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ABSTRACT. For anya := (a1, a2, . . . , an) ∈ (R+)n, we establish inequalities between the
two homogeneous polynomials∆Pa(x, t) := (x + a1t)(x + a2t) · · · (x + ant) − xn and
Sa(x, y) := a1x

n−1 +a2x
n−2y + · · ·+anyn−1 in the positive orthantx, y, t ∈ R+. Conditions

for ∆Pa(x, t) ≤ tSa(x, y) yield a new proof and broad generalization of the number theoretic
inequality that for baseb ≥ 2 the sum of all nonempty products of digits of anym ∈ Z+

never exceedsm, and equality holds exactly when all auxiliary digits areb − 1. Links with
an inequality of Bernoulli are also noted. Whenn ≥ 2 anda is strictly positive, the surface
∆Pa(x, t) = tSa(x, y) lies between the planesy = x + t max{ai : 1 ≤ i ≤ n − 1} and
y = x + t min{ai : 1 ≤ i ≤ n − 1}. For fixed t ∈ R+, we explicitly determine functions
α, β, γ, δ of a such that this surface isy = x + αt + βt2x−1 + O(x−2) as x → ∞, and
y = γt + δx + O(x2) asx→ 0 + .

Key words and phrases:Polynomial inequality, sums of products of digits, Bernoulli inequality.
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1. I NTRODUCTION

For any finite sequence of real numbersa, letΠa be the product of all terms ina, and letT (a),
the total sum of productsof a, be the sum of all productsΠx asx runs through the nonempty
subsequencesx ⊆ a. Thus

T (a) := Σ{Πx : x ⊆ a,x 6= ω},
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2 ROGERB. EGGLETON AND WILLIAM P. GALVIN

whereω is the empty sequence. As usual we observe the convention thatΠω = 1. There
is a rather surprising inequality whichT (a) must satisfy in the case of integer sequences. In
particular, for given integersb ≥ 2 andm ≥ 0, let a be the sequence of digits in the baseb
representation ofm. Then

T (a) ≤ m

holds for every such integerm and baseb, as shown in [2]. Moreover the inequality is sharp:
T (a) = m holds precisely when the auxiliary digits ofm, if any, are allb − 1. (The leading
digit of n is the most significant digit; the less significant digits, if any, are itsauxiliary digits.)
For example

T (3, 7, 7) = 255 ≤ 377(b),

where 377(b) is the baseb representation ofm = 255, 313, 377, 447, . . . when b = 8, 9,
10, 11, . . . . We also note in passing that ifa is the baseb digit sequence ofm thenT (a) is
odd precisely when at least one of the digits ofm is odd.

Our main purpose in this paper is to show that the integer inequality just described is an
instance of a much more general inequality between polynomials. We shall establish the poly-
nomial inequality and investigate some of its properties.

2. POLYNOMIAL I NEQUALITY

Let a be any nonempty finite sequence of real numbers, say

a := (a1, a2, . . . , an) ∈ Rn, with n ≥ 1.

With a we associate two homogeneous polynomials in two real variables, theproductpolyno-
mial

Pa(x, t) := (x + a1t)(x + a2t) · · · (x + ant) =
n∏

r=1

(x + art),

and thesumpolynomial

Sa(x, y) := a1x
n−1 + a2x

n−2y + · · ·+ any
n−1 =

n∑
r=1

arx
n−ryr−1.

Here we shall study these polynomials whena ∈ (R+)n, whereR+ := {x ∈ R : x ≥ 0}. It
turns out that it is natural to comparet times the sum polynomial with the first difference of the
product polynomial,

∆Pa(x, t) := Pa(x, t)− Pa(x, 0) = Pa(x, t)− xn.

Note thattSa(x, y) and∆Pa(x, t) are both homogeneous of degreen.
With a we also associate two bounds whenn ≥ 2:

M(a) := max{ar : 1 ≤ r ≤ n− 1}
and m(a) := min{ar : 1 ≤ r ≤ n− 1}.

Theorem 2.1.For any finite nonnegative sequencea ∈ (R+)
n with n ≥ 1, the inequality

0 ≤ ∆Pa(x, t) ≤ tSa(x, y)

holds for allx, y, t ∈ R+, providedy ≥ x + tM(a) if n ≥ 2. The reverse inequality

∆Pa(x, t) ≥ tSa(x, y) ≥ 0

holds for allx, y, t ∈ R+, providedy ≤ x + tm(a) if n ≥ 2.
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Proof. An easy induction onn establishes the identity

Pa(x, t) =
n∏

r=1

(x + art) = xn +
n∑

r=1

arx
n−rt

r−1∏
s=1

(x + ast).

Forx, t ∈ R+ we havex + ast ≥ 0 for eachs, so

0 ≤
r−1∏
s=1

(x + ast) ≤ yr−1

holds trivially if r = 1, and forr ≥ 2 it certainly holds if

y ≥ max{x + ast : 1 ≤ s ≤ r − 1} = x + t ·max{as : 1 ≤ s ≤ r − 1}.

Because eachar ∈ R+, it follows for x, t ∈ R+ that

0 ≤ ∆Pa(x, t) = Pa(x, t)− xn

= t

n∑
r=1

arx
n−r

r−1∏
s=1

(x + ast)

≤ t
n∑

r=1

arx
n−ryr−1 = tSa(x, y)

holds trivially if n = 1, and forn ≥ 2 it holds if y ≥ x + tM(a). An entirely similar argument
establishes the reverse inequality in the theorem. �

Let us define

Σ(a) :=
n∑

r=1

ar.

If a ∈ (R+)n andn ≥ 2 then

0 ≤ m(a) ≤M(a) ≤ Σ(a).

Note thatSa(1, 1) = Σ(a). This constant plays a natural role in bounding our polynomial
inequalities away from zero. Specifically, we have

Corollary 2.2. Leta ∈ (R+)n be a finite nonnegative sequence withn ≥ 3 andM(a) > m(a).
Then for all strictly positivex, y, t ∈ R+ the inequality

0 < tΣ(a)xn−1 < ∆Pa(x, t) < tSa(x, y)

holds providedy ≥ x + tM(a), and the reverse inequality

∆Pa(x, t) > tSa(x, y) ≥ tΣ(a)zn−1 > 0

holds providedy ≤ x + tm(a), with z := min{x, y}.

Proof. We sharpen the details of the proof of Theorem 2.1. The conditionM(a) > m(a)
ensures thatM(a) > 0, so if x, t are strictly positive reals thenx + ast > x for at least one
s ≤ n− 1, and

r−1∏
s=1

(x + ast) > xr−1
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4 ROGERB. EGGLETON AND WILLIAM P. GALVIN

holds for somer ≤ n. Then

∆Pa(x, t) = Pa(x, t)− xn

=
n∑

r=1

arx
n−rt

r−1∏
s=1

(x + ast)

>
n∑

r=1

arx
n−1t = tΣ(a)xn−1 > 0.

If y ≥ x + tM(a), thenM(a) > m(a) ensures that
r−1∏
s=1

(x + ast) < yr−1

holds for at least oner ≤ n, so

∆Pa(x, t) = Pa(x, t)− xn < t

n∑
r=1

arx
n−ryr−1 = tSa(x, y).

For the second inequality, if0 < y ≤ x + tm(a) thenM(a) > m(a) ensures that
r−1∏
s=1

(x + ast) > yr−1

holds for at least oner ≤ n, so

∆Pa(x, t) = Pa(x, t)− xn

> t
n∑

r=1

arx
n−ryr−1

= tSa(x, y)

≥ t
n∑

r=1

arz
n−1 = tΣ(a)zn−1 > 0,

wherez := min{x, y}. �

Corollary 2.3. For any realc and given finite sequencea ∈ Rn, if n = 1 or if n ≥ 2 and
M(a) = m(a) = c, then

∆Pa(x, t) = tSa(x, x + ct)

is an identity for allx, t ∈ R.

Proof. First supposea ∈ (R+)n andc, x, t ∈ R+. If n = 1 both inequalities in Theorem 2.1
hold, so∆Pa(x, t) = tSa(x, x + ct). The same result holds ifn ≥ 2 whenM(a) = m(a) = c
andy = x + ct. Since we have a degreen polynomial equality which holds for more thann
values ofx and more thann values oft, it must in fact be a polynomial identity, and therefore
holds for allx, t ∈ R anda ∈ Rn with M(a) = m(a). �

We shall now show that the integer inequality proved in [2], and the conditions under which
it is an equality, are directly deducible from the above results. Thus Theorem 2.1 provides a
new proof of the results in [2] as well as placing them in a much more general context.
Corollary 2.4. For any integersb ≥ 2 andm ≥ 0, let a ∈ (Z+)n be the sequence of baseb
digits of m. Then the total sum of products of these digits satisfiesT (a) ≤ m, with equality
precisely when every auxiliary digit ofm is b− 1.
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Proof. Assume that the baseb digits ofm are arranged ina in order of increasing significance,
soan is the leading digit. ThenSa(1, b) = m. FurthermoreM(a) ≤ b − 1. Putx = 1, t = 1
andy = b. Theny ≥ x + tM(a), so the first inequality in Theorem 2.1 yields

T (a) = Pa(1, 1)− 1 = ∆Pa(1, 1) ≤ Sa(1, b) = m,

as required. Now consider when equality holds. By Corollary 2.2, the strict inequalityT (a) <
m holds if n ≥ 3 and the auxiliary digits are not all equal, so supposen ≥ 2 and all auxiliary
digits are equal toM(a). Corollary 2.3 shows thatT (a) = m∗, wherem∗ = Sa(1, M(a)+1) is
the integer with baseM(a)+1 digit sequencea if we permit the slightly nonstandard possibility
that the leading digit may exceedM(a). Thusm∗ = m if M(a) = b − 1, andm∗ < m if
M(a) < b− 1. If n = 1, Corollary 2.3 confirms the already obviousT (a) = m. �

We now note some examples of Theorem 2.1.

Example 2.1. With t = 1, a = (a, b, c, d) ∈ (R+)4, and the change of variablesx ← t, y ← x
with x, t ∈ R+, we have

(t + a)(t + b)(t + c)(t + d)− t4 ≤ at3 + bt2x + ctx2 + dx3

whenx ≥ t + max{a, b, c}. The reverse inequality holds whenx ≤ t + min{a, b, c}.
Example 2.2. With t = 1, a = (d, c, b, a) ∈ (R+)4, and the change of variablesx ← t, y ← x
with x, t ∈ R+, we have

(t + a)(t + b)(t + c)(t + d)− t4 ≤ ax3 + btx2 + ct2x + dt3

whenx ≥ t + max{b, c, d}. The reverse inequality holds whenx ≤ t + min{b, c, d}.
Example 2.3.In Example 2.2, lett = 1 and replace(a, b, c, d) in that example with(a, bt, ct2, dt3),
wherea, b, c, d, t are strictly positive. Then

(1 + a)(1 + bt)(1 + ct2)(1 + dt3)− 1 ≤ ax3 + btx2 + ct2x + dt3

whenx ≥ 1 + max{bt, ct2, dt3}.
Example 2.4.Replace(a, b, c, d) in Example 2.2 by(a, bt−1, ct−2, dt−3), so

(t + a)(t2 + b)(t3 + c)(t4 + d)− t10 ≤ t6(ax3 + bx2 + cx + d)

whenx ≥ t + max{bt−1, ct−2, dt−3}.
Example 2.5.Evidently

∆Pa(1, 1) ≥ Sa(1, 1) = Σ(a)

holds for anya ∈ (R+)n with n ≥ 1, and holds with strict inequality ifn ≥ 2 anda has at
least two strictly positive terms. However, it is interesting to note that it also holds with strict
inequality for anya ∈ (−1, 0)n with n ≥ 2, a result which goes back to Jacques [= James=
Jakob] Bernoulli (1654-1705) in the case where the sequencea is constant (see [1, Theorem
58]). Our focus in the present paper is on cases in whicha ∈ (R+)n.

Thereverseof a given finite sequencea := (a1, a2, . . . , an) ∈ Rn with n ≥ 1 is the sequence
aR := (an, . . . , a2, a1) ∈ Rn. Then

PaR(x, t) = Pa(x, t) and SaR(x, y) = Sa(y, x).

Let max(a) := max{ar : 1 ≤ r ≤ n} andmin(a) := min{ar : 1 ≤ r ≤ n}. If n ≥ 2 we have

max{M(a), M(aR)} = max(a) and min{m(a), m(aR)} = min(a).

With these observations, combining the principles used in Examples 2.1 and 2.2 readily yields
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6 ROGERB. EGGLETON AND WILLIAM P. GALVIN

Corollary 2.5. For any finite nonnegative sequencea ∈ (R+)n with n ≥ 1, the inequality

0 ≤ ∆Pa(t, 1) ≤ min{Sa(t, x), Sa(x, t)}

holds for allx, t ∈ R+, providedx ≥ t + max(a) if n ≥ 2. The reverse inequality

∆Pa(t, 1) ≥ max{Sa(t, x), Sa(x, t)} ≥ 0

holds for allx, t ∈ R+, providedx ≤ t + min(a) if n ≥ 2.

3. CONDITIONS FOR EQUALITY TO HOLD

When does the inequality studied in Theorem 2.1 become an equality? To reduce this to a
problem in two variables, let us examine thet = 1 cross-section. Supposen ≥ 2 anda ∈ (R+)n

is strictly positive, that is,ar > 0 for 1 ≤ r ≤ n. We have from Theorem 2.1:

∆Pa(x, 1)

{
≤ Sa(x, y) wheny ≥ x + M(a),

≥ Sa(x, y) wheny ≤ x + m(a).

If x, y are strictly positive, then
∂

∂y
Sa(x, y) > 0,

and continuity ofSa(x, y) as a function ofy ensures the following result:

Lemma 3.1. For any strictly positivex ∈ R+ and any strictly positive sequencea ∈ (R+)n

with n ≥ 2, there is a uniquey0 > 0 such that

∆Pa(x, 1)

 < Sa(x, y) if y > y0,
= Sa(x, y0)
> Sa(x, y) if 0 < y < y0.

Furthermore
x + m(a) ≤ y0 ≤ x + M(a).

In what follows we shall determiney0 more explicitly. It is convenient to introduce some
notation. LetΣk(a) be thekth elementary symmetric functionof the sequencea, defined to be
the sum of productsΠx asx runs through all thek-term subsequencesx ⊆ a. Thus

Σk(a) := Σ{Πx : x ⊆ a, |x| = k}.

In particularΣ1(a) = Σ(a) = Σn
r=1ar andΣ2(a) = Σn−1

r=1Σn
s=r+1aras. Again let

Wk(a) :=
n∑

r=1

(
r − 1

k − 1

)
ar.

We callWk(a) thekth binomially-weighted sumof the sequencea. Note thatW1(a) = Σ1(a).

Lemma 3.2.For any finite strictly positive sequencea ∈ (R+)n and any positive integerk ≤ n,
we have

min(a)k

max(a)
≤ Σk(a)

Wk(a)
≤ max(a)k

min(a)
,

with strict inequalities whena is not constant.

Proof. Let a∗ ∈ (R+)n be the constant sequence with every term equal tomax(a). Then

Σk(a) ≤ Σk(a
∗) =

(
n

k

)
max(a)k,
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and the inequality is strict whena is not constant. Also

Wk(a) =
n∑

r=1

(
r − 1

k − 1

)
ar ≥

n∑
r=1

(
r − 1

k − 1

)
min(a) =

(
n

k

)
min(a) > 0,

so
Σk(a)

Wk(a)
≤ max(a)k

min(a)
,

with strict inequality whena is not constant. An entirely similar argument establishes the other
inequality in the lemma. �

For any realc > 0, if c ∈ (R+)n is the constant sequence with every term equal toc, then
Lemma 3.2 shows thatΣk(c)/Wk(c) = ck−1. Hence(Σk(a)/Wk(a))

1
k−1 is a measure of central

tendency for the terms of the sequencea ∈ (R+)n, for each integerk in the interval2 ≤ k ≤ n.
The casek = 2 enters into the asymptotic behaviour ofy0, as we now show.
Theorem 3.3. For strictly positivex, y ∈ R+ and any strictly positive sequencea ∈ (R+)n

with n ≥ 2, the equality∆Pa(x, 1) = Sa(x, y) holds for largex when

y = x + α + O(x−1) (x→∞),

where

α :=
Σ2(a)

W2(a)
.

Proof. Let y0 = x + f0(x), so∆Pa(x, 1) = Sa(x, x + f0(x)). Thenm(a) ≤ f0(x) ≤M(a) by
Lemma 3.1, soO(f0(x)) = O(1) asx→∞. Hence

Sa(x, x + f0(x)) =
n∑

r=1

arx
n−r(x + f0(x))r−1

=

(
n∑

r=1

ar

)
xn−1 +

(
n∑

r=1

(r − 1)ar

)
f0(x)xn−2 + O(xn−3)

= Σ1(a)xn−1 + W2(a)f0(x)xn−2 + O(xn−3).

Also

∆Pa(x, 1) = (x + a1)(x + a2) · · · (x + an)− xn

= Σ1(a)xn−1 + Σ2(a)xn−2 + O(xn−3).

But these two expressions are equal, so for largex it follows that

f0(x) =
Σ2(a)

W2(a)
+ O(x−1).

�

By Theorem 3.3, if we puty0 = x + α + f1(x) thenO(f1(x)) = O(x−1) asx→∞. Explicit
expansion of∆Pa(x, 1) andSa(x, x + α + f1(x)) as far as terms inxn−3 yields
Corollary 3.4. For any finite strictly positive sequencea ∈ (R+)n with n ≥ 3, the equality
∆Pa(x, 1) = Sa(x, y) holds for largex, y ∈ R+ when

y = x + α + βx−1 + O(x−2) (x→∞),

where

α :=
Σ2(a)

W2(a)
and β :=

Σ3(a)− α2W3(a)

W2(a)
.

From Lemma 3.1 we immediately deduce

J. Inequal. Pure and Appl. Math., 3(4) Art. 52, 2002 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


8 ROGERB. EGGLETON AND WILLIAM P. GALVIN

Corollary 3.5. If M(a) = m(a) = c, thenα = c andβ = 0.

Next we shall considery0 whenx is small but positive. It will be convenient to useG(a) to
denote the geometric mean of{ar : 1 ≤ r ≤ n − 1}, soG(a) := (a1a2 · · · an−1)

1
n−1 . For any

finite strictly positive sequencea ∈ (R+)n we definea−1 := (a−1
1 , a−1

2 , . . . , a−1
n ), soΣ1(a

−1)
is the sum of reciprocals of the terms ofa. Of course,Σ1(a

−1) = Σn−1(a)/Σn(a). This sum
enters into the small scale behaviour ofy0, as we now show.

Theorem 3.6. For strictly positivex, y ∈ R+ and any strictly positive sequencea ∈ (R+)n

with n ≥ 2, the equality∆Pa(x, 1) = Sa(x, y) holds for smallx when

y = γ + δx + O(x2) (x→ 0+),

where

γ := G(a) and δ :=
γanΣ1(a

−1)− an−1

(n− 1)an

.

Proof. For 0 < x < M(a) let y0 = g0(x), so∆Pa(x, 1) = Sa(x, g0(x)). Lemma 3.1 ensures
thatm(a) < g0(x) < 2M(a), soO(g0(x)) = O(1) asx→ 0 + . Then

Sa(x, g0(x)) =
n∑

r=1

an−r+1x
r−1g0(x)n−r = ang0(x)n−1 + O(x)

and
∆Pa(x, 1) = (a1a2 · · · an) + O(x),

so equality of these expressions implies that

g0(x) = G(a) + O(x).

Now lety0 = G(a) + g1(x), soO(g1(x)) = O(x) asx→ 0 + . Then

Sa(x, G(a) + g1(x))

=
n∑

r=1

an−r+1x
r−1(G(a) + g1(x))n−r

= anG(a)n−1 + (n− 1)anG(a)n−2g1(x) + an−1xG(a)n−2 + O(x2)

and

∆Pa(x, 1) = (a1a2 · · · an)

{
1 +

(
n∑

r=1

a−1
r

)
x + O(x2)

}
.

Equality of these two expressions implies that

g1(x) =
(anG(a)Σ1(a

−1)− an−1) x

(n− 1)an

+ O(x2),

and the theorem follows. �

From Lemma 3.1 we deduce

Corollary 3.7. If M(a) = m(a) = c, thenγ = c andδ = 1.

Let us now consider the geometry underlying Theorems 3.3 and 3.6. The positive quadrant
x, y ∈ R+ is divided into an “S-region”, where

∆Pa(x, 1) < Sa(x, y),

and a “∆P -region”, where
∆Pa(x, 1) > Sa(x, y).
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The boundary between these two regions is

E1(a) := {(x, y) ∈ (R+)2 : ∆Pa(x, 1) = Sa(x, y)}.
On this boundary curve the polynomials∆Pa(x, 1) andSa(x, y) are equal, so we callE1(a)
theequipoise curvefor a. Lemma 3.1 ensures thatE1(a) lies in the strip between the parallel
linesy = x + M(a) andy = x + m(a). By Theorem 3.3 the equipoise curve is asymptotic to
y = x + α, and by Theorem 3.6 it cuts they-axis aty = G(a), with slopeδ.

Whenn = 2, we haveM(a) = m(a) = α = G(a) = a1 andE1(a) is the liney = x + a1.
Whenn ≥ 3, asx → ∞ the equipoise curve approaches the asymptote from theS-region side
if β > 0, and from the∆P -region side ifβ < 0.

It appears likely that the equipoise curve never crosses the asymptote, though we were not
able to demonstrate this in general. The condition for such a crossing to occur is a polynomial
of degreen−3 in x, so such crossings are possible only whenn ≥ 4. However it seems unlikely
that there are ever any solutions withx > 0. Whenn = 3, it is clear thatE1(a) must be entirely
on one side of the asymptote unlessα2 = a1a2. In the latter case,β = 0 andE1(a) actually
coincides with the asymptote; this behaviour is demonstrated byE1(1, 4, 4) for example.

Throughout the preceding discussion in this section we have been comparing∆Pa(x, 1) with
Sa(x, y) in the positivex, y-quadrant. A simple observation enables us to deduce the corre-
sponding information comparing∆Pa(x, t) with tSa(x, y) in the positivex, y, t-orthant. For
anyt ∈ R+ anda ∈ (R+)n, let ta := (ta1, ta2, . . . , tan) ∈ (R+)n. Then

Pta(x, 1) = Pa(x, t) and Sta(x, y) = tSa(x, y),

so all the relevant facts about∆Pa(x, t) = tSa(x, y) follow from our earlier results in this
section by replacinga by ta. In particular, theequipoise surface

E2(a) := {(x, y, t) ∈ (R+)3 : ∆Pa(x, t) = tSa(x, y)}
lies in the region between the planesy = x + tM(a) andy = x + tm(a), which coincide
if M(a) = m(a), and otherwise intersect in the liney = x, t = 0. For any fixedt > 0 the
equipoise surface satisfies

y = x + αt + βt2x−1 + O(x−2) (x→∞)

and
y = γt + δx + O(x2) (x→ 0+).

However, the device of replacinga by ta does not provide any information about the comparison
of the product and sum polynomials for a general finite sequencea ∈ Rn. As hinted at by
Bernoulli’s Inequality, mentioned in Example 2.5, there is potentially much of interest in this
more general case.
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