A POLYNOMIAL INEQUALITY GENERALISING AN INTEGER INEQUALITY

ROGER B. EGGLETON AND WILLIAM P. GALVIN
Department of Mathematics
Illinois State University
Normal, IL 61790-4520, USA.
roger@math.ilstu.edu
School of Mathematical and Physical Sciences
University of Newcastle
Callaghan, NSW 2308
AUSTRALIA.
mmwpg@cc.newcastle.edu.au

Received 1 May, 2002; accepted 7 June, 2002
Communicated by H. Gauchman

Abstract

For any $\mathbf{a}:=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in\left(\mathbb{R}^{+}\right)^{n}$, we establish inequalities between the two homogeneous polynomials $\Delta P_{\mathbf{a}}(x, t):=\left(x+a_{1} t\right)\left(x+a_{2} t\right) \cdots\left(x+a_{n} t\right)-x^{n}$ and $S_{\mathbf{a}}(x, y):=a_{1} x^{n-1}+a_{2} x^{n-2} y+\cdots+a_{n} y^{n-1}$ in the positive orthant $x, y, t \in \mathbb{R}^{+}$. Conditions for $\Delta P_{\mathbf{a}}(x, t) \leq t S_{\mathbf{a}}(x, y)$ yield a new proof and broad generalization of the number theoretic inequality that for base $b \geq 2$ the sum of all nonempty products of digits of any $m \in \mathbb{Z}^{+}$ never exceeds m, and equality holds exactly when all auxiliary digits are $b-1$. Links with an inequality of Bernoulli are also noted. When $n \geq 2$ and \mathbf{a} is strictly positive, the surface $\Delta P_{\mathbf{a}}(x, t)=t S_{\mathbf{a}}(x, y)$ lies between the planes $y=x+t \max \left\{a_{i}: 1 \leq i \leq n-1\right\}$ and $y=x+t \min \left\{a_{i}: 1 \leq i \leq n-1\right\}$. For fixed $t \in \mathbb{R}^{+}$, we explicitly determine functions $\alpha, \beta, \gamma, \delta$ of a such that this surface is $y=x+\alpha t+\beta t^{2} x^{-1}+O\left(x^{-2}\right)$ as $x \rightarrow \infty$, and $y=\gamma t+\delta x+O\left(x^{2}\right)$ as $x \rightarrow 0+$.

Key words and phrases: Polynomial inequality, sums of products of digits, Bernoulli inequality.
2000 Mathematics Subject Classification. Primary 26D15, 26C99.

1. Introduction

For any finite sequence of real numbers a, let Π a be the product of all terms in a, and let $T(\mathbf{a})$, the total sum of products of \mathbf{a}, be the sum of all products $\Pi \mathrm{x}$ as x runs through the nonempty subsequences $\mathbf{x} \subseteq \mathbf{a}$. Thus

$$
T(\mathbf{a}):=\Sigma\{\Pi \mathbf{x}: \mathbf{x} \subseteq \mathbf{a}, \mathbf{x} \neq \omega\},
$$

[^0]where ω is the empty sequence. As usual we observe the convention that $\Pi \omega=1$. There is a rather surprising inequality which $T(\mathbf{a})$ must satisfy in the case of integer sequences. In particular, for given integers $b \geq 2$ and $m \geq 0$, let a be the sequence of digits in the base b representation of m. Then
$$
T(\mathbf{a}) \leq m
$$
holds for every such integer m and base b, as shown in [2]. Moreover the inequality is sharp: $T(\mathbf{a})=m$ holds precisely when the auxiliary digits of m, if any, are all $b-1$. (The leading digit of n is the most significant digit; the less significant digits, if any, are its auxiliary digits.) For example
$$
T(3,7,7)=255 \leq 377_{(b)}
$$
where $377_{(b)}$ is the base b representation of $m=255,313,377,447, \ldots$ when $b=8,9$, $10,11, \ldots$. We also note in passing that if a is the base b digit sequence of m then $T(\mathbf{a})$ is odd precisely when at least one of the digits of m is odd.

Our main purpose in this paper is to show that the integer inequality just described is an instance of a much more general inequality between polynomials. We shall establish the polynomial inequality and investigate some of its properties.

2. Polynomial Inequality

Let a be any nonempty finite sequence of real numbers, say

$$
\mathbf{a}:=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}, \text { with } n \geq 1
$$

With a we associate two homogeneous polynomials in two real variables, the product polynomial

$$
P_{\mathbf{a}}(x, t):=\left(x+a_{1} t\right)\left(x+a_{2} t\right) \cdots\left(x+a_{n} t\right)=\prod_{r=1}^{n}\left(x+a_{r} t\right)
$$

and the sum polynomial

$$
S_{\mathbf{a}}(x, y):=a_{1} x^{n-1}+a_{2} x^{n-2} y+\cdots+a_{n} y^{n-1}=\sum_{r=1}^{n} a_{r} x^{n-r} y^{r-1} .
$$

Here we shall study these polynomials when $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$, where $\mathbb{R}^{+}:=\{x \in \mathbb{R}: x \geq 0\}$. It turns out that it is natural to compare t times the sum polynomial with the first difference of the product polynomial,

$$
\Delta P_{\mathbf{a}}(x, t):=P_{\mathbf{a}}(x, t)-P_{\mathbf{a}}(x, 0)=P_{\mathbf{a}}(x, t)-x^{n} .
$$

Note that $t S_{\mathbf{a}}(x, y)$ and $\Delta P_{\mathbf{a}}(x, t)$ are both homogeneous of degree n.
With a we also associate two bounds when $n \geq 2$:

$$
\begin{aligned}
M(\mathbf{a}) & :=\max \left\{a_{r}: 1 \leq r \leq n-1\right\} \\
\text { and } \quad m(\mathbf{a}) & :=\min \left\{a_{r}: 1 \leq r \leq n-1\right\} .
\end{aligned}
$$

Theorem 2.1. For any finite nonnegative sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ with $n \geq 1$, the inequality

$$
0 \leq \Delta P_{\mathbf{a}}(x, t) \leq t S_{\mathbf{a}}(x, y)
$$

holds for all $x, y, t \in \mathbb{R}^{+}$, provided $y \geq x+t M(\mathbf{a})$ if $n \geq 2$. The reverse inequality

$$
\Delta P_{\mathbf{a}}(x, t) \geq t S_{\mathbf{a}}(x, y) \geq 0
$$

holds for all $x, y, t \in \mathbb{R}^{+}$, provided $y \leq x+\operatorname{tm}(\mathbf{a})$ if $n \geq 2$.

Proof. An easy induction on n establishes the identity

$$
P_{\mathbf{a}}(x, t)=\prod_{r=1}^{n}\left(x+a_{r} t\right)=x^{n}+\sum_{r=1}^{n} a_{r} x^{n-r} t \prod_{s=1}^{r-1}\left(x+a_{s} t\right)
$$

For $x, t \in \mathbb{R}^{+}$we have $x+a_{s} t \geq 0$ for each s, so

$$
0 \leq \prod_{s=1}^{r-1}\left(x+a_{s} t\right) \leq y^{r-1}
$$

holds trivially if $r=1$, and for $r \geq 2$ it certainly holds if

$$
y \geq \max \left\{x+a_{s} t: 1 \leq s \leq r-1\right\}=x+t \cdot \max \left\{a_{s}: 1 \leq s \leq r-1\right\} .
$$

Because each $a_{r} \in \mathbb{R}^{+}$, it follows for $x, t \in \mathbb{R}^{+}$that

$$
\begin{aligned}
0 & \leq \Delta P_{\mathbf{a}}(x, t)=P_{\mathbf{a}}(x, t)-x^{n} \\
& =t \sum_{r=1}^{n} a_{r} x^{n-r} \prod_{s=1}^{r-1}\left(x+a_{s} t\right) \\
& \leq t \sum_{r=1}^{n} a_{r} x^{n-r} y^{r-1}=t S_{\mathbf{a}}(x, y)
\end{aligned}
$$

holds trivially if $n=1$, and for $n \geq 2$ it holds if $y \geq x+t M(\mathbf{a})$. An entirely similar argument establishes the reverse inequality in the theorem.

Let us define

$$
\Sigma(\mathbf{a}):=\sum_{r=1}^{n} a_{r} .
$$

If $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ and $n \geq 2$ then

$$
0 \leq m(\mathbf{a}) \leq M(\mathbf{a}) \leq \Sigma(\mathbf{a}) .
$$

Note that $S_{\mathbf{a}}(1,1)=\Sigma(\mathbf{a})$. This constant plays a natural role in bounding our polynomial inequalities away from zero. Specifically, we have
Corollary 2.2. Let $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ be a finite nonnegative sequence with $n \geq 3$ and $M(\mathbf{a})>m(\mathbf{a})$. Then for all strictly positive $x, y, t \in \mathbb{R}^{+}$the inequality

$$
0<t \Sigma(\mathbf{a}) x^{n-1}<\Delta P_{\mathbf{a}}(x, t)<t S_{\mathbf{a}}(x, y)
$$

holds provided $y \geq x+t M(\mathbf{a})$, and the reverse inequality

$$
\Delta P_{\mathbf{a}}(x, t)>t S_{\mathbf{a}}(x, y) \geq t \Sigma(\mathbf{a}) z^{n-1}>0
$$

holds provided $y \leq x+\operatorname{tm}(\mathbf{a})$, with $z:=\min \{x, y\}$.
Proof. We sharpen the details of the proof of Theorem 2.1. The condition $M(\mathbf{a})>m(\mathbf{a})$ ensures that $M(\mathbf{a})>0$, so if x, t are strictly positive reals then $x+a_{s} t>x$ for at least one $s \leq n-1$, and

$$
\prod_{s=1}^{r-1}\left(x+a_{s} t\right)>x^{r-1}
$$

holds for some $r \leq n$. Then

$$
\begin{aligned}
\Delta P_{\mathbf{a}}(x, t) & =P_{\mathbf{a}}(x, t)-x^{n} \\
& =\sum_{r=1}^{n} a_{r} x^{n-r} t \prod_{s=1}^{r-1}\left(x+a_{s} t\right) \\
& >\sum_{r=1}^{n} a_{r} x^{n-1} t=t \Sigma(\mathbf{a}) x^{n-1}>0 .
\end{aligned}
$$

If $y \geq x+t M(\mathbf{a})$, then $M(\mathbf{a})>m(\mathbf{a})$ ensures that

$$
\prod_{s=1}^{r-1}\left(x+a_{s} t\right)<y^{r-1}
$$

holds for at least one $r \leq n$, so

$$
\Delta P_{\mathbf{a}}(x, t)=P_{\mathbf{a}}(x, t)-x^{n}<t \sum_{r=1}^{n} a_{r} x^{n-r} y^{r-1}=t S_{\mathbf{a}}(x, y)
$$

For the second inequality, if $0<y \leq x+\operatorname{tm}(\mathbf{a})$ then $M(\mathbf{a})>m(\mathbf{a})$ ensures that

$$
\prod_{s=1}^{r-1}\left(x+a_{s} t\right)>y^{r-1}
$$

holds for at least one $r \leq n$, so

$$
\begin{aligned}
\Delta P_{\mathbf{a}}(x, t) & =P_{\mathbf{a}}(x, t)-x^{n} \\
& >t \sum_{r=1}^{n} a_{r} x^{n-r} y^{r-1} \\
& =t S_{\mathbf{a}}(x, y) \\
& \geq t \sum_{r=1}^{n} a_{r} z^{n-1}=t \Sigma(\mathbf{a}) z^{n-1}>0,
\end{aligned}
$$

where $z:=\min \{x, y\}$.
Corollary 2.3. For any real c and given finite sequence $\mathbf{a} \in \mathbb{R}^{n}$, if $n=1$ or if $n \geq 2$ and $M(\mathbf{a})=m(\mathbf{a})=c$, then

$$
\Delta P_{\mathbf{a}}(x, t)=t S_{\mathbf{a}}(x, x+c t)
$$

is an identity for all $x, t \in \mathbb{R}$.
Proof. First suppose $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ and $c, x, t \in \mathbb{R}^{+}$. If $n=1$ both inequalities in Theorem 2.1 hold, so $\Delta P_{\mathbf{a}}(x, t)=t S_{\mathbf{a}}(x, x+c t)$. The same result holds if $n \geq 2$ when $M(\mathbf{a})=m(\mathbf{a})=c$ and $y=x+c t$. Since we have a degree n polynomial equality which holds for more than n values of x and more than n values of t, it must in fact be a polynomial identity, and therefore holds for all $x, t \in \mathbb{R}$ and $\mathbf{a} \in \mathbb{R}^{n}$ with $M(\mathbf{a})=m(\mathbf{a})$.

We shall now show that the integer inequality proved in [2], and the conditions under which it is an equality, are directly deducible from the above results. Thus Theorem 2.1 provides a new proof of the results in [2] as well as placing them in a much more general context.
Corollary 2.4. For any integers $b \geq 2$ and $m \geq 0$, let $\mathbf{a} \in\left(\mathbb{Z}^{+}\right)^{n}$ be the sequence of base b digits of m. Then the total sum of products of these digits satisfies $T(\mathbf{a}) \leq m$, with equality precisely when every auxiliary digit of m is $b-1$.

Proof. Assume that the base b digits of m are arranged in a in order of increasing significance, so a_{n} is the leading digit. Then $S_{\mathbf{a}}(1, b)=m$. Furthermore $M(\mathbf{a}) \leq b-1$. Put $x=1, t=1$ and $y=b$. Then $y \geq x+t M(\mathbf{a})$, so the first inequality in Theorem 2.1 yields

$$
T(\mathbf{a})=P_{\mathbf{a}}(1,1)-1=\Delta P_{\mathbf{a}}(1,1) \leq S_{\mathbf{a}}(1, b)=m
$$

as required. Now consider when equality holds. By Corollary 2.2, the strict inequality $T(\mathbf{a})<$ m holds if $n \geq 3$ and the auxiliary digits are not all equal, so suppose $n \geq 2$ and all auxiliary digits are equal to $M(\mathbf{a})$. Corollary 2.3 shows that $T(\mathbf{a})=m^{*}$, where $m^{*}=S_{\mathbf{a}}(1, M(\mathbf{a})+1)$ is the integer with base $M(\mathbf{a})+1$ digit sequence a if we permit the slightly nonstandard possibility that the leading digit may exceed $M(\mathbf{a})$. Thus $m^{*}=m$ if $M(\mathbf{a})=b-1$, and $m^{*}<m$ if $M(\mathbf{a})<b-1$. If $n=1$, Corollary 2.3 confirms the already obvious $T(\mathbf{a})=m$.

We now note some examples of Theorem 2.1
Example 2.1. With $t=1, \mathbf{a}=(a, b, c, d) \in\left(\mathbb{R}^{+}\right)^{4}$, and the change of variables $x \leftarrow t, y \leftarrow x$ with $x, t \in \mathbb{R}^{+}$, we have

$$
(t+a)(t+b)(t+c)(t+d)-t^{4} \leq a t^{3}+b t^{2} x+c t x^{2}+d x^{3}
$$

when $x \geq t+\max \{a, b, c\}$. The reverse inequality holds when $x \leq t+\min \{a, b, c\}$.
Example 2.2. With $t=1, \mathbf{a}=(d, c, b, a) \in\left(\mathbb{R}^{+}\right)^{4}$, and the change of variables $x \leftarrow t, y \leftarrow x$ with $x, t \in \mathbb{R}^{+}$, we have

$$
(t+a)(t+b)(t+c)(t+d)-t^{4} \leq a x^{3}+b t x^{2}+c t^{2} x+d t^{3}
$$

when $x \geq t+\max \{b, c, d\}$. The reverse inequality holds when $x \leq t+\min \{b, c, d\}$.
Example 2.3. In Example 2.2, let $t=1$ and replace (a, b, c, d) in that example with $\left(a, b t, c t^{2}, d t^{3}\right)$, where a, b, c, d, t are strictly positive. Then

$$
(1+a)(1+b t)\left(1+c t^{2}\right)\left(1+d t^{3}\right)-1 \leq a x^{3}+b t x^{2}+c t^{2} x+d t^{3}
$$

when $x \geq 1+\max \left\{b t, c t^{2}, d t^{3}\right\}$.
Example 2.4. Replace (a, b, c, d) in Example 2.2 by $\left(a, b t^{-1}, c t^{-2}, d t^{-3}\right.$), so

$$
(t+a)\left(t^{2}+b\right)\left(t^{3}+c\right)\left(t^{4}+d\right)-t^{10} \leq t^{6}\left(a x^{3}+b x^{2}+c x+d\right)
$$

when $x \geq t+\max \left\{b t^{-1}, c t^{-2}, d t^{-3}\right\}$.
Example 2.5. Evidently

$$
\Delta P_{\mathbf{a}}(1,1) \geq S_{\mathbf{a}}(1,1)=\Sigma(\mathbf{a})
$$

holds for any $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ with $n \geq 1$, and holds with strict inequality if $n \geq 2$ and a has at least two strictly positive terms. However, it is interesting to note that it also holds with strict inequality for any $\mathbf{a} \in(-1,0)^{n}$ with $n \geq 2$, a result which goes back to Jacques [$=$ James $=$ Jakob] Bernoulli (1654-1705) in the case where the sequence a is constant (see [1, Theorem 58]). Our focus in the present paper is on cases in which $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$.

The reverse of a given finite sequence $\mathbf{a}:=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ with $n \geq 1$ is the sequence $\mathbf{a}^{R}:=\left(a_{n}, \ldots, a_{2}, a_{1}\right) \in \mathbb{R}^{n}$. Then

$$
P_{\mathbf{a}^{R}}(x, t)=P_{\mathbf{a}}(x, t) \quad \text { and } \quad S_{\mathbf{a}^{R}}(x, y)=S_{\mathbf{a}}(y, x) .
$$

Let $\max (\mathbf{a}):=\max \left\{a_{r}: 1 \leq r \leq n\right\}$ and $\min (\mathbf{a}):=\min \left\{a_{r}: 1 \leq r \leq n\right\}$. If $n \geq 2$ we have $\max \left\{M(\mathbf{a}), M\left(\mathbf{a}^{R}\right)\right\}=\max (\mathbf{a}) \quad$ and $\quad \min \left\{m(\mathbf{a}), m\left(\mathbf{a}^{R}\right)\right\}=\min (\mathbf{a})$.
With these observations, combining the principles used in Examples 2.1 and 2.2 readily yields

Corollary 2.5. For any finite nonnegative sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ with $n \geq 1$, the inequality

$$
0 \leq \Delta P_{\mathbf{a}}(t, 1) \leq \min \left\{S_{\mathbf{a}}(t, x), S_{\mathbf{a}}(x, t)\right\}
$$

holds for all $x, t \in \mathbb{R}^{+}$, provided $x \geq t+\max (\mathbf{a})$ if $n \geq 2$. The reverse inequality

$$
\Delta P_{\mathbf{a}}(t, 1) \geq \max \left\{S_{\mathbf{a}}(t, x), S_{\mathbf{a}}(x, t)\right\} \geq 0
$$

holds for all $x, t \in \mathbb{R}^{+}$, provided $x \leq t+\min (\mathbf{a})$ if $n \geq 2$.

3. Conditions for Equality to Hold

When does the inequality studied in Theorem 2.1 become an equality? To reduce this to a problem in two variables, let us examine the $t=1$ cross-section. Suppose $n \geq 2$ and $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ is strictly positive, that is, $a_{r}>0$ for $1 \leq r \leq n$. We have from Theorem 2.1.

$$
\Delta P_{\mathbf{a}}(x, 1)\left\{\begin{array}{l}
\leq S_{\mathbf{a}}(x, y) \quad \text { when } y \geq x+M(\mathbf{a}) \\
\geq S_{\mathbf{a}}(x, y) \quad \text { when } y \leq x+m(\mathbf{a})
\end{array}\right.
$$

If x, y are strictly positive, then

$$
\frac{\partial}{\partial y} S_{\mathbf{a}}(x, y)>0
$$

and continuity of $S_{\mathbf{a}}(x, y)$ as a function of y ensures the following result:
Lemma 3.1. For any strictly positive $x \in \mathbb{R}^{+}$and any strictly positive sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ with $n \geq 2$, there is a unique $y_{0}>0$ such that

$$
\Delta P_{\mathbf{a}}(x, 1)\left\{\begin{array}{ll}
< & S_{\mathbf{a}}(x, y) \\
= & \text { if } y>y_{0} \\
> & S_{\mathbf{a}}\left(x, y_{0}\right) \\
> & (x, y)
\end{array} \quad \text { if } 0<y<y_{0} .\right.
$$

Furthermore

$$
x+m(\mathbf{a}) \leq y_{0} \leq x+M(\mathbf{a})
$$

In what follows we shall determine y_{0} more explicitly. It is convenient to introduce some notation. Let $\Sigma_{k}(\mathbf{a})$ be the k th elementary symmetric function of the sequence a, defined to be the sum of products $\Pi \mathbf{x}$ as \mathbf{x} runs through all the k-term subsequences $\mathbf{x} \subseteq \mathbf{a}$. Thus

$$
\Sigma_{k}(\mathbf{a}):=\Sigma\{\Pi \mathbf{x}: \mathbf{x} \subseteq \mathbf{a},|\mathbf{x}|=k\}
$$

In particular $\Sigma_{1}(\mathbf{a})=\Sigma(\mathbf{a})=\sum_{r=1}^{n} a_{r}$ and $\Sigma_{2}(\mathbf{a})=\sum_{r=1}^{n-1} \sum_{s=r+1}^{n} a_{r} a_{s}$. Again let

$$
W_{k}(\mathbf{a}):=\sum_{r=1}^{n}\binom{r-1}{k-1} a_{r}
$$

We call $W_{k}(\mathbf{a})$ the k th binomially-weighted sum of the sequence \mathbf{a}. Note that $W_{1}(\mathbf{a})=\Sigma_{1}(\mathbf{a})$. Lemma 3.2. For any finite strictly positive sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ and any positive integer $k \leq n$, we have

$$
\frac{\min (\mathbf{a})^{k}}{\max (\mathbf{a})} \leq \frac{\Sigma_{k}(\mathbf{a})}{W_{k}(\mathbf{a})} \leq \frac{\max (\mathbf{a})^{k}}{\min (\mathbf{a})}
$$

with strict inequalities when \mathbf{a} is not constant.
Proof. Let $\mathbf{a}^{*} \in\left(\mathbb{R}^{+}\right)^{n}$ be the constant sequence with every term equal to $\max (\mathbf{a})$. Then

$$
\Sigma_{k}(\mathbf{a}) \leq \Sigma_{k}\left(\mathbf{a}^{*}\right)=\binom{n}{k} \max (\mathbf{a})^{k}
$$

and the inequality is strict when a is not constant. Also

$$
W_{k}(\mathbf{a})=\sum_{r=1}^{n}\binom{r-1}{k-1} a_{r} \geq \sum_{r=1}^{n}\binom{r-1}{k-1} \min (\mathbf{a})=\binom{n}{k} \min (\mathbf{a})>0,
$$

so

$$
\frac{\Sigma_{k}(\mathbf{a})}{W_{k}(\mathbf{a})} \leq \frac{\max (\mathbf{a})^{k}}{\min (\mathbf{a})}
$$

with strict inequality when \mathbf{a} is not constant. An entirely similar argument establishes the other inequality in the lemma.

For any real $c>0$, if $\mathbf{c} \in\left(\mathbb{R}^{+}\right)^{n}$ is the constant sequence with every term equal to c, then Lemma 3.2 shows that $\Sigma_{k}(\mathbf{c}) / W_{k}(\mathbf{c})=c^{k-1}$. Hence $\left(\Sigma_{k}(\mathbf{a}) / W_{k}(\mathbf{a})\right)^{\frac{1}{k-1}}$ is a measure of central tendency for the terms of the sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$, for each integer k in the interval $2 \leq k \leq n$. The case $k=2$ enters into the asymptotic behaviour of y_{0}, as we now show.
Theorem 3.3. For strictly positive $x, y \in \mathbb{R}^{+}$and any strictly positive sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ with $n \geq 2$, the equality $\Delta P_{\mathbf{a}}(x, 1)=S_{\mathbf{a}}(x, y)$ holds for large x when

$$
y=x+\alpha+O\left(x^{-1}\right) \quad(x \rightarrow \infty)
$$

where

$$
\alpha:=\frac{\Sigma_{2}(\mathbf{a})}{W_{2}(\mathbf{a})} .
$$

Proof. Let $y_{0}=x+f_{0}(x)$, so $\Delta P_{\mathbf{a}}(x, 1)=S_{\mathbf{a}}\left(x, x+f_{0}(x)\right)$. Then $m(\mathbf{a}) \leq f_{0}(x) \leq M(\mathbf{a})$ by Lemma 3.1, so $O\left(f_{0}(x)\right)=O(1)$ as $x \rightarrow \infty$. Hence

$$
\begin{aligned}
S_{\mathbf{a}}\left(x, x+f_{0}(x)\right) & =\sum_{r=1}^{n} a_{r} x^{n-r}\left(x+f_{0}(x)\right)^{r-1} \\
& =\left(\sum_{r=1}^{n} a_{r}\right) x^{n-1}+\left(\sum_{r=1}^{n}(r-1) a_{r}\right) f_{0}(x) x^{n-2}+O\left(x^{n-3}\right) \\
& =\Sigma_{1}(\mathbf{a}) x^{n-1}+W_{2}(\mathbf{a}) f_{0}(x) x^{n-2}+O\left(x^{n-3}\right) .
\end{aligned}
$$

Also

$$
\begin{aligned}
\Delta P_{\mathbf{a}}(x, 1) & =\left(x+a_{1}\right)\left(x+a_{2}\right) \cdots\left(x+a_{n}\right)-x^{n} \\
& =\Sigma_{1}(\mathbf{a}) x^{n-1}+\Sigma_{2}(\mathbf{a}) x^{n-2}+O\left(x^{n-3}\right) .
\end{aligned}
$$

But these two expressions are equal, so for large x it follows that

$$
f_{0}(x)=\frac{\Sigma_{2}(\mathbf{a})}{W_{2}(\mathbf{a})}+O\left(x^{-1}\right)
$$

By Theorem 3.3, if we put $y_{0}=x+\alpha+f_{1}(x)$ then $O\left(f_{1}(x)\right)=O\left(x^{-1}\right)$ as $x \rightarrow \infty$. Explicit expansion of $\Delta \widehat{P_{\mathbf{a}}}(x, 1)$ and $S_{\mathbf{a}}\left(x, x+\alpha+f_{1}(x)\right)$ as far as terms in x^{n-3} yields
Corollary 3.4. For any finite strictly positive sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ with $n \geq 3$, the equality $\Delta P_{\mathbf{a}}(x, 1)=S_{\mathbf{a}}(x, y)$ holds for large $x, y \in \mathbb{R}^{+}$when

$$
y=x+\alpha+\beta x^{-1}+O\left(x^{-2}\right) \quad(x \rightarrow \infty)
$$

where

$$
\alpha:=\frac{\Sigma_{2}(\mathbf{a})}{W_{2}(\mathbf{a})} \quad \text { and } \quad \beta:=\frac{\Sigma_{3}(\mathbf{a})-\alpha^{2} W_{3}(\mathbf{a})}{W_{2}(\mathbf{a})} .
$$

From Lemma 3.1 we immediately deduce

Corollary 3.5. If $M(\mathbf{a})=m(\mathbf{a})=c$, then $\alpha=c$ and $\beta=0$.
Next we shall consider y_{0} when x is small but positive. It will be convenient to use $G(\mathbf{a})$ to denote the geometric mean of $\left\{a_{r}: 1 \leq r \leq n-1\right\}$, so $G(\mathbf{a}):=\left(a_{1} a_{2} \cdots a_{n-1}\right)^{\frac{1}{n-1}}$. For any finite strictly positive sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ we define $\mathbf{a}^{-1}:=\left(a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{n}^{-1}\right)$, so $\Sigma_{1}\left(\mathbf{a}^{-1}\right)$ is the sum of reciprocals of the terms of \mathbf{a}. Of course, $\Sigma_{1}\left(\mathbf{a}^{-1}\right)=\Sigma_{n-1}(\mathbf{a}) / \Sigma_{n}(\mathbf{a})$. This sum enters into the small scale behaviour of y_{0}, as we now show.
Theorem 3.6. For strictly positive $x, y \in \mathbb{R}^{+}$and any strictly positive sequence $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$ with $n \geq 2$, the equality $\Delta P_{\mathbf{a}}(x, 1)=S_{\mathbf{a}}(x, y)$ holds for small x when

$$
y=\gamma+\delta x+O\left(x^{2}\right) \quad(x \rightarrow 0+)
$$

where

$$
\gamma:=G(\mathbf{a}) \quad \text { and } \quad \delta:=\frac{\gamma a_{n} \Sigma_{1}\left(\mathbf{a}^{-1}\right)-a_{n-1}}{(n-1) a_{n}} .
$$

Proof. For $0<x<M(\mathbf{a})$ let $y_{0}=g_{0}(x)$, so $\Delta P_{\mathbf{a}}(x, 1)=S_{\mathbf{a}}\left(x, g_{0}(x)\right)$. Lemma 3.1 ensures that $m(\mathbf{a})<g_{0}(x)<2 M(\mathbf{a})$, so $O\left(g_{0}(x)\right)=O(1)$ as $x \rightarrow 0+$. Then

$$
S_{\mathbf{a}}\left(x, g_{0}(x)\right)=\sum_{r=1}^{n} a_{n-r+1} x^{r-1} g_{0}(x)^{n-r}=a_{n} g_{0}(x)^{n-1}+O(x)
$$

and

$$
\Delta P_{\mathbf{a}}(x, 1)=\left(a_{1} a_{2} \cdots a_{n}\right)+O(x)
$$

so equality of these expressions implies that

$$
g_{0}(x)=G(\mathbf{a})+O(x) .
$$

Now let $y_{0}=G(\mathbf{a})+g_{1}(x)$, so $O\left(g_{1}(x)\right)=O(x)$ as $x \rightarrow 0+$. Then

$$
\begin{aligned}
S_{\mathbf{a}}(x, G(\mathbf{a}) & \left.+g_{1}(x)\right) \\
= & \sum_{r=1}^{n} a_{n-r+1} x^{r-1}\left(G(\mathbf{a})+g_{1}(x)\right)^{n-r} \\
= & a_{n} G(\mathbf{a})^{n-1}+(n-1) a_{n} G(\mathbf{a})^{n-2} g_{1}(x)+a_{n-1} x G(\mathbf{a})^{n-2}+O\left(x^{2}\right)
\end{aligned}
$$

and

$$
\Delta P_{\mathbf{a}}(x, 1)=\left(a_{1} a_{2} \cdots a_{n}\right)\left\{1+\left(\sum_{r=1}^{n} a_{r}^{-1}\right) x+O\left(x^{2}\right)\right\} .
$$

Equality of these two expressions implies that

$$
g_{1}(x)=\frac{\left(a_{n} G(\mathbf{a}) \Sigma_{1}\left(\mathbf{a}^{-1}\right)-a_{n-1}\right) x}{(n-1) a_{n}}+O\left(x^{2}\right)
$$

and the theorem follows.
From Lemma 3.1 we deduce
Corollary 3.7. If $M(\mathbf{a})=m(\mathbf{a})=c$, then $\gamma=c$ and $\delta=1$.
Let us now consider the geometry underlying Theorems 3.3 and 3.6. The positive quadrant $x, y \in \mathbb{R}^{+}$is divided into an " S-region", where

$$
\Delta P_{\mathbf{a}}(x, 1)<S_{\mathbf{a}}(x, y),
$$

and a " ΔP-region", where

$$
\Delta P_{\mathbf{a}}(x, 1)>S_{\mathbf{a}}(x, y)
$$

The boundary between these two regions is

$$
E_{1}(\mathbf{a}):=\left\{(x, y) \in\left(\mathbb{R}^{+}\right)^{2}: \Delta P_{\mathbf{a}}(x, 1)=S_{\mathbf{a}}(x, y)\right\}
$$

On this boundary curve the polynomials $\Delta P_{\mathbf{a}}(x, 1)$ and $S_{\mathbf{a}}(x, y)$ are equal, so we call $E_{1}(\mathbf{a})$ the equipoise curve for a. Lemma 3.1 ensures that $E_{1}(\mathbf{a})$ lies in the strip between the parallel lines $y=x+M(\mathbf{a})$ and $y=x+m(\mathbf{a})$. By Theorem 3.3 the equipoise curve is asymptotic to $y=x+\alpha$, and by Theorem 3.6 it cuts the y-axis at $y=G(\mathbf{a})$, with slope δ.

When $n=2$, we have $M(\mathbf{a})=m(\mathbf{a})=\alpha=G(\mathbf{a})=a_{1}$ and $E_{1}(\mathbf{a})$ is the line $y=x+a_{1}$. When $n \geq 3$, as $x \rightarrow \infty$ the equipoise curve approaches the asymptote from the S-region side if $\beta>0$, and from the ΔP-region side if $\beta<0$.

It appears likely that the equipoise curve never crosses the asymptote, though we were not able to demonstrate this in general. The condition for such a crossing to occur is a polynomial of degree $n-3$ in x, so such crossings are possible only when $n \geq 4$. However it seems unlikely that there are ever any solutions with $x>0$. When $n=3$, it is clear that $E_{1}(\mathbf{a})$ must be entirely on one side of the asymptote unless $\alpha^{2}=a_{1} a_{2}$. In the latter case, $\beta=0$ and $E_{1}(\mathbf{a})$ actually coincides with the asymptote; this behaviour is demonstrated by $E_{1}(1,4,4)$ for example.

Throughout the preceding discussion in this section we have been comparing $\Delta P_{\mathbf{a}}(x, 1)$ with $S_{\mathbf{a}}(x, y)$ in the positive x, y-quadrant. A simple observation enables us to deduce the corresponding information comparing $\Delta P_{\mathbf{a}}(x, t)$ with $t S_{\mathbf{a}}(x, y)$ in the positive x, y, t-orthant. For any $t \in \mathbb{R}^{+}$and $\mathbf{a} \in\left(\mathbb{R}^{+}\right)^{n}$, let $t \mathbf{a}:=\left(t a_{1}, t a_{2}, \ldots, t a_{n}\right) \in\left(\mathbb{R}^{+}\right)^{n}$. Then

$$
P_{t \mathbf{a}}(x, 1)=P_{\mathbf{a}}(x, t) \quad \text { and } \quad S_{t \mathbf{a}}(x, y)=t S_{\mathbf{a}}(x, y)
$$

so all the relevant facts about $\Delta P_{\mathbf{a}}(x, t)=t S_{\mathbf{a}}(x, y)$ follow from our earlier results in this section by replacing a by t. In particular, the equipoise surface

$$
E_{2}(\mathbf{a}):=\left\{(x, y, t) \in\left(\mathbb{R}^{+}\right)^{3}: \Delta P_{\mathbf{a}}(x, t)=t S_{\mathbf{a}}(x, y)\right\}
$$

lies in the region between the planes $y=x+t M(\mathbf{a})$ and $y=x+\operatorname{tm}(\mathbf{a})$, which coincide if $M(\mathbf{a})=m(\mathbf{a})$, and otherwise intersect in the line $y=x, t=0$. For any fixed $t>0$ the equipoise surface satisfies

$$
y=x+\alpha t+\beta t^{2} x^{-1}+O\left(x^{-2}\right) \quad(x \rightarrow \infty)
$$

and

$$
y=\gamma t+\delta x+O\left(x^{2}\right) \quad(x \rightarrow 0+)
$$

However, the device of replacing a by t does not provide any information about the comparison of the product and sum polynomials for a general finite sequence $a \in \mathbb{R}^{n}$. As hinted at by Bernoulli's Inequality, mentioned in Example 2.5, there is potentially much of interest in this more general case.

References

[1] G.H. HARDY, J.E. LITTLEWOOD and G. PÓLYA, Inequalities, 2nd ed., Cambridge, 1959.
[2] A.Y. ÖZBAN, W. P. GALVIN and R.B. EGGLETON, An inequality for the digits of an integer, Austral. Math. Soc. Gazette, 28 (2001), 9-10.

[^0]: ISSN (electronic): 1443-5756
 (c) 2002 Victoria University. All rights reserved.

 The first author gratefully acknowledges the hospitality of the School of Mathematical and Physical Sciences, University of Newcastle, while this paper was being written.

 043-02

