Journal of Inequalities in Pure and Applied Mathematics

GOOD LOWER AND UPPER BOUNDS ON BINOMIAL COEFFICIENTS

PANTELIMON STANICA

Auburn University Montgomery,
Department of Mathematics,
Montgomery, AI 36124-4023, USA
and
Institute of Mathematics of Romanian Academy,
Bucharest-Romania
EMail: stanica@strudel.aum.edu
URL: http://sciences.aum.edu/ stanpan
volume 2, issue 3, article 30, 2001.

Received 6 November, 2000; accepted 26 March, 2001.

Communicated by: J. Sandor

- Quit
Abstract
We provide good bounds on binomial coefficients, generalizing known ones,using some results of H. Robbins and of Sasvári.
2000 Mathematics Subject Classification: 05A20, 11B65, 26D15.Key words: Binomial Coefficients, Stirling's Formula, Inequalities.
Contents
1 Motivation 3
2 The Results 4
References

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică

Title Page
Contents
Go Back
Close
Quit

[^0]http://jipam.vu.edu.au

1. Motivation

Analytic techniques can be often used to obtain asymptotics for simply-indexed sequences. Asymptotic estimates for doubly(multiply)-indexed sequences are considerably more difficult to obtain (cf. [4], p. 204). Very little is known about how to obtain asymptotic estimates of these sequences. The estimates that are known are based on summing over one index at a time. For instance, according to the same source, the formula

$$
\binom{n}{k} \sim \frac{2^{n} e^{-\frac{(n-2 k)^{2}}{2 n}}}{\sqrt{\frac{n \pi}{2}}}
$$

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică
is valid only when $|2 n-k| \in o\left(n^{\frac{3}{4}}\right)$.
We raise the question of getting good bounds for the binomial coefficient, which should be valid for any n, k.

In the August-September 2000 issue of American Mathematical Monthly, O. Krafft proposed the following problem (P10819):

For $m \geq 2, n \geq 1$, we have

$$
\binom{m n}{n} \geq \frac{m^{m(n-1)+1}}{(m-1)^{(m-1)(n-1)}} n^{-\frac{1}{2}}
$$

In this note, we are able to improve this inequality (by replacing 1 in the right-hand side by a better absolute constant) and also generalize the inequality to $\binom{m n}{p n}$.

We also employ a method of Sasvári [5] (see also [2]), to derive better lower and upper bounds, with the absolute constants replaced by appropriate functions of m, n, p.

2. The Results

The following double inequality for the factorial was shown by H . Robbins in [3] (1955), a step in a proof of Stirling's formula $n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}$.
Lemma 2.1 (Robbins). For $n \geq 1$,

$$
\begin{equation*}
n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+r(n)} \tag{2.1}
\end{equation*}
$$

where $r(n)$ satisfies $\frac{1}{12 n+1}<r(n)<\frac{1}{12 n}$.
One approach to get approximations for the binomial coefficient $\binom{m n}{p n}, m \geq$ p, would be to use Stirling's approximation for the factorial of Lemma 2.1, namely

$$
\begin{equation*}
\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\frac{1}{12 n+1}}<n!<\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\frac{1}{12 n}} \tag{2.2}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \binom{m n}{p n} \tag{2.3}\\
& =\frac{(m n)!}{(p n)!((m-p) n)!} \\
& >\frac{\sqrt{2 \pi}(m n)^{m n+\frac{1}{2}} e^{-m n+\frac{1}{12 m n+1}}}{\sqrt{2 \pi}(p n)^{p n+\frac{1}{2}} e^{-p n+\frac{1}{12 p n}} \sqrt{2 \pi}((m-p) n)^{(m-p) n+\frac{1}{2}} e^{-(m-p) n+\frac{1}{12 n(m-p)}}} \\
& =\frac{1}{\sqrt{2 \pi}} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}} e^{\frac{1}{12 n m+1}-\frac{1}{12 p n}-\frac{1}{12 n(m-p)}}
\end{align*}
$$

and

$$
\begin{align*}
& \binom{m n}{p n} \tag{2.4}\\
& <\frac{\sqrt{2 \pi}(m n)^{m n+\frac{1}{2}} e^{-m n+\frac{1}{12 m n}}}{\sqrt{2 \pi}(p n)^{p n+\frac{1}{2}} e^{-p n+\frac{1}{12 p n+1}} \sqrt{2 \pi}((m-p) n)^{(m-p) n+\frac{1}{2}} e^{-(m-p) n+\frac{1}{12 n(m-p)+1}}} \\
& =\frac{1}{\sqrt{2 \pi}} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}} e^{\frac{1}{12 n m}-\frac{1}{12 p n+1}-\frac{1}{12 n(m-p)+1}}
\end{align*}
$$

However, we can improve the lower bound, by employing a method of Sasvári [5] (see also [2]). Let

$$
D_{N}(n, m, p)=\sum_{j=1}^{N} \frac{B_{2 j}}{2 j(2 j-1)}\left(\frac{1}{(m n)^{2 j-1}}-\frac{1}{(n p)^{2 j-1}}-\frac{1}{((m-p) n)^{2 j-1}}\right)
$$

with $B_{2 j}$, the Bernoulli numbers defined by

$$
\frac{t}{e^{t}-1}=1-\frac{t}{2}+\sum_{j=1}^{\infty} \frac{B_{2 j}}{(2 j)!} t^{2 j}
$$

and

$$
\Delta(n, m, p)=r(m n)-r(p n)-r((m-p) n)
$$

We show that $\Delta(n, m, p)-D_{N}(n, m, p)$ is an increasing (decreasing) function of n if N is even (respectively, odd). We proceed to the proof of the above fact.

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică

Title Page
Contents
Go Back
Close
Quit
Page 5 of 12

By the Binet formula (see [2]), we get

$$
r(x)=\int_{0}^{\infty} \frac{1}{t^{2}}\left(\frac{t}{e^{t}-1}-1+\frac{t}{2}\right) e^{-t x} d x, \quad x \in(0, \infty)
$$

and using $j!=\int_{0}^{\infty} t^{j} e^{-t} d t$, we get

$$
\Delta(n, m, p)-D_{N}(n, m, p)=\int_{0}^{\infty} \frac{1}{t^{2}} P_{N}(t) Q_{n}(t) d t
$$

where

$$
P_{N}(t)=\frac{t}{e^{t}-1}-1+\frac{t}{2}-\sum_{j=1}^{N} \frac{B_{2 j}}{(2 j)!} t^{2 j}
$$

and

$$
Q_{n}(t)=e^{-m n t}-e^{(m-p) n t}-e^{-p n t} .
$$

Sasvári proved that $P_{N}(t)$ is positive (negative) if N is even (respectively, odd). So we need to show that $Q_{n}(t)$ is increasing with respect to n, if $t>0$ and $m>p \geq 1$. Since $Q_{n}(t)=f\left(e^{-n t}\right)$, for $f(u)=u^{m}-u^{m-p}-u^{p}$, it suffices to show that f is decreasing on $(0,1)$, that is $f^{\prime}(u)<0$ on $(0,1)$. Now, $f^{\prime}(u)<0$ is equivalent to $m u^{m-1}-(m-p) u^{m-p-1}-p u^{p-1}<0$, which is equivalent to $g(u)=u^{m-2 p}\left(m u^{p}-m+p\right)<p$. If $m \geq 2 p$, then $g(u) \leq m u^{p}-m+p<p$. If $1<m<2 p$, then

$$
\begin{aligned}
g^{\prime}(u) & =(m-2 p) u^{m-2 p-1}\left(m u^{p}-m+p\right)+m p u^{m-p-1} \\
& =u^{m-2 p-1}(m-2 p)\left(m u^{p}-m+2 p\right)>0 .
\end{aligned}
$$

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică

Title Page
Contents
Go Back
Close
Quit

Therefore, for $0<u<1$, we have $g(u)<g(1)=p$ and the claim is proved. Thus, we have
(2.5) $\frac{1}{\sqrt{2 \pi}} e^{D_{2 N+1}(n, m, p)} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}}$

$$
<\binom{m n}{p n}<\frac{1}{\sqrt{2 \pi}} e^{D_{2 N}(n, m, p)} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}}
$$

Taking $N=0$ and observing that $B_{2}=\frac{1}{6}$, we get

Corollary 2.3.

(2.6) $\frac{1}{\sqrt{2 \pi}} e^{\frac{1}{12 n}\left(\frac{1}{m}-\frac{1}{p}-\frac{1}{m-p}\right)} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}}$

$$
<\binom{m n}{p n}<\frac{1}{\sqrt{2 \pi}} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}}
$$

By using (2.4), the upper bound can be improved and we get

Corollary 2.4.

(2.7) $\frac{1}{\sqrt{2 \pi}} e^{\frac{1}{12 n}\left(\frac{1}{m}-\frac{1}{p}-\frac{1}{m-p}\right)} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}}$

$$
<\binom{m n}{p n}<\frac{1}{\sqrt{2 \pi}} e^{\frac{1}{12 n m}-\frac{1}{12 p n+1}-\frac{1}{12 n(m-p)+1}} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}}
$$

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică

Title Page
Contents
Go Back
Close
Quit

To show that the upper bound of Corollary 2.4 improves upon the one of Corollary 2.3 we use (2.4) and prove that

$$
\begin{equation*}
\frac{1}{12 n m}-\frac{1}{12 p n+1}-\frac{1}{12 n(m-p)+1}<0 \tag{2.8}
\end{equation*}
$$

by rewriting as

$$
\begin{aligned}
\frac{1}{12 n m} & -\frac{1}{12 p n+1}-\frac{1}{12 n(m-p)+1} \\
= & \frac{144 m n p(m-p)+12 n(m-p)+12 p m+1}{} \\
& \frac{-144 m n^{2}(m-p)-12 m n-144 m^{2} n p-12 m n}{12 m n(12 p n+1)(12 n(m-p)+1)} \\
& =\frac{-144 m n p^{2}-12 n p+12 p m+1-144 m n^{2}(m-p)-12 m n}{12 m n(12 p n+1)(12 n(m-p)+1)}<0 .
\end{aligned}
$$

Remark 2.1. The left side of Corollary 2.3 differs slightly from (2.3), in that $12 m n+1$ is replaced by $12 m n$. Therefore, the left side of (2.6) is an improvement of (2.3).

Next, we prove another result, where the expressions given by exponential powers are replaced by functions of n only. We prove

Theorem 2.5. Let m, n, p be positive integers, with $m>p \geq 1$ and $n \geq 1$.

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică

Title Page
Contents
Go Back
Close
Quit
Page 8 of 12

Then

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{8 n}} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}} \tag{2.9}\\
& \quad<\binom{m n}{p n}<\frac{1}{\sqrt{2 \pi}} n^{-\frac{1}{2}} \frac{m^{m n+\frac{1}{2}}}{(m-p)^{(m-p) n+\frac{1}{2}} p^{p n+\frac{1}{2}}}
\end{align*}
$$

Proof. Using Corollary 2.3, we need to show that

$$
\begin{equation*}
\frac{1}{12 n m}-\frac{1}{12 n p}-\frac{1}{12 n(m-p)} \geq-\frac{1}{8 n} \tag{2.10}
\end{equation*}
$$

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică
The inequality (2.10) is equivalent to

$$
\begin{equation*}
\frac{1}{m}+\frac{m}{p(m-p)} \leq \frac{3}{2} \tag{2.11}
\end{equation*}
$$

Let $x=m-p$. Thus, $x \geq 1$. We show first that the left side of (2.11), $g(x, p)=\frac{x^{2}+p x+p^{2}}{p x(p+x)}$ is decreasing with respect to x, that is

$$
\frac{d g(x, p)}{d x}=-\frac{1}{x^{2}}+\frac{1}{(p+x)^{2}}<0
$$

which is certainly true. Therefore,

Title Page
Contents

Go Back
Close
Quit
Page 9 of 12

$$
g(x, p) \leq g(1, p)=\frac{p^{2}+p+1}{p(p+1)}(=h(p))
$$

Since $h^{\prime}(p)=-\frac{2 p+1}{p^{2}(p+1)^{2}}<0$, we get that h is decreasing with respect to p, so

$$
g(x, p) \leq h(p) \leq h(1)=\frac{3}{2}
$$

Now we provide a further simplification of Theorem 2.5. The following lemma proves to be very useful.
Lemma 2.6. Let $p \geq 1$ be a fixed natural number and $m \geq p+1$. Then the function $\left(\frac{m}{m-p}\right)^{m-\frac{1}{2}}$ is decreasing (with respect to m) and

$$
\lim _{m \rightarrow \infty}\left(\frac{m}{m-p}\right)^{m-\frac{1}{2}}=e^{p}
$$

Proof. It suffices to prove that the function $h(x)=\log \left(\frac{x}{x-p}\right)^{x-\frac{1}{2}}, x \geq p+1$, is decreasing and its limit is e^{p}. By differentiation

$$
h^{\prime}(x)=\log \frac{x}{x-p}-\frac{2 x p-p}{2 x(x-p)}
$$

Since

$$
\log \frac{x}{x-p}=-\log \left(1-\frac{p}{x}\right)<\frac{p}{x}+\frac{p^{2}}{2 x^{2}}
$$

(by Taylor expansion), we get

$$
h^{\prime}(x)<\frac{p}{x}+\frac{p^{2}}{2 x^{2}}-\frac{p}{x}-\frac{2 p^{2}-p}{2 x(x-p)}=\frac{x-p x-p^{2}}{x(x-p)}<0
$$

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică

Title Page
Contents

Go Back
Close
Quit
Page 10 of 12
since $p \geq 1$, so h is decreasing. The lower bound of this function is its limit, which is e^{p}, since $\left(1-\frac{p}{x}\right)^{x} \rightarrow e^{-p}$, and $\left(\frac{x-p}{x}\right)^{-\frac{1}{2}} \rightarrow 1$ as $x \rightarrow \infty$.

Using Theorem 2.5 and Lemma 2.6, we get
Theorem 2.7. We have, for $m>p \geq 1$ and $n \geq 2$,

$$
\begin{equation*}
\binom{m n}{p n}>\frac{1}{\sqrt{2 \pi}} e^{p-\frac{1}{8 n}} n^{-\frac{1}{2}} \frac{m^{m(n-1)+1}}{(m-p)^{(m-p)(n-1)-p+1} p^{p n+\frac{1}{2}}} \tag{2.12}
\end{equation*}
$$

Taking $p=1$, we obtain a stronger version of the inequality P10819, namely
Corollary 2.8. We have, for $m>1$ and $n \geq 2$,

$$
\begin{equation*}
\binom{m n}{n}>1.08444 e^{-\frac{1}{8 n}} n^{-\frac{1}{2}} \frac{m^{m(n-1)+1}}{(m-1)^{(m-1)(n-1)}} \tag{2.13}
\end{equation*}
$$

Good Lower and Upper Bounds on Binomial Coefficients

Pantelimon Stănică

Title Page
Contents
Go Back
Close
Quit
Page 11 of 12

References

[1] O. KRAFFT, Problem P10819, Amer. Math. Monthly, 107 (2000), 652.
[2] E. RODNEY, Problem 10310, Amer. Math. Monthly, (1993), 499; with a solution in Amer. Math. Monthly, (1996), 431-432, by MMRS.
[3] H. ROBBINS, A Remark on Stirling Formula, Amer. Math. Monthly, 62 (1955), 26-29.
[4] K. ROSEN (ed.), Handbook of Discrete Combinatorial Mathematics, CRC Press, 2000.
[5] Z. SASVÁRI, Inequalities for Binomial Coefficients, J. Math. Anal. and App., 236 (1999), 223-226.
Good Lower and Upper Bounds on Binomial Coefficients
Pantelimon Stănică

Title Page
Contents
Go Back
Close
Page 12 of 12

[^0]: J. Ineq. Pure and Appl. Math. 2(3) Art. 30, 2001

