NOTES ON CERTAIN SUBCLASS OF p-VALENTLY BAZILEVIČ FUNCTIONS

ZHI-GANG WANG
School of Mathematics and Computing Science
Changsha University of Science and Technology
Changsha 410076, Hunan,
People's Republic of China
EMail: zhigangwang@foxmail.com

Received:
Accepted:
Communicated by:
2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements:

04 February, 2007
07 July, 2008
A. Sofo

Primary 30C45.
Analytic functions, Multivalent functions, Bazilevič functions, subordination between analytic functions, Briot-Bouquet differential subordination.

In the present paper, we discuss a subclass $\mathcal{M}_{p}(\lambda, \mu, A, B)$ of p-valently Bazilevič functions, which was introduced and investigated recently by Patel [5]. Such results as inclusion relationship, coefficient inequality and radius of convexity for this class are proved. The results presented here generalize and improve some earlier results. Several other new results are also obtained.

The present investigation was supported by the National Natural Science Foundation under Grant 10671059 of People's Republic of China. The first-named author would like to thank Professors Chun-Yi Gao and Ming-Sheng Liu for their continuous support and encouragement. The authors would also like to thank the referee for his careful reading and making some valuable comments which have essentially improved the presentation of this paper.

YUE-PING JIANG
School of Mathematics and Econometrics
Hunan University
Changsha 410082, Hunan,
People's Republic of China
EMail: ypjiang731@163.com

Title Page
Contents

Page 1 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Contents

1 Introduction 3
2 Preliminary Results 6
3 Main Results 8

Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 2 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

1. Introduction

Let \mathcal{A}_{p} denote the class of functions of the form:

$$
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \quad(p \in \mathbb{N}:=\{1,2,3, \ldots\}),
$$

which are analytic in the open unit disk

$$
\mathbb{U}:=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

For simplicity, we write

$$
\mathcal{A}_{1}=: \mathcal{A}
$$

For two functions f and g, analytic in \mathbb{U}, we say that the function f is subordinate to g in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function ω, which is analytic in \mathbb{U} with

$$
\omega(0)=0 \quad \text { and } \quad|\omega(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(\omega(z)) \quad(z \in \mathbb{U})
$$

Indeed it is known that

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence:

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}) \Longleftrightarrow f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Go Back

Full Screen

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 3 of 15

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Let $\mathcal{M}_{p}(\lambda, \mu, A, B)$ denote the class of functions in \mathcal{A}_{p} satisfying the following subordination condition:

$$
\begin{gather*}
\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}+\lambda\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right] \prec p \frac{1+A z}{1+B z} \tag{1.1}\\
(-1 \leqq B<A \leqq 1 ; z \in \mathbb{U})
\end{gather*}
$$

for some real $\mu(\mu \geqq 0), \lambda(\lambda \geqq 0)$ and $g \in \mathcal{S}_{p}^{*}$, where \mathcal{S}_{p}^{*} denotes the usual class of p-valently starlike functions in \mathbb{U}.

For simplicity, we write

$$
\begin{aligned}
& \mathcal{M}_{p}\left(\lambda, \mu, 1-\frac{2 \alpha}{p},-1\right)=\mathcal{M}_{p}(\lambda, \mu, \alpha) \\
:= & \left\{f(z) \in \mathcal{A}_{p}: \Re\left(\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}+\lambda\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right]\right)>\alpha\right\},
\end{aligned}
$$

for some $\alpha(0 \leqq \alpha<p)$ and $z \in \mathbb{U}$.
The class $\overline{\mathcal{M}}_{p}(\lambda, \mu, A, B)$ was introduced and investigated recently by Patel [5]. The author obtained some interesting properties for this class in the case $\lambda>0$, he also proved the following result:

Theorem 1.1. Let

$$
\mu \geqq 0, \lambda>0 \quad \text { and } \quad-1 \leqq B<A \leqq 1
$$

If $f \in \mathcal{M}_{p}(\lambda, \mu, A, B)$, then

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{p f^{1-\mu}(z) g^{\mu}(z)} \prec \frac{\lambda}{p Q(z)}=q(z) \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

$\mathbf{4}$	
$\mathbf{4}$	
Page 4 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b
where

$$
Q(z)= \begin{cases}\int_{0}^{1} s^{\frac{p}{\lambda}-1}\left(\frac{1+B s z}{1+B z}\right)^{\frac{p(A-B)}{\lambda B}} d s & (B \neq 0) \\ \int_{0}^{1} s^{\frac{p}{\lambda}-1} \exp \left(\frac{p}{\lambda}(s-1) A z\right) d s & (B=0),\end{cases}
$$

and $q(z)$ is the best dominant of (1.2).
In the present paper, we shall derive such results as inclusion relationship, coefficient inequality and radius of convexity for the class $\mathcal{M}_{p}(\lambda, \mu, A, B)$ by making use of the techniques of Briot-Bouquet differential subordination. The results presented here generalize and improve some known results. Several other new results are also obtained.
p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 5 of 15
Go Back
Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Preliminary Results

In order to prove our main results, we shall require the following lemmas.
Lemma 2.1. Let

$$
\mu \geqq 0, \lambda \geqq 0 \quad \text { and } \quad-1 \leqq B<A \leqq 1
$$

Then

$$
\mathcal{M}_{p}(\lambda, \mu, A, B) \subset \mathcal{M}_{p}(0, \mu, A, B)
$$

Proof. Suppose that $f \in \mathcal{M}_{p}(\lambda, \mu, A, B)$. By virtue of (1.2), we know that

$$
\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)} \prec p \frac{1+A z}{1+B z} \quad(z \in \mathbb{U})
$$

which implies that $f \in \mathcal{M}_{p}(0, \mu, A, B)$. Therefore, the assertion of Lemma 2.1 holds true.

Lemma 2.2 (see [3]). Let

$$
-1 \leqq B_{1} \leqq B_{2}<A_{2} \leqq A_{1} \leqq 1
$$

Then

$$
\frac{1+A_{2} z}{1+B_{2} z} \prec \frac{1+A_{1} z}{1+B_{1} z} .
$$

Lemma 2.3 (see [4]). Let F be analytic and convex in \mathbb{U}. If

$$
f, g \in \mathcal{A} \quad \text { and } \quad f, g \prec F,
$$

then

$$
\lambda f+(1-\lambda) g \prec F \quad(0 \leqq \lambda \leqq 1)
$$

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 6 of 15
Go Back

Full Screen

Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.4 (see [6]). Let

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

be analytic in \mathbb{U} and

$$
g(z)=\sum_{k=0}^{\infty} b_{k} z^{k}
$$

be analytic and convex in \mathbb{U}. If $f \prec g$, then

$$
\left|a_{k}\right| \leqq\left|b_{1}\right| \quad(k \in \mathbb{N})
$$

p-Valently Bazilevič Functions

Zhi-Gang Wang and Yue-Ping Jiang

$$
\text { vol. 9, iss. 3, art. 70, } 2008
$$

Title Page
Contents

Page 7 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
© 2007 Victoria University. All rights reserved.

3. Main Results

We begin by stating our first inclusion relationship given by Theorem 3.1 below.
Theorem 3.1. Let

$$
\mu \geqq 0, \lambda_{2} \geqq \lambda_{1} \geqq 0 \quad \text { and } \quad-1 \leqq B_{1} \leqq B_{2}<A_{2} \leqq A_{1} \leqq 1
$$

Then

$$
\mathcal{M}_{p}\left(\lambda_{2}, \mu, A_{2}, B_{2}\right) \subset \mathcal{M}_{p}\left(\lambda_{1}, \mu, A_{1}, B_{1}\right)
$$

Proof. Suppose that $f \in \mathcal{M}_{p}\left(\lambda_{2}, \mu, A_{2}, B_{2}\right)$. We know that

$$
\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}+\lambda_{2}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right] \prec p \frac{1+A_{2} z}{1+B_{2} z}
$$

Since

$$
-1 \leqq B_{1} \leqq B_{2}<A_{2} \leqq A_{1} \leqq 1
$$

it follows from Lemma 2.2 that

$$
\text { (3.1) } \frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}+\lambda_{2}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right] \prec p \frac{1+A_{1} z}{1+B_{1} z}
$$

that is, that $f \in \mathcal{M}_{p}\left(\lambda_{2}, \mu, A_{1}, B_{1}\right)$. Thus, the assertion of Theorem 3.1 holds true for

$$
\lambda_{2}=\lambda_{1} \geqq 0
$$

If

$$
\lambda_{2}>\lambda_{1} \geqq 0
$$

by virtue of Lemma 2.1 and (3.1), we know that $f \in \mathcal{M}_{p}\left(0, \mu, A_{1}, B_{1}\right)$, that is

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)} \prec p \frac{1+A_{1} z}{1+B_{1} z} . \tag{3.2}
\end{equation*}
$$

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 8 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

At the same time, we have

$$
\begin{align*}
\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}+\lambda_{1}[1 & \left.+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right] \tag{3.3}\\
=\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) & \frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}+\frac{\lambda_{1}}{\lambda_{2}}\left\{\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}\right. \\
& \left.+\lambda_{2}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right]\right\}
\end{align*}
$$

It is obvious that

$$
h_{1}(z)=\frac{1+A_{1} z}{1+B_{1} z}
$$

is analytic and convex in \mathbb{U}. Thus, we find from Lemma 2.3, (3.1), (3.2) and (3.3) that

$$
\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}+\lambda_{1}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-(1-\mu) \frac{z f^{\prime}(z)}{f(z)}-\mu \frac{z g^{\prime}(z)}{g(z)}\right] \prec p \frac{1+A_{1} z}{1+B_{1} z}
$$

that is, that $f \in \mathcal{M}_{p}\left(\lambda_{1}, \mu, A_{1}, B_{1}\right)$. This implies that

$$
\mathcal{M}_{p}\left(\lambda_{2}, \mu, A_{2}, B_{2}\right) \subset \mathcal{M}_{p}\left(\lambda_{1}, \mu, A_{1}, B_{1}\right) .
$$

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page

Contents

Page 9 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Theorem 3.3. If $f \in \mathcal{A}_{p}$ satisfies the following conditions:
$\Re\left(\frac{f(z)}{z^{p}}\right)>0 \quad$ and $\quad\left|\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}-p\right|<\nu p \quad\left(0 \leqq \mu<\frac{1}{2} ; 0<\nu \leqq 1 ; z \in \mathbb{U}\right)$
for $g \in \mathcal{S}_{p}^{*}$, then f is p-valently convex (univalent) in $|z|<R(p, \mu, \nu)$, where

$$
R(p, \mu, \nu)=\frac{2 p \mu+2 \mu-\nu-2+\sqrt{(2 p \mu+2 \mu-\nu-2)^{2}+4(\nu+p)(p-2 p \mu)}}{2(\nu+p)}
$$

Proof. Suppose that

$$
h(z):=\frac{z f^{\prime}(z)}{p f^{1-\mu}(z) g^{\mu}(z)}-1 \quad(z \in \mathbb{U})
$$

Then h is analytic in \mathbb{U} with

$$
h(0)=0 \quad \text { and } \quad|h(z)|<1 \quad(z \in \mathbb{U})
$$

Thus, by applying Schwarz's Lemma, we get

$$
h(z)=\nu z \psi(z) \quad(0<\nu \leqq 1)
$$

Page 10 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

We now suppose that

$$
\begin{equation*}
\phi(z):=\frac{f(z)}{z^{p}}=1+c_{1} z+c_{2} z^{2}+\cdots, \tag{3.6}
\end{equation*}
$$

by hypothesis, we know that

$$
\begin{equation*}
\Re(\phi(z))>0 \quad(z \in \mathbb{U}) \tag{3.7}
\end{equation*}
$$

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 11 of 15
Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\geqq-\frac{(\nu+p) r^{2}-(2 p \mu+2 \mu-\nu-2) r-(p-2 p \mu)}{1-r^{2}}
$$

which is certainly positive if $r<R(p, \mu, \nu)$.
Putting $\nu=1$ in Theorem 3.3, we get the following result.
Corollary 3.4. If $f \in \mathcal{A}_{p}$ satisfies the following conditions:

$$
\Re\left(\frac{f(z)}{z^{p}}\right)>0 \quad \text { and } \quad\left|\frac{z f^{\prime}(z)}{f^{1-\mu}(z) g^{\mu}(z)}-p\right|<p \quad\left(0 \leqq \mu<\frac{1}{2} ; z \in \mathbb{U}\right)
$$

for $g \in \mathcal{S}_{p}^{*}$, then f is p-valently convex (univalent) in $|z|<R(p, \mu)$, where

$$
R(p, \mu)=\frac{2 p \mu+2 \mu-3+\sqrt{(2 p \mu+2 \mu-3)^{2}+4(1+p)(p-2 p \mu)}}{2(1+p)} .
$$

Remark 2. Corollary 3.4 corrects the mistakes of Theorem 3.8 which was obtained by Patel [5].

Theorem 3.5. Let

$$
\mu \geqq 0, \lambda \geqq 0 \quad \text { and } \quad-1 \leqq B<A \leqq 1
$$

If

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad(z \in \mathbb{U})
$$

satisfies the following subordination condition:

$$
\begin{equation*}
f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\lambda\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1-\mu)\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)\right] \prec \frac{1+A z}{1+B z} \tag{3.10}
\end{equation*}
$$

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page

Contents

Page 12 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
then

$$
\begin{equation*}
\left|a_{n+1}\right| \leqq \frac{A-B}{(1+n \lambda)(n+\mu)} \quad(n \in \mathbb{N}) \tag{3.11}
\end{equation*}
$$

Proof. Suppose that

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \quad(z \in \mathbb{U})
$$

satisfies (3.10). It follows that

$$
\begin{align*}
& f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\lambda\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1-\mu)\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)\right] \tag{3.12}\\
&=1+(1+n \lambda)(n+\mu) a_{n+1} z^{n}+\cdots \prec \frac{1+A z}{1+B z} \quad(z \in \mathbb{U})
\end{align*}
$$

Therefore, we find from Lemma 2.4, (3.12) and $-1 \leqq B<A \leqq 1$ that

$$
\begin{equation*}
\left|(1+n \lambda)(n+\mu) a_{n+1}\right| \leqq A-B . \tag{3.13}
\end{equation*}
$$

The assertion (3.11) of Theorem 3.5 can now easily be derived from (3.13).
Taking $A=1-2 \alpha(0 \leqq \alpha<1)$ and $B=-1$ in Theorem 3.5, we get the following result.
Corollary 3.6. Let

$$
\mu \geqq 0, \lambda \geqq 0 \quad \text { and } \quad 0 \leqq \alpha<1
$$

If

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 13 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
satisfies the following inequality:

$$
\Re\left(f^{\prime}(z)\left(\frac{f(z)}{z}\right)^{\mu-1}+\lambda\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(1-\mu)\left(1-\frac{z f^{\prime}(z)}{f(z)}\right)\right]\right)>\alpha
$$

then

$$
\left|a_{n+1}\right| \leqq \frac{2(1-\alpha)}{(1+n \lambda)(n+\mu)} \quad(n \in \mathbb{N})
$$

Remark 3. Corollary 3.6 provides an extension of the corresponding result obtained by Guo and Liu [2].
p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 14 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] W.M. CAUSEY and E.P. MERKES, Radii of starlikeness for certain classes of analytic functions, J. Math. Anal. Appl., 31 (1970), 579-586.
[2] D. GUO AND M.-S. LIU, On certain subclass of Bazilevič functions, J. Inequal. Pure Appl. Math., 8(1) (2007), Art. 12. [ONLINE: http://jipam. vu.edu.au/article.php?sid=825].
[3] M.-S. LIU, On a subclass of p-valent close-to-convex functions of order β and type α, J. Math. Study, 30 (1997), 102-104 (in Chinese).
[4] M.-S. LIU, On certain subclass of analytic functions, J. South China Normal Univ., 4 (2002), 15-20 (in Chinese).
[5] J. PATEL, On certain subclass of p-valently Bazilevič functions, J. Inequal. Pure Appl. Math., 6(1) (2005), Art. 16. [ONLINE: http: / / jipam.vu.edu. au/ article.php?sid=485].
[6] W. ROGOSINSKI, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2), 48 (1943), 48-82.
p-Valently Bazilevič Functions
Zhi-Gang Wang and Yue-Ping Jiang vol. 9, iss. 3, art. 70, 2008

Title Page
Contents

Page 15 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

