

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 3, Issue 5, Article 75, 2002

A NEW INEQUALITY SIMILAR TO HILBERT'S INEQUALITY

BICHENG YANG

DEPARTMENT OF MATHEMATICS GUANGDONG EDUCATION COLLEGE, GUANGZHOU, GUANGDONG 510303, PEOPLE'S REPUBLIC OF CHINA. bcyang@pub.guangzhou.gd.cn

Received 17 May, 2001; accepted 17 June, 2002 Communicated by J.E. Pečarić

ABSTRACT. In this paper, we build a new inequality similar to Hilbert's inequality with a best constant factor. As an application, we consider its equivalent form.

Key words and phrases: Hilbert's inequality, Weight coefficient, Cauchy's inequality.

2000 Mathematics Subject Classification. 26D15.

1. Introduction

If $0<\sum_{n=0}^\infty a_n^2<\infty$ and $0<\sum_{n=0}^\infty b_n^2<\infty$, then the famous Hilbert's inequality (see Hardy et al. [1]) is given by

(1.1)
$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{a_m b_n}{m+n+1} < \pi \left(\sum_{n=0}^{\infty} a_n^2 \sum_{n=0}^{\infty} b_n^2 \right)^{\frac{1}{2}},$$

where the constant factor π is the best possible. Recently, Yang and Debnath [2, 3] and Yang [4, 5] gave (1.1) some extensions and improvements, and Kuang and Debnath [6] considered its strengthened versions and generalizations.

The major objective of this paper is to build a new inequality similar to (1.1), which relates to the double series form as

(1.2)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{\ln m + \ln n + 1} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{\ln emn}.$$

For this, we must estimate the following weight coefficient

(1.3)
$$\omega(n) = \sum_{m=1}^{\infty} \frac{1}{m \ln emn} \left(\frac{\ln \sqrt{e}n}{\ln \sqrt{e}m} \right)^{\frac{1}{2}} (n \in N),$$

and do some preparatory works.

ISSN (electronic): 1443-5756

© 2002 Victoria University. All rights reserved.

044-01

2. SOME LEMMAS

Let f have its first four derivatives on $[1, \infty)$ and $(-1)^n f^{(n)}(x) > 0$ $(n = 0, \dots, 4)$, and $f(x), f'(x) \longrightarrow 0$ $(x \to \infty)$, then (see [6, (2.1)])

(2.1)
$$\sum_{k=1}^{\infty} f(k) < \int_{1}^{\infty} f(x)dx + \frac{1}{2}f(1) - \frac{1}{12}f'(1).$$

Lemma 2.1. For $n \in N$, define R(n) as

(2.2)
$$R(n) = \frac{1}{(2\ln\sqrt{e}n)^{\frac{1}{2}}} \int_0^{\frac{1}{2\ln\sqrt{e}n}} \frac{1}{(1+u)u^{\frac{1}{2}}} du - \frac{2}{3\ln en} - \frac{1}{12(\ln en)^2}.$$

Then we have $R(n) > 0 (n \in N)$.

2

Proof. Integrating by parts, we have

$$\int_{0}^{\frac{1}{2\ln\sqrt{e}n}} \frac{1}{(1+u)u^{\frac{1}{2}}} du = 2 \int_{0}^{\frac{1}{2\ln\sqrt{e}n}} \frac{1}{(1+u)} du^{\frac{1}{2}}$$

$$= (2\ln\sqrt{e}n)^{\frac{1}{2}} \frac{1}{\ln en} + 2 \int_{0}^{\frac{1}{2\ln\sqrt{e}n}} u^{\frac{1}{2}} \frac{1}{(1+u)^{2}} du$$

$$= (2\ln\sqrt{e}n)^{\frac{1}{2}} \frac{1}{\ln en} + \frac{4}{3} \int_{0}^{\frac{1}{2\ln\sqrt{e}n}} \frac{1}{(1+u)^{2}} du^{3/2}$$

$$= (2\ln\sqrt{e}n)^{\frac{1}{2}} \frac{1}{\ln en} + \frac{1}{3} (2\ln\sqrt{e}n)^{\frac{1}{2}} \frac{1}{(\ln en)^{2}}$$

$$+ \frac{8}{3} \int_{0}^{\frac{1}{2\ln\sqrt{e}n}} u^{3/2} \frac{1}{(1+u)^{3}} du$$

$$> (2\ln\sqrt{e}n)^{\frac{1}{2}} \frac{1}{\ln en} + \frac{1}{3} (2\ln\sqrt{e}n)^{\frac{1}{2}} \frac{1}{(\ln en)^{2}}.$$

Hence by (2.2), we have

$$R(n) > \frac{1}{\ln en} + \frac{1}{3(\ln en)^2} - \frac{2}{3\ln en} - \frac{1}{12(\ln en)^2} = \frac{1}{3\ln en} + \frac{1}{4(\ln en)^2} > 0.$$

The lemma is thus proved.

Lemma 2.2. If $\omega(n)$ is defined by (1.3), then $\omega(n) < \pi$, for $n \in N$.

Proof. For fixed $n \in N$, setting

$$f_n(x) = \frac{1}{x \ln enx} \left(\frac{\ln \sqrt{e}n}{\ln \sqrt{e}x} \right)^{\frac{1}{2}}, \ x \in [1, \infty),$$

we find $f_n(1) = \frac{1}{\ln en} (2 \ln \sqrt{en})^{\frac{1}{2}}$, and

$$f'_n(x) = -\frac{1}{x^2 \ln enx} \left(\frac{\ln \sqrt{e}n}{\ln \sqrt{e}x} \right)^{\frac{1}{2}} - \frac{1}{x^2 \ln^2 enx} \left(\frac{\ln \sqrt{e}n}{\ln \sqrt{e}x} \right)^{\frac{1}{2}} - \frac{1}{2x^2 \ln enx} \cdot \frac{(\ln \sqrt{e}n)^{\frac{1}{2}}}{(\ln \sqrt{e}x)^{\frac{3}{2}}},$$

$$f'_n(1) = -\left(\frac{2}{\ln en} + \frac{1}{\ln^2 en} \right) (2 \ln \sqrt{e}n)^{\frac{1}{2}}.$$

Setting $u=\frac{\ln \sqrt{e}x}{\ln \sqrt{e}n}$ in the following integral, we obtain

$$\int_{1}^{\infty} f_n(x) dx = \int_{\frac{1}{2 \ln \sqrt{en}}}^{\infty} \frac{1}{1+u} \left(\frac{1}{u}\right)^{\frac{1}{2}} du = \pi - \int_{0}^{\frac{1}{2 \ln \sqrt{en}}} \frac{1}{1+u} \left(\frac{1}{u}\right)^{\frac{1}{2}} du.$$

Hence by (2.1), (2.2) and Lemma 2.1, we have

$$\omega(n) = \sum_{m=1}^{\infty} f_n(m) < \int_1^{\infty} f_n(x) dx + \frac{1}{2} f_n(1) - \frac{1}{12} f'_n(1)$$

$$= \pi - \int_0^{1/(2\ln\sqrt{e}n)} \frac{1}{1+u} \left(\frac{1}{u}\right)^{\frac{1}{2}} du + \left(\frac{2}{3\ln en} + \frac{1}{12\ln^2 en}\right) (2\ln\sqrt{e}n)^{\frac{1}{2}}$$

$$= \pi - (2\ln\sqrt{e}n)^{\frac{1}{2}} R(n) < \pi.$$

The lemma is proved.

Lemma 2.3. For $0 < \epsilon < 1$, we have

(2.3)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{mn \ln emn} \left(\frac{1}{\ln \sqrt{e} m \ln \sqrt{e} n} \right)^{\frac{1+\epsilon}{2}} > \frac{1}{\epsilon} (\pi + o(1)) \quad (\epsilon \to 0^+).$$

Proof. Setting $u=\frac{\ln\sqrt{ex}}{\ln\sqrt{ey}}$ in the following integral, we find

$$\begin{split} \int_{\sqrt{e}}^{\infty} \frac{1}{x \ln exy} \left(\frac{1}{\ln \sqrt{e}x} \right)^{\frac{1+\epsilon}{2}} dx \\ &= \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} \int_{\frac{1}{\ln \sqrt{e}y}}^{\infty} \frac{1}{1+u} \left(\frac{1}{u} \right)^{\frac{1+\epsilon}{2}} du \\ &= \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} \int_{0}^{\infty} \frac{1}{1+u} \left(\frac{1}{u} \right)^{\frac{1+\epsilon}{2}} du - \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} \int_{0}^{\frac{1}{\ln \sqrt{e}y}} \frac{1}{1+u} \left(\frac{1}{u} \right)^{\frac{1+\epsilon}{2}} du \\ &> \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} \int_{0}^{\infty} \frac{1}{1+u} \left(\frac{1}{u} \right)^{\frac{1+\epsilon}{2}} du - \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} \int_{0}^{\frac{1}{\ln \sqrt{e}y}} \left(\frac{1}{u} \right)^{\frac{1+\epsilon}{2}} du \\ &= \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} (\pi + o(1)) - \frac{2}{1-\epsilon} \left(\frac{1}{\ln \sqrt{e}y} \right) (\epsilon \longrightarrow 0^{+}). \end{split}$$

Hence we have

$$\begin{split} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{1}{mn \ln emn} \left(\frac{1}{\ln \sqrt{e}m \ln \sqrt{e}n} \right)^{\frac{1+\epsilon}{2}} \\ > \int_{\sqrt{e}}^{\infty} \int_{\sqrt{e}}^{\infty} \frac{1}{xy \ln exy} \left(\frac{1}{\ln \sqrt{e}x \ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} dx dy \\ = \int_{\sqrt{e}}^{\infty} \frac{1}{y} \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}} \left[\int_{\sqrt{e}}^{\infty} \frac{1}{x \ln exy} \left(\frac{1}{\ln \sqrt{e}x} \right)^{\frac{1+\epsilon}{2}} dx \right] dy \end{split}$$

4 BICHENG YANG

$$> (\pi + o(1)) \int_{\sqrt{e}}^{\infty} \frac{1}{y} \left(\frac{1}{\ln \sqrt{e}y} \right)^{1+\epsilon} dy - \frac{2}{1-\epsilon} \int_{\sqrt{e}}^{\infty} \frac{1}{y} \left(\frac{1}{\ln \sqrt{e}y} \right)^{\frac{1+\epsilon}{2}+1} dy$$

$$= (\pi + o(1)) \frac{1}{\epsilon} - \frac{4}{1-\epsilon^2} = \frac{1}{\epsilon} (\pi + o(1)) \ (\epsilon \to 0^+).$$

The lemma is proved.

3. MAIN RESULT AND AN APPLICATION

Theorem 3.1. If $0 < \sum_{n=1}^{\infty} n a_n^2 < \infty$ and $0 < \sum_{n=1}^{\infty} n b_n^2 < \infty$, then

(3.1)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{\ln emn} < \pi \left(\sum_{n=1}^{\infty} n a_n^2 \sum_{n=1}^{\infty} n b_n^2 \right)^{\frac{1}{2}},$$

where the constant factor π is the best possible.

Proof. By Cauchy's inequality and (1.3), we have

$$\begin{split} \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{\ln emn} \\ &= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left[\frac{a_m}{(\ln emn)^{\frac{1}{2}}} \left(\frac{\ln \sqrt{e}m}{\ln \sqrt{e}n} \right)^{\frac{1}{4}} \left(\frac{m}{n} \right)^{\frac{1}{2}} \right] \left[\frac{b_n}{(\ln emn)^{\frac{1}{2}}} \left(\frac{\ln \sqrt{e}n}{\ln \sqrt{e}m} \right)^{\frac{1}{4}} \left(\frac{n}{m} \right)^{\frac{1}{2}} \right] \\ &\leq \left[\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_m^2}{\ln emn} \left(\frac{\ln \sqrt{e}m}{\ln \sqrt{e}n} \right)^{\frac{1}{2}} \left(\frac{m}{n} \right) \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{b_n^2}{\ln emn} \left(\frac{\ln \sqrt{e}n}{\ln \sqrt{e}m} \right)^{\frac{1}{2}} \left(\frac{n}{m} \right) \right]^{\frac{1}{2}} \\ &= \left(\sum_{m=1}^{\infty} \omega(m) m a_m^2 \sum_{n=1}^{\infty} \omega(n) n b_n^2 \right)^{\frac{1}{2}}. \end{split}$$

By Lemma 2.2, we have (3.1).

For $0 < \epsilon < 1$, setting a'_n as:

$$a'_n = \frac{1}{n(\ln\sqrt{e}n)^{\frac{1+\epsilon}{2}}}, \quad n \in N,$$

then we have

$$\sum_{n=1}^{\infty} n a_n'^2 = \frac{1}{(\ln \sqrt{e})^{1+\epsilon}} + \frac{1}{2(\ln 2\sqrt{e})^{1+\epsilon}} + \sum_{n=3}^{\infty} \frac{1}{n(\ln \sqrt{e}n)^{1+\epsilon}}$$

$$< \frac{1}{(\ln \sqrt{e})^{1+\epsilon}} + \frac{1}{2(\ln 2\sqrt{e})^{1+\epsilon}} + \int_{\sqrt{e}}^{\infty} \frac{1}{x(\ln \sqrt{e}x)^{1+\epsilon}} dx$$

$$= \frac{1}{(\ln \sqrt{e})^{1+\epsilon}} + \frac{1}{2(\ln 2\sqrt{e})^{1+\epsilon}} + \frac{1}{\epsilon} = \frac{1}{\epsilon}(1+o(1)) \quad (\epsilon \to 0^+).$$
(3.2)

If the constant factor π in (3.1) is not the best possible, then there exists a positive number $K < \pi$, such that (3.1) is valid if we change π to K. In particular, we have

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a'_m a'_n}{\ln emn} < K \sum_{n=1}^{\infty} n a'_n^2.$$

By (2.3) and (3.2), we have

$$(\pi + o(1)) < \epsilon \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a'_m a'_n}{\ln emn} < K(1 + o(1)) \ (\epsilon \to 0^+),$$

and $\pi \leq K$. This contradicts that $K < \pi$. Hence the constant factor π in (3.1) is the best possible. The theorem is proved.

Remark 3.2. Inequality (3.1) is more similar to the following Mulholland's inequality for p = q = 2 (see [7]):

(3.3)
$$\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{a_m b_n}{m n \ln e m n} < \frac{\pi}{\sin(\frac{\pi}{p})} \left(\sum_{n=2}^{\infty} n^{-1} a_n^p \right)^{\frac{1}{p}} \left(\sum_{n=2}^{\infty} n^{-1} b_n^q \right)^{\frac{1}{q}}.$$

Theorem 3.3. If $0 < \sum_{n=1}^{\infty} na_n^2 < \infty$, then we have

(3.4)
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{m=1}^{\infty} \frac{a_m}{\ln emn} \right)^2 < \pi^2 \sum_{n=1}^{\infty} n a_n^2,$$

where the constant factor π^2 is the best possible. Inequalities (3.1) and (3.4) are equivalent.

Proof. Since $\sum_{n=1}^{\infty} na_n^2 > 0$, there exists $k_0 \ge 1$, such that for any $k > k_0$, we have $\sum_{n=1}^k na_n^2 > 0$, and $b_n(k) = \frac{1}{n} \sum_{m=1}^k \frac{|a_m|}{lnemn} > 0$ $(n \in N)$. By (3.1), we have

$$0 < \left[\sum_{n=1}^{k} nb_{n}^{2}(k)\right]^{2}$$

$$= \left[\sum_{n=1}^{k} \frac{1}{n} \left(\sum_{m=1}^{k} \frac{|a_{m}|}{\ln emn}\right)^{2}\right]^{2}$$

$$= \left[\sum_{n=1}^{k} \sum_{m=1}^{k} \frac{|a_{m}|b_{n}(k)}{\ln emn}\right]^{2} < \pi^{2} \sum_{n=1}^{k} na_{n}^{2} \sum_{m=1}^{k} nb_{n}^{2}(k).$$
(3.5)

Thus we find

(3.6)
$$0 < \sum_{n=1}^{k} \frac{1}{n} \left(\sum_{m=1}^{k} \frac{|a_m|}{\ln emn} \right)^2 = \sum_{n=1}^{k} nb_n^2(k) < \pi^2 \sum_{n=1}^{k} na_n^2.$$

It follows that $0 < \sum_{n=1}^{\infty} nb_n^2(\infty) \le \pi^2 \sum_{n=1}^{\infty} na_n^2 < \infty$. Hence by (3.1), for $k \to \infty$, neither (3.5) nor (3.6) takes equality, and we have

$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{m=1}^{\infty} \frac{a_m}{\ln emn} \right)^2 \le \sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{m=1}^{\infty} \frac{|a_m|}{\ln emn} \right)^2 < \pi^2 \sum_{n=1}^{\infty} n a_n^2.$$

Inequality (3.4) is valid.

On the other hand, if (3.4) holds, by Cauchy's inequality, we have

(3.7)
$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_m b_n}{\ln emn} = \sum_{n=1}^{\infty} \left(\frac{1}{n^{\frac{1}{2}}} \sum_{m=1}^{\infty} \frac{a_m}{\ln emn} \right) \left(n^{\frac{1}{2}} b_n \right)$$
$$\leq \left[\sum_{n=1}^{\infty} \frac{1}{n} \left(\sum_{m=1}^{\infty} \frac{a_m}{\ln emn} \right)^2 \sum_{n=1}^{\infty} n b_n^2 \right]^{\frac{1}{2}}.$$

6 BICHENG YANG

By (3.4), we have (3.1).

Hence inequalities (3.1) and (3.4) are equivalent. If the constant factor π^2 in (3.4) is not the best possible, we may show that the constant factor π in (3.1) is not the best possible, by using (3.7). This is a contradiction. The theorem is proved.

Remark 3.4. Inequality (3.4) is similar to the following equivalent form of (1.1) (see [2]):

(3.8)
$$\sum_{n=0}^{\infty} \left(\sum_{m=0}^{\infty} \frac{a_m}{m+n+1} \right)^2 < \pi^2 \sum_{n=0}^{\infty} a_n^2.$$

Since inequalities (3.1) and (3.4) are similar to (1.1) and its equivalent form with the best constant factors, we have provided some new results.

REFERENCES

- [1] G.H. HARDY, J.E. LITTLEWOOD AND G. POLYA, *Inequalities*, Cambridge Univ. Press, London, 1952.
- [2] B. YANG AND L. DEBNATH, on a new generalization of Hardy-Hilbert's inequality and its application, *J. Math. Anal. Appl.*, **233** (1999), 484–497.
- [3] B. YANG AND L. DEBNATH, Some inequalities involving π and an application to Hilbert's inequality, *Applied Math. Letters*, **129** (1999), 101–105.
- [4] B. YANG, On a strengthened version of the more accurate Hardy-Hilbert's inequality, *Acta Math. Sinica*, **42**(6) (1999), 1103–1110.
- [5] B. YANG, On a strengthened Hardy-Hilbert's inequality, *J. Ineq. Pure. and Appl. Math.*, **1**(2), Art. 22 (2000). [ONLINE: http://jipam.vu.edu.au/vln2/012_00.html]
- [6] J. KUANG AND L. DEBNATH, On new generalizations of Hilbert's inequality and their applications, *J. Math. Anal. Appl.*, **24**5 (2000), 248–265.
- [7] H.P. MULHOLLAND, Some theorem on Dirichlet series with coefficients and related integrals, *Proc. London Math. Soc.*, **29**(2) (1999), 281–292.