HADAMARD PRODUCT VERSIONS OF THE CHEBYSHEV AND KANTOROVICH INEQUALITIES

JAGJIT SINGH MATHARU AND JASPAL SINGH AUJLA
Department of Mathematics
National Institute of Technology
Jalandhar 144011, PunJab, INDIA
matharujs@yahoo.com
aujlajs@nitj.ac.in

Received 10 February, 2009; accepted 15 April, 2009
Communicated by S. Puntanen

Abstract

The purpose of this note is to prove Hadamard product versions of the Chebyshev and the Kantorovich inequalities for positive real numbers. We also prove a generalization of Fiedler's inequality.

Key words and phrases: Chebyshev inequality, Kantorovich inequality, Hadamard product.
2000 Mathematics Subject Classification Primary 15A48; Secondary 15A18, 15A45.

1. Introduction

In what follows, the capital letters A, B, C, \ldots denote $m \times m$ complex matrices, whereas the small letters a, b, c, \ldots denote real numbers, unless mentioned otherwise. By $X \geq Y$ we mean that $X-Y$ is positive semidefinite ($X>Y$ mean $X-Y$ is positive definite). For $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right), A \circ B=\left(a_{i j} b_{i j}\right)$ denotes the Hadamard product of A and B. According to Schur's theorem [4, Page 23] the Hadamard product is monotone in the sense that $A \geq B, C \geq D$ implies $A \circ C \geq B \circ D$. The tensor product $A \otimes B$ is the $m^{2} \times m^{2}$ matrix

$$
\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 m} B \tag{1.1}\\
\vdots & & \vdots \\
a_{m 1} B & \cdots & a_{m m} B
\end{array}\right) .
$$

Marcus and Khan in [10] made the simple but important observation that the Hadamard product is a principal submatrix of the tensor product. The inequality

$$
\begin{equation*}
\left(\sum_{i=1}^{n} w_{i} a_{i}\right)\left(\sum_{i=1}^{n} w_{i} b_{i}\right) \leq \sum_{i=1}^{n} w_{i} a_{i} b_{i} \tag{1.2}
\end{equation*}
$$

The authors thank a referee for useful suggestions.
043-09
holds for all $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq 0, b_{1} \geq b_{2} \geq \cdots \geq b_{n} \geq 0$ and weights $w_{i} \geq 0, i=$ $1, \ldots, n$. Hardy, Littlewood and Polya [6, page 43] attribute this inequality to Chebyshev. For $0<a \leq a_{i} \leq b, w_{i} \geq 0, i=1,2, \ldots, n$, Kantorovich's inequality states that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} w_{i} a_{i}\right)\left(\sum_{i=1}^{n} \frac{w_{i}}{a_{i}}\right) \leq \frac{(a+b)^{2}}{4 a b}\left(\sum_{i=1}^{n} w_{i}\right)^{2} . \tag{1.3}
\end{equation*}
$$

In Section 2, we state and prove matrix versions of inequalities (1.2) and (1.3) involving the Hadamard product. A generalization of Fiedler's inequality is also proved in this section. There are several generalizations of Kantorovich and Fiedler's inequality; see [2, 3, 8, 9].

2. The Chebyshev and Kantorovich Inequalities: Matrix Versions

We begin with a Hadamard product version of inequality (1.2).
Theorem 2.1. Let $A_{1} \geq \cdots \geq A_{n} \geq 0$ and $B_{1} \geq \cdots \geq B_{n} \geq 0$. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \circ\left(\sum_{i=1}^{n} w_{i} B_{i}\right) \leq\left(\sum_{i=1}^{n} w_{i}\right)\left(\sum_{i=1}^{n} w_{i}\left(A_{i} \circ B_{i}\right)\right) \tag{2.1}
\end{equation*}
$$

where $w_{i} \geq 0, i=1, \ldots, n$, are weights.
Proof. We have

$$
\begin{align*}
& \left(\sum_{i=1}^{n} w_{i}\right)\left(\sum_{i=1}^{n} w_{i}\left(A_{i} \circ B_{i}\right)\right)-\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \circ\left(\sum_{i=1}^{n} w_{i} B_{i}\right) \tag{2.2}\\
& =\sum_{i, j=1}^{n}\left(w_{i} w_{j}\left(A_{j} \circ B_{j}\right)-w_{i} w_{j}\left(A_{i} \circ B_{j}\right)\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{n}\left(w_{i} w_{j}\left(A_{j} \circ B_{j}\right)-w_{i} w_{j}\left(A_{i} \circ B_{j}\right)+w_{j} w_{i}\left(A_{i} \circ B_{i}\right)-w_{j} w_{i}\left(A_{j} \circ B_{i}\right)\right) \\
& =\frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j}\left(A_{i}-A_{j}\right) \circ\left(B_{i}-B_{j}\right) .
\end{align*}
$$

Since the Hadamard product of two positive semidefinite matrices is positive semidefinite, therefore the summand in 2.2 is positive semidefinite.

Our next result is a Hadamard product version of inequality (1.3) .
Theorem 2.2. Let A_{1}, \ldots, A_{n} be such that $0<a I_{m} \leq A_{i} \leq b I_{m}, i=1, \ldots, n$ (here I_{m} denotes the $m \times m$ identity matrix). Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i} W_{i}^{1 / 2}\right) \circ\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{-1} W_{i}^{1 / 2}\right) \leq \frac{a^{2}+b^{2}}{2 a b}\left(\sum_{i=1}^{n} W_{i}\right) \circ\left(\sum_{i=1}^{n} W_{i}\right) \tag{2.3}
\end{equation*}
$$

for all $W_{i} \geq 0, i=1, \ldots, n$.
Proof. We first prove the inequality

$$
\begin{equation*}
P^{1 / 2} A P^{1 / 2} \circ Q^{1 / 2} B^{-1} Q^{1 / 2}+P^{1 / 2} A^{-1} P^{1 / 2} \circ Q^{1 / 2} B Q^{1 / 2} \leq \frac{a^{2}+b^{2}}{a b}(P \circ Q) \tag{2.4}
\end{equation*}
$$

when $0<a I_{m} \leq A, B \leq b I_{m}$ and $P, Q \geq 0$. Let $A=U D U^{*}$ and $B=V \Gamma V^{*}$ with unitary U and V, and diagonal matrices D and Γ. Then

$$
\begin{aligned}
A \otimes B^{-1}+A^{-1} \otimes B & =(U \otimes V)\left(D \otimes \Gamma+\Gamma^{-1} \otimes D\right)(U \otimes V)^{*} \\
& \leq(U \otimes V)\left(\frac{a^{2}+b^{2}}{a b}\left(I_{m} \otimes I_{m}\right)\right)(U \otimes V)^{*} \\
& =\frac{a^{2}+b^{2}}{a b}\left(I_{m} \otimes I_{m}\right),
\end{aligned}
$$

where the inequality follows from (1.3). Thus we have

$$
\begin{align*}
P^{1 / 2} A P^{1 / 2} \otimes Q^{1 / 2} B^{-1} Q^{1 / 2} & +P^{1 / 2} A^{-1} P^{1 / 2} \otimes Q^{1 / 2} B Q^{1 / 2} \tag{2.5}\\
& =\left(P^{1 / 2} \otimes Q^{1 / 2}\right)\left(A \otimes B^{-1}+A^{-1} \otimes B\right)\left(P^{1 / 2} \otimes Q^{1 / 2}\right) \\
& \leq \frac{a^{2}+b^{2}}{a b}(P \otimes Q)
\end{align*}
$$

Since the Hadamard product is a principal submatrix of the tensor product, the inequality (2.4) follows from (2.5). On taking $B=A$ and $Q=P$ in (2.4) we see that (2.3) holds for $n=1$. Further, by (2.4) we have

$$
W_{i}^{1 / 2} A_{i} W_{i}^{1 / 2} \circ W_{j}^{1 / 2} A_{j}^{-1} W_{j}^{1 / 2}+W_{i}^{1 / 2} A_{i}^{-1} W_{i}^{1 / 2} \circ W_{j}^{1 / 2} A_{j} W_{j}^{1 / 2} \leq \frac{a^{2}+b^{2}}{a b}\left(W_{i} \circ W_{j}\right)
$$

for $i, j=1, \ldots, n$. Summing over i, j, we have

$$
\begin{equation*}
2 \sum_{i, j=1}^{n}\left[\left(W_{i}^{1 / 2} A_{i} W_{i}^{1 / 2}\right) \circ\left(W_{j}^{1 / 2} A_{j}^{-1} W_{j}^{1 / 2}\right)\right] \leq\left(\frac{a^{2}+b^{2}}{a b}\right) \sum_{i, j=1}^{n}\left(W_{i} \circ W_{j}\right), \tag{2.6}
\end{equation*}
$$

which implies that

$$
\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i} W_{i}^{1 / 2}\right) \circ\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{-1} W_{i}^{1 / 2}\right) \leq\left(\frac{a^{2}+b^{2}}{2 a b}\right)\left(\sum_{i=1}^{n} W_{i}\right) \circ\left(\sum_{i=1}^{n} W_{i}\right) .
$$

The next corollary follows on taking $W_{i}=w_{i} I_{m}, i=1, \ldots, n$.
Corollary 2.3. Let A_{1}, \ldots, A_{n} be such that $0<a I_{m} \leq A_{i} \leq b I_{m}$, and $w_{i} \geq 0, i=1, \ldots, n$ be weights. Then

$$
\left(\sum_{i=1}^{n} w_{i} A_{i}\right) \circ\left(\sum_{i=1}^{n} w_{i} A_{i}^{-1}\right) \leq\left(\frac{a^{2}+b^{2}}{2 a b}\right)\left(\sum_{i=1}^{n} w_{i}\right)^{2} I_{m} .
$$

Remark 1. The case $n=1$ of Corollary 2.3] is proved in [7]. The example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right), \quad a=\frac{3-\sqrt{5}}{2}, \quad b=\frac{3+\sqrt{5}}{2}
$$

shows that the inequality

$$
A \circ A^{-1} \leq \frac{(a+b)^{2}}{4 a b} I_{2}
$$

need not be true.
For our next result we need the following lemma.
Lemma 2.4. Let $0 \leq r \leq 1$. Then $A^{r}+A^{-r} \leq A+A^{-1}$ for all $A>0$.

Proof. Suppose that $A=U \Gamma U^{*}$ with unitary U and diagonal matrix Γ. Then

$$
\begin{aligned}
A^{r}+A^{-r} & =U\left(\Gamma^{r}+\Gamma^{-r}\right) U^{*} \\
& \leq U\left(\Gamma+\Gamma^{-1}\right) U^{*}=A+A^{-1}
\end{aligned}
$$

since $x^{r}+x^{-r} \leq x+x^{-1}$ for any positive real number x and $0 \leq r \leq 1$.
Theorem 2.5. Let $0 \leq \alpha<\beta$. Then

$$
\begin{aligned}
\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{\alpha} W_{i}^{1 / 2}\right) \circ\left(\sum_{i=1}^{n}\right. & \left.W_{i}^{1 / 2} A_{i}^{-\alpha} W_{i}^{1 / 2}\right) \\
& \leq\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{\beta} W_{i}^{1 / 2}\right) \circ\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{-\beta} W_{i}^{1 / 2}\right)
\end{aligned}
$$

for all $A_{i}>0$ and $W_{i} \geq 0, i=1, \ldots, n$.
Proof. We first prove the inequality

$$
\begin{align*}
& \left(W_{i}^{1 / 2} A_{i}^{\alpha} W_{i}^{1 / 2}\right) \circ\left(W_{j}^{1 / 2} A_{j}^{-\alpha} W_{j}^{1 / 2}\right)+\left(W_{i}^{1 / 2} A_{i}^{-\alpha} W_{i}^{1 / 2}\right) \circ\left(W_{j}^{1 / 2} A_{j}^{\alpha} W_{j}^{1 / 2}\right) \tag{2.7}\\
& \quad \leq\left(W_{i}^{1 / 2} A_{i}^{\beta} W_{i}^{1 / 2}\right) \circ\left(W_{j}^{1 / 2} A_{j}^{-\beta} W_{j}^{1 / 2}\right)+\left(W_{i}^{1 / 2} A_{i}^{-\beta} W_{i}^{1 / 2}\right) \circ\left(W_{j}^{1 / 2} A_{j}^{\beta} W_{j}^{1 / 2}\right)
\end{align*}
$$

for $0 \leq \alpha<\beta$. Let $0 \leq r \leq 1$. Then

$$
\begin{aligned}
& \left(W_{i}^{1 / 2} A_{i}^{r} W_{i}^{1 / 2}\right) \otimes\left(W_{j}^{1 / 2} A_{j}^{-r} W_{j}^{1 / 2}\right)+\left(W_{i}^{1 / 2} A_{i}^{-r} W_{i}^{1 / 2}\right) \otimes\left(W_{j}^{1 / 2} A_{j}^{r} W_{j}^{1 / 2}\right) \\
& =\left(W_{i}^{1 / 2} \otimes W_{j}^{1 / 2}\right)\left(A_{i}^{r} \otimes A_{j}^{-r}+A_{i}^{-r} \otimes A_{j}^{r}\right)\left(W_{i}^{1 / 2} \otimes W_{j}^{1 / 2}\right) \\
& =\left(W_{i}^{1 / 2} \otimes W_{j}^{1 / 2}\right)\left(\left(A_{i} \otimes A_{j}^{-1}\right)^{r}+\left(A_{i} \otimes A_{j}^{-1}\right)^{-r}\right)\left(W_{i}^{1 / 2} \otimes W_{j}^{1 / 2}\right) \\
& \leq\left(W_{i}^{1 / 2} \otimes W_{j}^{1 / 2}\right)\left(\left(A_{i} \otimes A_{j}^{-1}\right)+\left(A_{i} \otimes A_{j}^{-1}\right)^{-1}\right)\left(W_{i}^{1 / 2} \otimes W_{j}^{1 / 2}\right)
\end{aligned}
$$

where the inequality follows from Lemma 2.4. Taking $r=\alpha / \beta$ and replacing A_{i} by A_{i}^{β} and A_{j} by A_{j}^{β}, we have

$$
\begin{aligned}
& \left(W_{i}^{1 / 2} A_{i}^{\alpha} W_{i}^{1 / 2}\right) \otimes\left(W_{j}^{1 / 2} A_{j}^{-\alpha} W_{j}^{1 / 2}\right)+\left(W_{i}^{1 / 2} A_{i}^{-\alpha} W_{i}^{1 / 2}\right) \otimes\left(W_{j}^{1 / 2} A_{j}^{\alpha} W_{j}^{1 / 2}\right) \\
& \quad \leq\left(W_{i}^{1 / 2} A_{i}^{\beta} W_{i}^{1 / 2}\right) \otimes\left(W_{j}^{1 / 2} A_{j}^{-\beta} W_{j}^{1 / 2}\right)+\left(W_{i}^{1 / 2} A_{i}^{-\beta} W_{i}^{1 / 2}\right) \otimes\left(W_{j}^{1 / 2} A_{j}^{\beta} W_{j}^{1 / 2}\right)
\end{aligned}
$$

Again using the fact that the Hadamard product is a principal submatrix of the tensor product, the preceding inequality implies (2.7). Summing over i, j in (2.7), we have

$$
\begin{aligned}
&\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{\alpha} W_{i}^{1 / 2}\right) \circ\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{-\alpha} W_{i}^{1 / 2}\right) \\
& \leq\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{\beta} W_{i}^{1 / 2}\right) \circ\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{-\beta} W_{i}^{1 / 2}\right)
\end{aligned}
$$

Corollary 2.6. Let $0 \leq \alpha<\beta$. Then

$$
\left(\sum_{i=1}^{n} A_{i}^{\alpha}\right) \circ\left(\sum_{j=1}^{n} A_{j}^{-\alpha}\right) \leq\left(\sum_{i=1}^{n} A_{i}^{\beta}\right) \circ\left(\sum_{j=1}^{n} A_{j}^{-\beta}\right)
$$

for all $A_{i}>0, i=1, \ldots, n$.
Proof. Taking $W_{i}=I_{m}$ in Theorem 2.5 we get the desired result.
Corollary 2.7. Let $0 \leq \beta$. Then

$$
I_{m} \leq\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{\beta} W_{i}^{1 / 2}\right) \circ\left(\sum_{i=1}^{n} W_{i}^{1 / 2} A_{i}^{-\beta} W_{i}^{1 / 2}\right)
$$

for all $A_{i}>0$ and $W_{i} \geq 0, i=1, \ldots, n$, where $\sum_{i=1}^{n} W_{i}=I_{m}$.
Proof. Taking $\alpha=0$ in Theorem 2.5 gives the desired inequality.
Remark 2. Corollary 2.7]is another generalization of Fiedler's inequality [5]

$$
A \circ A^{-1} \geq I_{m}
$$

Next we prove a convexity theorem involving the Hadamard product.

Theorem 2.8. The function

$$
f(t)=A^{1+t} \circ B^{1-t}+A^{1-t} \circ B^{1+t}
$$

is convex on the interval $[-1,1]$ and attains its minimum at $t=0$ for all $A, B>0$.
Proof. Since f is continuous we need to prove only that f is mid-point convex. Note that for $A, B>0$ and s, t in $[-1,1]$ the matrices

$$
\begin{array}{ll}
\left(\begin{array}{cc}
A^{1+s+t} & A^{1+s} \\
A^{1+s} & A^{1+(s-t)}
\end{array}\right), & \left(\begin{array}{cc}
A^{1-(s+t)} & A^{1-s} \\
A^{1-s} & A^{1-(s-t)}
\end{array}\right), \\
\left(\begin{array}{cc}
B^{1+s+t} & B^{1+s} \\
B^{1+s} & B^{1+(s-t)}
\end{array}\right), & \left(\begin{array}{cc}
B^{1-(s+t)} & B^{1-s} \\
B^{1-s} & B^{1-(s-t)}
\end{array}\right)
\end{array}
$$

are positive semidefinite. Hence the matrix

$$
X=\left(\begin{array}{cc}
A^{1+s+t} \circ B^{1-(s+t)}+A^{1-(s+t)} \circ B^{1+s+t} & A^{1+s} \circ B^{1-s}+A^{1-s} \circ B^{1+s} \\
A^{1+s} \circ B^{1-s}+A^{1-s} \circ B^{1+s} & A^{1+(s-t)} \circ B^{1-(s-t)}+A^{1-(s-t)} \circ B^{1+(s-t)}
\end{array}\right)
$$

is positive semidefinite. Similarly, the matrix
$Y=\left(\begin{array}{cc}A^{1+(s-t)} \circ B^{1-(s-t)}+A^{1-(s-t)} \circ B^{1+(s-t)} & A^{1+s} \circ B^{1-s}+A^{1-s} \circ B^{1+s} \\ A^{1+s} \circ B^{1-s}+A^{1-s} \circ B^{1+s} & A^{1+(s+t)} \circ B^{1-(s+t)}+A^{1-(s+t)} \circ B^{1+s+t}\end{array}\right)$
is positive semidefinite. Hence

$$
X+Y=\left(\begin{array}{cc}
f(s+t)+f(s-t) & 2 f(s) \tag{2.8}\\
2 f(s) & f(s+t)+f(s-t)
\end{array}\right)
$$

is positive semidefinite, which implies that

$$
f(s) \leq \frac{1}{2}[f(s+t)+f(s-t)] .
$$

This proves the convexity of f. Further, note that $f(t)=f(-t)$. This together with the convexity of f implies that f attains its minimum at 0 .

Corollary 2.9. The function

$$
g(t)=A^{t} \circ B^{1-t}+A^{1-t} \circ B^{t}
$$

is decreasing on $[0,1 / 2]$, increasing on $[1 / 2,1]$, and attains its minimum at $t=\frac{1}{2}$ for all $A, B>0$.
Proof. The proof follows on replacing A, B by $A^{1 / 2}, B^{1 / 2}$ and t by $\frac{1+t}{2}$ in Theorem 2.8.

A norm $|\| \cdot||\mid$ on $m \times m$ complex matrices is called unitarily invariant if $\||U X V|||=||X|||$ for all unitary matrices U, V. If A is positive semidefinite and X is any matrix, then

$$
\left|\left\|A \circ X \left|\left\|\leq \max a_{i i}\right\|\|X \mid\|\right.\right.\right.
$$

for all unitarily invariant norms ||| |||| [1]. Thus the proof of the following corollary follows from Corollary 2.9 using the fact that $g(1 / 2) \leq g(t) \leq g(1)=g(0)$.
Corollary 2.10. Let $0 \leq t \leq 1$. Then,

$$
2\left|\left\|A ^ { 1 / 2 } \circ B ^ { 1 / 2 } | \| \leq \| | \left|A^{t} \circ B^{1-t}+A^{1-t} \circ B^{t}\| \| \leq\|||A+B \||\right.\right.\right.
$$

for all unitarily invariant norms $|\|\cdot\|| \mid$ and all $A, B>0$.

References

[1] T. ANDO, R.A. HORN and C.R. JOHNSON, The singular values of the Hadamard product: A basic inequality, Linear Multilinear Algebra, 21 (1987), 345-365.
[2] J.K. BAKSALARY AND S. PUNTANEN, Generalized matrix versions of the Cauchy-Schwarz and Kantorovich inequalities, Aequationes Math., 41 (1991), 103-110.
[3] R.B. BAPAT and M.K. KWONG, A generalisation of $A \circ A^{-1} \geq I$, Linear Algebra Appl., 93 (1987), 107-112.
[4] R. BHATIA, Matrix Analysis, Springer Verlag, New York, 1997.
[5] M. FIEDLER, Über eine Ungleichung für positiv definite Matrizen, Math. Nachrichten, 23 (1961), 197-199.
[6] G.H. HARDY, J.E. LITTLEWOOD and G. POLYA, Inequalities, Cambridge University Press, Cambridge, 1959.
[7] J. MIĆIĆ, J. PECARIC And Y. SEO, Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method, Linear Algebra Appl., 318 (2000), 87-107.
[8] A.W. MARSHALL and I. OLKIN, Matrix versions of the Cauchy and Kantorovich inequalities, Aequationes Math., 40 (1990), 89-93.
[9] M. SINGH, J.S. AUJLA AND H.L. VASUDEVA, Inequalities for Hadamard product and unitarily invariant norms of matrices, Linear Multilinear Algebra, 48 (2000), 247-262.
[10] M. MARCUS and N.A. KHAN, A note on Hadamard product, Canad. Math. Bull., 2 (1950), 81-83.

