

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 4, Article 52, 2002

A POLYNOMIAL INEQUALITY GENERALISING AN INTEGER INEQUALITY

ROGER B. EGGLETON AND WILLIAM P. GALVIN

DEPARTMENT OF MATHEMATICS ILLINOIS STATE UNIVERSITY NORMAL, IL 61790-4520, USA. roger@math.ilstu.edu

School of Mathematical and Physical Sciences University of NewCastle Callaghan, NSW 2308 AUSTRALIA. mmwpg@cc.newcastle.edu.au

Received 1 May, 2002; accepted 7 June, 2002 Communicated by H. Gauchman

ABSTRACT. For any $\mathbf{a} := (a_1, a_2, \ldots, a_n) \in (\mathbb{R}^+)^n$, we establish inequalities between the two homogeneous polynomials $\Delta P_{\mathbf{a}}(x,t) := (x + a_1t)(x + a_2t) \cdots (x + a_nt) - x^n$ and $S_{\mathbf{a}}(x,y) := a_1x^{n-1} + a_2x^{n-2}y + \cdots + a_ny^{n-1}$ in the positive orthant $x, y, t \in \mathbb{R}^+$. Conditions for $\Delta P_{\mathbf{a}}(x,t) \leq tS_{\mathbf{a}}(x,y)$ yield a new proof and broad generalization of the number theoretic inequality that for base $b \geq 2$ the sum of all nonempty products of digits of any $m \in \mathbb{Z}^+$ never exceeds m, and equality holds exactly when all auxiliary digits are b - 1. Links with an inequality of Bernoulli are also noted. When $n \geq 2$ and \mathbf{a} is strictly positive, the surface $\Delta P_{\mathbf{a}}(x,t) = tS_{\mathbf{a}}(x,y)$ lies between the planes $y = x + t \max\{a_i : 1 \leq i \leq n - 1\}$ and $y = x + t \min\{a_i : 1 \leq i \leq n - 1\}$. For fixed $t \in \mathbb{R}^+$, we explicitly determine functions $\alpha, \beta, \gamma, \delta$ of \mathbf{a} such that this surface is $y = x + \alpha t + \beta t^2 x^{-1} + O(x^{-2})$ as $x \to \infty$, and $y = \gamma t + \delta x + O(x^2)$ as $x \to 0 +$.

Key words and phrases: Polynomial inequality, sums of products of digits, Bernoulli inequality.

2000 Mathematics Subject Classification. Primary 26D15, 26C99.

1. INTRODUCTION

For any finite sequence of real numbers \mathbf{a} , let $\Pi \mathbf{a}$ be the product of all terms in \mathbf{a} , and let $T(\mathbf{a})$, the *total sum of products* of \mathbf{a} , be the sum of all products $\Pi \mathbf{x}$ as \mathbf{x} runs through the nonempty subsequences $\mathbf{x} \subseteq \mathbf{a}$. Thus

$$T(\mathbf{a}) := \Sigma \{ \Pi \mathbf{x} : \mathbf{x} \subseteq \mathbf{a}, \mathbf{x} \neq \omega \},\$$

ISSN (electronic): 1443-5756

^{© 2002} Victoria University. All rights reserved.

The first author gratefully acknowledges the hospitality of the School of Mathematical and Physical Sciences, University of Newcastle, while this paper was being written.

where ω is the empty sequence. As usual we observe the convention that $\Pi \omega = 1$. There is a rather surprising inequality which $T(\mathbf{a})$ must satisfy in the case of integer sequences. In particular, for given integers $b \ge 2$ and $m \ge 0$, let \mathbf{a} be the sequence of digits in the base b representation of m. Then

 $T(\mathbf{a}) \le m$

holds for every such integer m and base b, as shown in [2]. Moreover the inequality is sharp: $T(\mathbf{a}) = m$ holds precisely when the auxiliary digits of m, if any, are all b - 1. (The *leading* digit of n is the most significant digit; the less significant digits, if any, are its *auxiliary* digits.) For example

$$T(3,7,7) = 255 \le 377_{(b)},$$

where $377_{(b)}$ is the base *b* representation of $m = 255, 313, 377, 447, \ldots$ when $b = 8, 9, 10, 11, \ldots$. We also note in passing that if **a** is the base *b* digit sequence of *m* then $T(\mathbf{a})$ is odd precisely when at least one of the digits of *m* is odd.

Our main purpose in this paper is to show that the integer inequality just described is an instance of a much more general inequality between polynomials. We shall establish the polynomial inequality and investigate some of its properties.

2. POLYNOMIAL INEQUALITY

Let a be any nonempty finite sequence of real numbers, say

$$\mathbf{a} := (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$$
, with $n \ge 1$

With a we associate two homogeneous polynomials in two real variables, the *product* polynomial

$$P_{\mathbf{a}}(x,t) := (x+a_1t)(x+a_2t)\cdots(x+a_nt) = \prod_{r=1}^n (x+a_rt),$$

and the *sum* polynomial

$$S_{\mathbf{a}}(x,y) := a_1 x^{n-1} + a_2 x^{n-2} y + \dots + a_n y^{n-1} = \sum_{r=1}^n a_r x^{n-r} y^{r-1}$$

Here we shall study these polynomials when $\mathbf{a} \in (\mathbb{R}^+)^n$, where $\mathbb{R}^+ := \{x \in \mathbb{R} : x \ge 0\}$. It turns out that it is natural to compare t times the sum polynomial with the first difference of the product polynomial,

$$\Delta P_{\mathbf{a}}(x,t) := P_{\mathbf{a}}(x,t) - P_{\mathbf{a}}(x,0) = P_{\mathbf{a}}(x,t) - x^n.$$

Note that $tS_{\mathbf{a}}(x, y)$ and $\Delta P_{\mathbf{a}}(x, t)$ are both homogeneous of degree n.

With a we also associate two bounds when $n \ge 2$:

$$M(\mathbf{a}) := \max\{a_r : 1 \le r \le n-1\}$$

and $m(\mathbf{a}) := \min\{a_r : 1 \le r \le n-1\}.$

Theorem 2.1. For any finite nonnegative sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ with $n \ge 1$, the inequality

 $0 \le \Delta P_{\mathbf{a}}(x,t) \le tS_{\mathbf{a}}(x,y)$

holds for all $x, y, t \in \mathbb{R}^+$, provided $y \ge x + tM(\mathbf{a})$ if $n \ge 2$. The reverse inequality

$$\Delta P_{\mathbf{a}}(x,t) \ge t S_{\mathbf{a}}(x,y) \ge 0$$

holds for all $x, y, t \in \mathbb{R}^+$, provided $y \leq x + tm(\mathbf{a})$ if $n \geq 2$.

Proof. An easy induction on n establishes the identity

$$P_{\mathbf{a}}(x,t) = \prod_{r=1}^{n} (x+a_r t) = x^n + \sum_{r=1}^{n} a_r x^{n-r} t \prod_{s=1}^{r-1} (x+a_s t).$$

For $x, t \in \mathbb{R}^+$ we have $x + a_s t \ge 0$ for each s, so

$$0 \le \prod_{s=1}^{r-1} (x + a_s t) \le y^{r-1}$$

holds trivially if r = 1, and for $r \ge 2$ it certainly holds if

$$y \ge \max\{x + a_s t : 1 \le s \le r - 1\} = x + t \cdot \max\{a_s : 1 \le s \le r - 1\}.$$

Because each $a_r \in \mathbb{R}^+$, it follows for $x, t \in \mathbb{R}^+$ that

$$0 \le \Delta P_{\mathbf{a}}(x,t) = P_{\mathbf{a}}(x,t) - x^{n}$$

= $t \sum_{r=1}^{n} a_{r} x^{n-r} \prod_{s=1}^{r-1} (x + a_{s}t)$
 $\le t \sum_{r=1}^{n} a_{r} x^{n-r} y^{r-1} = t S_{\mathbf{a}}(x,y)$

holds trivially if n = 1, and for $n \ge 2$ it holds if $y \ge x + tM(\mathbf{a})$. An entirely similar argument establishes the reverse inequality in the theorem.

Let us define

$$\Sigma(\mathbf{a}) := \sum_{r=1}^{n} a_r.$$

If $\mathbf{a} \in (\mathbb{R}^+)^n$ and $n \ge 2$ then

$$0 \le m(\mathbf{a}) \le M(\mathbf{a}) \le \Sigma(\mathbf{a}).$$

Note that $S_{\mathbf{a}}(1,1) = \Sigma(\mathbf{a})$. This constant plays a natural role in bounding our polynomial inequalities away from zero. Specifically, we have

Corollary 2.2. Let $\mathbf{a} \in (\mathbb{R}^+)^n$ be a finite nonnegative sequence with $n \ge 3$ and $M(\mathbf{a}) > m(\mathbf{a})$. Then for all strictly positive $x, y, t \in \mathbb{R}^+$ the inequality

$$0 < t\Sigma(\mathbf{a})x^{n-1} < \Delta P_{\mathbf{a}}(x,t) < tS_{\mathbf{a}}(x,y)$$

holds provided $y \ge x + tM(\mathbf{a})$, and the reverse inequality

$$\Delta P_{\mathbf{a}}(x,t) > tS_{\mathbf{a}}(x,y) \ge t\Sigma(\mathbf{a})z^{n-1} > 0$$

holds provided $y \le x + tm(\mathbf{a})$, with $z := min\{x, y\}$.

Proof. We sharpen the details of the proof of Theorem 2.1. The condition $M(\mathbf{a}) > m(\mathbf{a})$ ensures that $M(\mathbf{a}) > 0$, so if x, t are strictly positive reals then $x + a_s t > x$ for at least one $s \le n - 1$, and

$$\prod_{s=1}^{r-1} (x + a_s t) > x^{r-1}$$

holds for some $r \leq n$. Then

$$\begin{aligned} \Delta P_{\mathbf{a}}(x,t) &= P_{\mathbf{a}}(x,t) - x^n \\ &= \sum_{r=1}^n a_r x^{n-r} t \prod_{s=1}^{r-1} (x+a_s t) \\ &> \sum_{r=1}^n a_r x^{n-1} t = t \Sigma(\mathbf{a}) x^{n-1} > 0. \end{aligned}$$

If $y \ge x + tM(\mathbf{a})$, then $M(\mathbf{a}) > m(\mathbf{a})$ ensures that

$$\prod_{s=1}^{r-1} (x + a_s t) < y^{r-1}$$

holds for at least one $r \leq n$, so

$$\Delta P_{\mathbf{a}}(x,t) = P_{\mathbf{a}}(x,t) - x^n < t \sum_{r=1}^n a_r x^{n-r} y^{r-1} = t S_{\mathbf{a}}(x,y).$$

For the second inequality, if $0 < y \le x + tm(\mathbf{a})$ then $M(\mathbf{a}) > m(\mathbf{a})$ ensures that

$$\prod_{s=1}^{r-1} (x + a_s t) > y^{r-1}$$

holds for at least one $r \leq n$, so

$$\begin{split} \Delta P_{\mathbf{a}}(x,t) &= P_{\mathbf{a}}(x,t) - x^n \\ &> t \sum_{r=1}^n a_r x^{n-r} y^{r-1} \\ &= t S_{\mathbf{a}}(x,y) \\ &\ge t \sum_{r=1}^n a_r z^{n-1} = t \Sigma(\mathbf{a}) z^{n-1} > 0, \end{split}$$

where $z := \min\{x, y\}$.

Corollary 2.3. For any real c and given finite sequence $\mathbf{a} \in \mathbb{R}^n$, if n = 1 or if $n \ge 2$ and $M(\mathbf{a}) = m(\mathbf{a}) = c$, then

$$\Delta P_{\mathbf{a}}(x,t) = tS_{\mathbf{a}}(x,x+ct)$$

is an identity for all $x, t \in \mathbb{R}$ *.*

Proof. First suppose $\mathbf{a} \in (\mathbb{R}^+)^n$ and $c, x, t \in \mathbb{R}^+$. If n = 1 both inequalities in Theorem 2.1 hold, so $\Delta P_{\mathbf{a}}(x, t) = tS_{\mathbf{a}}(x, x + ct)$. The same result holds if $n \ge 2$ when $M(\mathbf{a}) = m(\mathbf{a}) = c$ and y = x + ct. Since we have a degree n polynomial equality which holds for more than n values of x and more than n values of t, it must in fact be a polynomial identity, and therefore holds for all $x, t \in \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^n$ with $M(\mathbf{a}) = m(\mathbf{a})$.

We shall now show that the integer inequality proved in [2], and the conditions under which it is an equality, are directly deducible from the above results. Thus Theorem 2.1 provides a new proof of the results in [2] as well as placing them in a much more general context.

Corollary 2.4. For any integers $b \ge 2$ and $m \ge 0$, let $\mathbf{a} \in (\mathbb{Z}^+)^n$ be the sequence of base b digits of m. Then the total sum of products of these digits satisfies $T(\mathbf{a}) \le m$, with equality precisely when every auxiliary digit of m is b - 1.

Proof. Assume that the base b digits of m are arranged in a in order of increasing significance, so a_n is the leading digit. Then $S_{\mathbf{a}}(1,b) = m$. Furthermore $M(\mathbf{a}) \leq b - 1$. Put x = 1, t = 1 and y = b. Then $y \geq x + tM(\mathbf{a})$, so the first inequality in Theorem 2.1 yields

$$T(\mathbf{a}) = P_{\mathbf{a}}(1,1) - 1 = \Delta P_{\mathbf{a}}(1,1) \le S_{\mathbf{a}}(1,b) = m,$$

as required. Now consider when equality holds. By Corollary 2.2, the strict inequality $T(\mathbf{a}) < m$ holds if $n \ge 3$ and the auxiliary digits are not all equal, so suppose $n \ge 2$ and all auxiliary digits are equal to $M(\mathbf{a})$. Corollary 2.3 shows that $T(\mathbf{a}) = m^*$, where $m^* = S_{\mathbf{a}}(1, M(\mathbf{a}) + 1)$ is the integer with base $M(\mathbf{a}) + 1$ digit sequence a if we permit the slightly nonstandard possibility that the leading digit may exceed $M(\mathbf{a})$. Thus $m^* = m$ if $M(\mathbf{a}) = b - 1$, and $m^* < m$ if $M(\mathbf{a}) < b - 1$. If n = 1, Corollary 2.3 confirms the already obvious $T(\mathbf{a}) = m$.

We now note some examples of Theorem 2.1.

Example 2.1. With t = 1, $\mathbf{a} = (a, b, c, d) \in (\mathbb{R}^+)^4$, and the change of variables $x \leftarrow t, y \leftarrow x$ with $x, t \in \mathbb{R}^+$, we have

$$(t+a)(t+b)(t+c)(t+d) - t^4 \le at^3 + bt^2x + ctx^2 + dx^3$$

when $x \ge t + \max\{a, b, c\}$. The reverse inequality holds when $x \le t + \min\{a, b, c\}$. **Example 2.2.** With t = 1, $\mathbf{a} = (d, c, b, a) \in (\mathbb{R}^+)^4$, and the change of variables $x \leftarrow t, y \leftarrow x$ with $x, t \in \mathbb{R}^+$, we have

$$(t+a)(t+b)(t+c)(t+d) - t^4 \le ax^3 + btx^2 + ct^2x + dt^3$$

when $x \ge t + \max\{b, c, d\}$. The reverse inequality holds when $x \le t + \min\{b, c, d\}$. Example 2.3. In Example 2.2, let t = 1 and replace (a, b, c, d) in that example with (a, bt, ct^2, dt^3) ,

Example 2.3. In Example 2.2, let t = 1 and replace (a, b, c, d) in that example with (a, bt, ct^2, dt^3) where a, b, c, d, t are strictly positive. Then

$$(1+a)(1+bt)(1+ct^2)(1+dt^3) - 1 \le ax^3 + btx^2 + ct^2x + dt^3$$

when $x \ge 1 + \max\{bt, ct^2, dt^3\}$.

Example 2.4. Replace (a, b, c, d) in Example 2.2 by $(a, bt^{-1}, ct^{-2}, dt^{-3})$, so

$$(t+a)(t^2+b)(t^3+c)(t^4+d) - t^{10} \le t^6(ax^3+bx^2+cx+d)$$

when $x \ge t + \max\{bt^{-1}, ct^{-2}, dt^{-3}\}.$

Example 2.5. Evidently

$$\Delta P_{\mathbf{a}}(1,1) \ge S_{\mathbf{a}}(1,1) = \Sigma(\mathbf{a})$$

holds for any $\mathbf{a} \in (\mathbb{R}^+)^n$ with $n \ge 1$, and holds with strict inequality if $n \ge 2$ and \mathbf{a} has at least two strictly positive terms. However, it is interesting to note that it also holds with strict inequality for any $\mathbf{a} \in (-1, 0)^n$ with $n \ge 2$, a result which goes back to Jacques [= James = Jakob] Bernoulli (1654-1705) in the case where the sequence \mathbf{a} is constant (see [1, Theorem 58]). Our focus in the present paper is on cases in which $\mathbf{a} \in (\mathbb{R}^+)^n$.

The *reverse* of a given finite sequence $\mathbf{a} := (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$ with $n \ge 1$ is the sequence $\mathbf{a}^R := (a_n, \dots, a_2, a_1) \in \mathbb{R}^n$. Then

$$P_{\mathbf{a}^R}(x,t) = P_{\mathbf{a}}(x,t)$$
 and $S_{\mathbf{a}^R}(x,y) = S_{\mathbf{a}}(y,x).$

Let $\max(\mathbf{a}) := \max\{a_r : 1 \le r \le n\}$ and $\min(\mathbf{a}) := \min\{a_r : 1 \le r \le n\}$. If $n \ge 2$ we have

$$\max\{M(\mathbf{a}), M(\mathbf{a}^R)\} = \max(\mathbf{a}) \text{ and } \min\{m(\mathbf{a}), m(\mathbf{a}^R)\} = \min(\mathbf{a}).$$

With these observations, combining the principles used in Examples 2.1 and 2.2 readily yields

Corollary 2.5. For any finite nonnegative sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ with $n \ge 1$, the inequality

$$0 \le \Delta P_{\mathbf{a}}(t,1) \le \min\{S_{\mathbf{a}}(t,x), S_{\mathbf{a}}(x,t)\}$$

holds for all $x, t \in \mathbb{R}^+$, provided $x \ge t + \max(\mathbf{a})$ if $n \ge 2$. The reverse inequality

$$\Delta P_{\mathbf{a}}(t,1) \ge \max\{S_{\mathbf{a}}(t,x), S_{\mathbf{a}}(x,t)\} \ge 0$$

holds for all $x, t \in \mathbb{R}^+$, provided $x \leq t + \min(\mathbf{a})$ if $n \geq 2$.

3. CONDITIONS FOR EQUALITY TO HOLD

When does the inequality studied in Theorem 2.1 become an equality? To reduce this to a problem in two variables, let us examine the t = 1 cross-section. Suppose $n \ge 2$ and $\mathbf{a} \in (\mathbb{R}^+)^n$ is strictly positive, that is, $a_r > 0$ for $1 \le r \le n$. We have from Theorem 2.1:

$$\Delta P_{\mathbf{a}}(x,1) \left\{ \begin{array}{ll} \leq S_{\mathbf{a}}(x,y) & \text{when } y \geq x + M(\mathbf{a}), \\ \geq S_{\mathbf{a}}(x,y) & \text{when } y \leq x + m(\mathbf{a}). \end{array} \right.$$

If x, y are strictly positive, then

$$\frac{\partial}{\partial y}S_{\mathbf{a}}(x,y) > 0$$

and continuity of $S_{\mathbf{a}}(x, y)$ as a function of y ensures the following result:

Lemma 3.1. For any strictly positive $x \in \mathbb{R}^+$ and any strictly positive sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ with $n \ge 2$, there is a unique $y_0 > 0$ such that

$$\Delta P_{\mathbf{a}}(x,1) \begin{cases} < & S_{\mathbf{a}}(x,y) & \text{if } y > y_0, \\ = & S_{\mathbf{a}}(x,y_0) \\ > & S_{\mathbf{a}}(x,y) & \text{if } 0 < y < y_0 \end{cases}$$

Furthermore

$$x + m(\mathbf{a}) \le y_0 \le x + M(\mathbf{a}).$$

In what follows we shall determine y_0 more explicitly. It is convenient to introduce some notation. Let $\Sigma_k(\mathbf{a})$ be the *k*th *elementary symmetric function* of the sequence \mathbf{a} , defined to be the sum of products $\Pi \mathbf{x}$ as \mathbf{x} runs through all the *k*-term subsequences $\mathbf{x} \subseteq \mathbf{a}$. Thus

$$\Sigma_k(\mathbf{a}) := \Sigma\{\Pi \mathbf{x} : \mathbf{x} \subseteq \mathbf{a}, |\mathbf{x}| = k\}$$

In particular $\Sigma_1(\mathbf{a}) = \Sigma(\mathbf{a}) = \Sigma_{r=1}^n a_r$ and $\Sigma_2(\mathbf{a}) = \Sigma_{r=1}^{n-1} \Sigma_{s=r+1}^n a_r a_s$. Again let

$$W_k(\mathbf{a}) := \sum_{r=1}^n \binom{r-1}{k-1} a_r$$

We call $W_k(\mathbf{a})$ the *k*th *binomially-weighted sum* of the sequence \mathbf{a} . Note that $W_1(\mathbf{a}) = \Sigma_1(\mathbf{a})$. Lemma 3.2. For any finite strictly positive sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ and any positive integer $k \leq n$, we have

$$\frac{\min(\mathbf{a})^k}{\max(\mathbf{a})} \le \frac{\sum_k(\mathbf{a})}{W_k(\mathbf{a})} \le \frac{\max(\mathbf{a})^k}{\min(\mathbf{a})},$$

with strict inequalities when a is not constant.

Proof. Let $\mathbf{a}^* \in (\mathbb{R}^+)^n$ be the constant sequence with every term equal to $\max(\mathbf{a})$. Then

$$\Sigma_k(\mathbf{a}) \le \Sigma_k(\mathbf{a}^*) = \binom{n}{k} \max(\mathbf{a})^k,$$

and the inequality is strict when a is not constant. Also

$$W_k(\mathbf{a}) = \sum_{r=1}^n \binom{r-1}{k-1} a_r \ge \sum_{r=1}^n \binom{r-1}{k-1} \min(\mathbf{a}) = \binom{n}{k} \min(\mathbf{a}) > 0,$$
$$\frac{\sum_k(\mathbf{a})}{W_k(\mathbf{a})} \le \frac{\max(\mathbf{a})^k}{\min(\mathbf{a})},$$

so

with strict inequality when a is not constant. An entirely similar argument establishes the other inequality in the lemma.
$$\Box$$

For any real c > 0, if $\mathbf{c} \in (\mathbb{R}^+)^n$ is the constant sequence with every term equal to c, then Lemma 3.2 shows that $\Sigma_k(\mathbf{c})/W_k(\mathbf{c}) = c^{k-1}$. Hence $(\Sigma_k(\mathbf{a})/W_k(\mathbf{a}))^{\frac{1}{k-1}}$ is a measure of central tendency for the terms of the sequence $\mathbf{a} \in (\mathbb{R}^+)^n$, for each integer k in the interval $2 \le k \le n$. The case k = 2 enters into the asymptotic behaviour of y_0 , as we now show.

Theorem 3.3. For strictly positive $x, y \in \mathbb{R}^+$ and any strictly positive sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ with $n \ge 2$, the equality $\Delta P_{\mathbf{a}}(x, 1) = S_{\mathbf{a}}(x, y)$ holds for large x when

$$y = x + \alpha + O(x^{-1}) \qquad (x \to \infty),$$

where

$$\alpha := \frac{\Sigma_2(\mathbf{a})}{W_2(\mathbf{a})}.$$

Proof. Let $y_0 = x + f_0(x)$, so $\Delta P_{\mathbf{a}}(x, 1) = S_{\mathbf{a}}(x, x + f_0(x))$. Then $m(\mathbf{a}) \le f_0(x) \le M(\mathbf{a})$ by Lemma 3.1, so $O(f_0(x)) = O(1)$ as $x \to \infty$. Hence

$$S_{\mathbf{a}}(x, x + f_0(x)) = \sum_{r=1}^{n} a_r x^{n-r} (x + f_0(x))^{r-1}$$

= $\left(\sum_{r=1}^{n} a_r\right) x^{n-1} + \left(\sum_{r=1}^{n} (r-1)a_r\right) f_0(x) x^{n-2} + O(x^{n-3})$
= $\Sigma_1(\mathbf{a}) x^{n-1} + W_2(\mathbf{a}) f_0(x) x^{n-2} + O(x^{n-3}).$

Also

$$\Delta P_{\mathbf{a}}(x,1) = (x+a_1)(x+a_2)\cdots(x+a_n) - x^n$$

= $\Sigma_1(\mathbf{a})x^{n-1} + \Sigma_2(\mathbf{a})x^{n-2} + O(x^{n-3}).$

But these two expressions are equal, so for large x it follows that

$$f_0(x) = \frac{\Sigma_2(\mathbf{a})}{W_2(\mathbf{a})} + O(x^{-1}).$$

.

By Theorem 3.3, if we put $y_0 = x + \alpha + f_1(x)$ then $O(f_1(x)) = O(x^{-1})$ as $x \to \infty$. Explicit expansion of $\Delta P_{\mathbf{a}}(x, 1)$ and $S_{\mathbf{a}}(x, x + \alpha + f_1(x))$ as far as terms in x^{n-3} yields

Corollary 3.4. For any finite strictly positive sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ with $n \geq 3$, the equality $\Delta P_{\mathbf{a}}(x, 1) = S_{\mathbf{a}}(x, y)$ holds for large $x, y \in \mathbb{R}^+$ when

$$y = x + \alpha + \beta x^{-1} + O(x^{-2}) \qquad (x \to \infty),$$

where

$$lpha := rac{\Sigma_2(\mathbf{a})}{W_2(\mathbf{a})} \quad and \quad eta := rac{\Sigma_3(\mathbf{a}) - lpha^2 W_3(\mathbf{a})}{W_2(\mathbf{a})}$$

From Lemma 3.1 we immediately deduce

Corollary 3.5. If $M(\mathbf{a}) = m(\mathbf{a}) = c$, then $\alpha = c$ and $\beta = 0$.

Next we shall consider y_0 when x is small but positive. It will be convenient to use $G(\mathbf{a})$ to denote the geometric mean of $\{a_r : 1 \le r \le n-1\}$, so $G(\mathbf{a}) := (a_1 a_2 \cdots a_{n-1})^{\frac{1}{n-1}}$. For any finite strictly positive sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ we define $\mathbf{a}^{-1} := (a_1^{-1}, a_2^{-1}, \dots, a_n^{-1})$, so $\Sigma_1(\mathbf{a}^{-1})$ is the sum of reciprocals of the terms of \mathbf{a} . Of course, $\Sigma_1(\mathbf{a}^{-1}) = \Sigma_{n-1}(\mathbf{a})/\Sigma_n(\mathbf{a})$. This sum enters into the small scale behaviour of y_0 , as we now show.

Theorem 3.6. For strictly positive $x, y \in \mathbb{R}^+$ and any strictly positive sequence $\mathbf{a} \in (\mathbb{R}^+)^n$ with $n \geq 2$, the equality $\Delta P_{\mathbf{a}}(x, 1) = S_{\mathbf{a}}(x, y)$ holds for small x when

$$y = \gamma + \delta x + O(x^2) \qquad (x \to 0+),$$

where

$$\gamma := G(\mathbf{a}) \quad and \quad \delta := \frac{\gamma a_n \Sigma_1(\mathbf{a}^{-1}) - a_{n-1}}{(n-1)a_n}$$

Proof. For $0 < x < M(\mathbf{a})$ let $y_0 = g_0(x)$, so $\Delta P_{\mathbf{a}}(x, 1) = S_{\mathbf{a}}(x, g_0(x))$. Lemma 3.1 ensures that $m(\mathbf{a}) < g_0(x) < 2M(\mathbf{a})$, so $O(g_0(x)) = O(1)$ as $x \to 0 + .$ Then

$$S_{\mathbf{a}}(x,g_0(x)) = \sum_{r=1}^n a_{n-r+1} x^{r-1} g_0(x)^{n-r} = a_n g_0(x)^{n-1} + O(x)$$

and

$$\Delta P_{\mathbf{a}}(x,1) = (a_1 a_2 \cdots a_n) + O(x),$$

so equality of these expressions implies that

$$g_0(x) = G(\mathbf{a}) + O(x).$$

Now let $y_0 = G(\mathbf{a}) + g_1(x)$, so $O(g_1(x)) = O(x)$ as $x \to 0 + .$ Then

$$S_{\mathbf{a}}(x, G(\mathbf{a}) + g_{1}(x))$$

$$= \sum_{r=1}^{n} a_{n-r+1} x^{r-1} (G(\mathbf{a}) + g_{1}(x))^{n-r}$$

$$= a_{n} G(\mathbf{a})^{n-1} + (n-1)a_{n} G(\mathbf{a})^{n-2} g_{1}(x) + a_{n-1} x G(\mathbf{a})^{n-2} + O(x^{2})$$

and

$$\Delta P_{\mathbf{a}}(x,1) = (a_1 a_2 \cdots a_n) \left\{ 1 + \left(\sum_{r=1}^n a_r^{-1}\right) x + O(x^2) \right\}.$$

Equality of these two expressions implies that

$$g_1(x) = \frac{(a_n G(\mathbf{a}) \Sigma_1(\mathbf{a}^{-1}) - a_{n-1}) x}{(n-1)a_n} + O(x^2),$$

and the theorem follows.

From Lemma 3.1 we deduce

Corollary 3.7. If $M(\mathbf{a}) = m(\mathbf{a}) = c$, then $\gamma = c$ and $\delta = 1$.

Let us now consider the geometry underlying Theorems 3.3 and 3.6. The positive quadrant $x, y \in \mathbb{R}^+$ is divided into an "S-region", where

$$\Delta P_{\mathbf{a}}(x,1) < S_{\mathbf{a}}(x,y),$$

and a " ΔP -region", where

$$\Delta P_{\mathbf{a}}(x,1) > S_{\mathbf{a}}(x,y).$$

The boundary between these two regions is

$$E_1(\mathbf{a}) := \{ (x, y) \in (\mathbb{R}^+)^2 : \Delta P_{\mathbf{a}}(x, 1) = S_{\mathbf{a}}(x, y) \}.$$

On this boundary curve the polynomials $\Delta P_{\mathbf{a}}(x, 1)$ and $S_{\mathbf{a}}(x, y)$ are equal, so we call $E_1(\mathbf{a})$ the *equipoise curve* for \mathbf{a} . Lemma 3.1 ensures that $E_1(\mathbf{a})$ lies in the strip between the parallel lines $y = x + M(\mathbf{a})$ and $y = x + m(\mathbf{a})$. By Theorem 3.3 the equipoise curve is asymptotic to $y = x + \alpha$, and by Theorem 3.6 it cuts the y-axis at $y = G(\mathbf{a})$, with slope δ .

When n = 2, we have $M(\mathbf{a}) = m(\mathbf{a}) = \alpha = G(\mathbf{a}) = a_1$ and $E_1(\mathbf{a})$ is the line $y = x + a_1$. When $n \ge 3$, as $x \to \infty$ the equipoise curve approaches the asymptote from the S-region side if $\beta > 0$, and from the ΔP -region side if $\beta < 0$.

It appears likely that the equipoise curve never crosses the asymptote, though we were not able to demonstrate this in general. The condition for such a crossing to occur is a polynomial of degree n-3 in x, so such crossings are possible only when $n \ge 4$. However it seems unlikely that there are ever any solutions with x > 0. When n = 3, it is clear that $E_1(\mathbf{a})$ must be entirely on one side of the asymptote unless $\alpha^2 = a_1a_2$. In the latter case, $\beta = 0$ and $E_1(\mathbf{a})$ actually coincides with the asymptote; this behaviour is demonstrated by $E_1(1, 4, 4)$ for example.

Throughout the preceding discussion in this section we have been comparing $\Delta P_{\mathbf{a}}(x, 1)$ with $S_{\mathbf{a}}(x, y)$ in the positive x, y-quadrant. A simple observation enables us to deduce the corresponding information comparing $\Delta P_{\mathbf{a}}(x, t)$ with $tS_{\mathbf{a}}(x, y)$ in the positive x, y, t-orthant. For any $t \in \mathbb{R}^+$ and $\mathbf{a} \in (\mathbb{R}^+)^n$, let $t\mathbf{a} := (ta_1, ta_2, \ldots, ta_n) \in (\mathbb{R}^+)^n$. Then

$$P_{t\mathbf{a}}(x,1) = P_{\mathbf{a}}(x,t)$$
 and $S_{t\mathbf{a}}(x,y) = tS_{\mathbf{a}}(x,y),$

so all the relevant facts about $\Delta P_{\mathbf{a}}(x,t) = tS_{\mathbf{a}}(x,y)$ follow from our earlier results in this section by replacing a by ta. In particular, the *equipoise surface*

$$E_{2}(\mathbf{a}) := \{ (x, y, t) \in (\mathbb{R}^{+})^{3} : \Delta P_{\mathbf{a}}(x, t) = tS_{\mathbf{a}}(x, y) \}$$

lies in the region between the planes $y = x + tM(\mathbf{a})$ and $y = x + tm(\mathbf{a})$, which coincide if $M(\mathbf{a}) = m(\mathbf{a})$, and otherwise intersect in the line y = x, t = 0. For any fixed t > 0 the equipoise surface satisfies

$$y = x + \alpha t + \beta t^2 x^{-1} + O(x^{-2}) \qquad (x \to \infty)$$

and

$$y = \gamma t + \delta x + O(x^2) \qquad (x \to 0+).$$

However, the device of replacing a by ta does not provide any information about the comparison of the product and sum polynomials for a general finite sequence $a \in \mathbb{R}^n$. As hinted at by Bernoulli's Inequality, mentioned in Example 2.5, there is potentially much of interest in this more general case.

REFERENCES

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. PÓLYA, Inequalities, 2nd ed., Cambridge, 1959.
- [2] A.Y. ÖZBAN, W. P. GALVIN AND R.B. EGGLETON, An inequality for the digits of an integer, *Austral. Math. Soc. Gazette*, **28** (2001), 9–10.