

(
n
e

)n√
2πn.

Lemma 2.1 (Robbins).For n ≥ 1,

(2.1) n! =
√

2π nn+ 1
2 e−n+r(n),

wherer(n) satisfies 1
12n+1

< r(n) < 1
12n

.

One approach to get approximations for the binomial coefficient
(

mn
pn

)
, m ≥

p, would be to use Stirling’s approximation for the factorial of Lemma2.1,
namely

(2.2)
√

2π nn+ 1
2 e−n+ 1

12n+1 < n! <
√

2π nn+ 1
2 e−n+ 1

12n .

Thus

(
mn

pn

)
=

(mn)!

(pn)!((m− p)n)!

>

√
2π (mn)mn+ 1

2 e−mn+ 1
12mn+1

√
2π (pn)pn+ 1

2 e−pn+ 1
12pn

√
2π ((m− p)n)(m−p)n+ 1

2 e−(m−p)n+ 1
12n(m−p)

=
1√
2π

n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

e
1

12nm+1
− 1

12pn
− 1

12n(m−p)

(2.3)
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and

(
mn

pn

)
<

√
2π (mn)mn+ 1

2 e−mn+ 1
12mn

√
2π (pn)pn+ 1

2 e−pn+ 1
12pn+1

√
2π ((m− p)n)(m−p)n+ 1

2 e−(m−p)n+ 1
12n(m−p)+1

=
1√
2π

n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

e
1

12nm
− 1

12pn+1
− 1

12n(m−p)+1 .

(2.4)

However, we can improve the lower bound, by employing a method of Sasvári
[5] (see also [2]). Let

DN(n, m, p) =
N∑

j=1

B2j

2j(2j − 1)

(
1

(mn)2j−1
− 1

(np)2j−1
− 1

((m− p)n)2j−1

)
,

with B2j, the Bernoulli numbers defined by

t

et − 1
= 1− t

2
+

∞∑
j=1

B2j

(2j)!
t2j

and
∆(n, m, p) = r(mn)− r(pn)− r((m− p)n).

We show that∆(n, m, p)−DN(n, m, p) is an increasing (decreasing) function
of n if N is even (respectively, odd). We proceed to the proof of the above fact.
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By the Binet formula (see [2]), we get

r(x) =

∫ ∞

0

1

t2

(
t

et − 1
− 1 +

t

2

)
e−txd x, x ∈ (0,∞),

and usingj! =
∫∞

0
tje−td t, we get

∆(n, m, p)−DN(n, m, p) =

∫ ∞

0

1

t2
PN(t)Qn(t)d t,

where

PN(t) =
t

et − 1
− 1 +

t

2
−

N∑
j=1

B2j

(2j)!
t2j

and
Qn(t) = e−mnt − e(m−p)nt − e−pnt.

Sasvári proved thatPN(t) is positive (negative) ifN is even (respectively, odd).
So we need to show thatQn(t) is increasing with respect ton, if t > 0 and
m > p ≥ 1. SinceQn(t) = f(e−nt), for f(u) = um − um−p − up, it suffices to
show thatf is decreasing on(0, 1), that isf ′(u) < 0 on (0, 1). Now, f ′(u) < 0
is equivalent tomum−1 − (m− p)um−p−1 − pup−1 < 0, which is equivalent to
g(u) = um−2p(mup −m + p) < p. If m ≥ 2p, theng(u) ≤ mup −m + p < p.
If 1 < m < 2p, then

g′(u) = (m− 2p)um−2p−1(mup −m + p) + mpum−p−1

= um−2p−1(m− 2p)(mup −m + 2p) > 0.

Therefore, for0 < u < 1, we haveg(u) < g(1) = p and the claim is proved.
Thus, we have
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Theorem 2.2.

(2.5)
1√
2π

eD2N+1(n,m,p) n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

<

(
m n

p n

)
<

1√
2π

eD2N (n,m,p) n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

.

TakingN = 0 and observing thatB2 = 1
6
, we get

Corollary 2.3.

(2.6)
1√
2π

e
1

12n( 1
m
− 1

p
− 1

m−p) n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

<

(
m n

p n

)
<

1√
2π

n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

.

By using (2.4), the upper bound can be improved and we get

Corollary 2.4.

(2.7)
1√
2π

e
1

12n( 1
m
− 1

p
− 1

m−p) n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

<

(
m n

p n

)
<

1√
2π

e
1

12nm
− 1

12pn+1
− 1

12n(m−p)+1 n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2
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To show that the upper bound of Corollary2.4 improves upon the one of
Corollary2.3we use (2.4) and prove that

(2.8)
1

12nm
− 1

12pn + 1
− 1

12n(m− p) + 1
< 0

by rewriting as

1

12nm
− 1

12pn + 1
− 1

12n(m− p) + 1

=
144mnp(m− p) + 12n(m− p) + 12pm + 1

−144mn2(m− p)− 12mn− 144m2np− 12mn

12mn(12pn + 1)(12n(m− p) + 1)

=
−144mnp2 − 12np + 12pm + 1− 144mn2(m− p)− 12mn

12mn(12pn + 1)(12n(m− p) + 1)
< 0.

Remark 2.1. The left side of Corollary2.3 differs slightly from (2.3), in that
12mn + 1 is replaced by12mn. Therefore, the left side of (2.6) is an improve-
ment of (2.3).

Next, we prove another result, where the expressions given by exponential
powers are replaced by functions ofn only. We prove

Theorem 2.5. Let m, n, p be positive integers, withm > p ≥ 1 and n ≥ 1.
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Then

(2.9)
1√
2π

e−
1
8n n−

1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

<

(
m n

p n

)
<

1√
2π

n−
1
2

mmn+ 1
2

(m− p)(m−p)n+ 1
2 ppn+ 1

2

Proof. Using Corollary2.3, we need to show that

(2.10)
1

12nm
− 1

12np
− 1

12n(m− p)
≥ − 1

8n
.

The inequality (2.10) is equivalent to

(2.11)
1

m
+

m

p(m− p)
≤ 3

2
.

Let x = m − p. Thus,x ≥ 1. We show first that the left side of (2.11),
g(x, p) = x2+px+p2

px(p+x)
is decreasing with respect tox, that is

d g(x, p)

d x
= − 1

x2
+

1

(p + x)2
< 0,

which is certainly true. Therefore,

g(x, p) ≤ g(1, p) =
p2 + p + 1

p(p + 1)
(= h(p)).
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Sinceh′(p) = − 2p+1
p2(p+1)2

< 0, we get thath is decreasing with respect top, so

g(x, p) ≤ h(p) ≤ h(1) =
3

2
.

Now we provide a further simplification of Theorem2.5. The following
lemma proves to be very useful.

Lemma 2.6. Let p ≥ 1 be a fixed natural number andm ≥ p + 1. Then the

function
(

m
m−p

)m− 1
2

is decreasing (with respect tom) and

lim
m→∞

(
m

m− p

)m− 1
2

= ep.

Proof. It suffices to prove that the functionh(x) = log
(

x
x−p

)x− 1
2
, x ≥ p + 1,

is decreasing and its limit isep. By differentiation

h′(x) = log
x

x− p
− 2xp− p

2x(x− p)
.

Since

log
x

x− p
= − log (1− p

x
) <

p

x
+

p2

2x2

(by Taylor expansion), we get

h′(x) <
p

x
+

p2

2x2
− p

x
− 2p2 − p

2x(x− p)
=

x− px− p2

x(x− p)
< 0,
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sincep ≥ 1, soh is decreasing. The lower bound of this function is its limit,

which isep, since
(
1− p

x

)x → e−p, and
(

x−p
x

)− 1
2 → 1 asx →∞.

Using Theorem2.5and Lemma2.6, we get

Theorem 2.7.We have, form > p ≥ 1 andn ≥ 2,(
m n

p n

)
>

1√
2π

ep− 1
8n n−

1
2

mm(n−1)+1

(m− p)(m−p)(n−1)−p+1ppn+ 1
2

.(2.12)

Takingp = 1, we obtain a stronger version of the inequality P10819, namely

Corollary 2.8. We have, form > 1 andn ≥ 2,

(2.13)

(
mn

n

)
> 1.08444 e−

1
8n n−

1
2

mm(n−1)+1

(m− 1)(m−1)(n−1)
.
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