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ABSTRACT. In this paper, we build a new inequality similar to Hilbert’s inequality with a best
constant factor. As an application, we consider its equivalent form.
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1. INTRODUCTION

If0 <>, a2 <ooandd < Y 2 b2 < oo, then the famous Hilbert's inequality (see
Hardy et al. [:L]) is given by

oo o0 2
2 2
(1.1) nzgmzom+”+1 w<;an;bn> ,
where the constant factaris the best possible. Recently, Yang and Debnathl[2, 3] and Yang
[4],[5] gave [(1.1) some extensions and improvements, and Kuang and Debnath [6] considered its
strengthened versions and generalizations.

The major objective of this paper is to build a new inequality similaf tg| (1.1), which relates
to the double series form as

(1.2) Zme—i—lnn—i—l_ZZln@m”

For this, we must estimate the following weight coefficient

1.3) o) =3 : (WE”)é (ne N),

mlnemn \ ln\/em
=~ Ve

and do some preparatory works.
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2. SOME LEMMAS

oo) and (—
(z — o0), then (see[6, (2.1)])

Let f have its first four derivatives ofi,

fx), f'(x) —0
(2.1)
Lemma 2.1. For n € N, defineR(n) as

(2.2) R(n) =

1) f0) () > 0

..,4), and

</ ")+ 310 - (),

1

1 /21n ven 1 2
— ——du —
(2In+/en)2 (1+u)u2 3lnen
Then we haveé?(n) > 0(n € N).

Proof. Integrating by parts, we have

1 1
n+/en ]_ n+/en 1
/21 1du:2/21 d’u,%
0 (1+u)u2 0 (1+u)

(2111\/_71)%

Inen

m\»—A

= (2In+/en)

l\)\»—‘

= (2In \/_n)

> (2In \/En)% o

Hence by[(Z.R), we have
1 1 2 1 1

/zllﬂ, L1
+ 2 U2
0 (1+u)?

4 [T
len 3/0

(2ln\/_n)%

+§/wu3/2 !
3 Jo (1+u)?

(21n\/_n)%

12(Inen)?’

du

1

d3/2
<1+> !

(In en)

du

1
(Inen)*

1

Rn) > Inen * 3(lnen)?  3lnen 12(lnen)? a
The lemma is thus proved.

Lemma 2.2. If w(n) is defined by (1]3), then(n) < =, forn € N.

1 Iny/en 2
zrlnenz \ In\/ex

and

Proof. For fixedn € N, setting

fu(x) =
we find f,(1) = - (21In/en)3,

fulx) =

3lnen

x € [1,00),

* 4(Inen)? =0

1 (In+/en)

1 In/en 3 1 Iny/en :
z?2lnenz \In+/ex 22Inenz \In/ex
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Settingu = }2\/25’; in the following integral, we obtain
00 © 1 [1\? mve 1 (1)3
2 21n+/en 2
/ fo(x)de = / (—) du=m — / <—> du.
1 1 1+u\u 0 14+u \u

21n+/en

Hence by|(2.11)[(2]2) and LemrpaR.1, we have

o) = Y fulm) < [ uloddo+ 31,00 = A1)

Y@inven) 1 1\ 9 1 )

—r— L 21 }

g /0 1+u(u) u+<31nen+121n2en>< nven):
=7 —(2ln \/En)%R(n) <.

The lemma is proved. 0J

Lemma 2.3. For 0 < ¢ < 1, we have

1+e

0 0 1 ]_ ?
(2.3) Z Z mnlnemn (ln Vvemln \/E”> g

n=1 m=1

o | =

(r+o0(1)) (e —0%).

Proof. Settingu = 22 in the following integral, we find

In ey
1+e
/OO 1 1 2 J
x
ve rlnery \Iny/ex
1+e 1+4€
1 2 /Oo 1 1) 2 d
- - u
In+/ey e I1+u \u
1te 1te 1te 1 14e
1 2 /OO 1 1) 2 J 1 2 /ln Vey 1 1Y\ 2 d
= — u— | ——— — u
In /ey o l+ul\u In /ey o T+u \u
1te 1te 1te 1 1+e
- 1 2 /Oo 1 1)\ 2 J 1 2 /ln Ve (1) 2 d
— u— — u
In+/ey o l4+u\u In /ey 0 u
14e€
1 2 2 1
_ 1 . +
(m¢@) (m+ol1)) 1—6(m¢@)(€_ﬁ0)

Hence we have

1+4+€

o0 o0 1 1 ;
nz:;mz:; mnlnemn <ln\/gm1n\/gn)
1+e

>/w/m ! ! " dud
T
ve Jye rylnexry \Iny/exIn /ey Y
1+e

_/wl 1\ /m 1 1o
~Je y \Unyey ve rlnery \Iny/ex
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© 1/ 1 O\t 2 [*1/ 1 \='
1 - dy — (U d
> (ol ))/ﬁy(lnx/@y) Y l—e/ﬁy<1nx/5y) Y

= (ro(1)); — 7 = (1)) (e — 0%,

The lemma is proved. [

3. MAIN RESULT AND AN APPLICATION

Theorem 3.1.1f 0 < >°°°  naZ < coand0 < Y7 nb? < oo, then

o0 o %
(3.1) Z Z emn <7 (; na? ; nbi) ,

where the constant factar is the best possible.

Proof. By Cauchy’s inequality and (1.3), we have

:ii[an:;nxaz&:) ) [ ()

(BT et (b)) O Taks (5) ()]
_ (;i w<m>mafngw<n>nb2)

By Lemmg 2.2, we hav¢ (3.1).

For0 < e < 1, settinga,, as:
1

n= 1= NEN,
n(ln/en) =

then we have

o

Z nal? = ! + ! + Z .
" (Inye)tte - 2(In2y/e)lte - = n(ln/en)'te

1 1 & 1
S nve™ amaye)t / e o(inyea)r

1 1 1 1
3.2 = - 1 1 0%).
(3.2) (In/e)tte + 2(1112\/5)14'E € e( Fo(l)) (e —07)
If the constant factor in (3.7) is not the best possible, then there exists a positive number
K < 7, such that[(3]1) is valid if we changeto K. In particular, we have
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By (2.3) and|[(3.R), we have
(o) <ed Y lami K(1+0(1)) (e —0%),

andm < K. This contradicts thall < =. Hence the constant factarin (3.1) is the best
possible. The theorem is proved. O

Remark 3.2. Inequality [3.1) is more similar to the following Mulholland’s inequality for=
q =2 (seel7]):

(3.3) Z Z mn ln emn  sin( (Z " aP) (Zz Trlbz)

n=2 m=

Theorem 3.3.1f 0 < anl na; < oo, then we have

2 oo
(3.4) Z < lnemn) <7r2;nai,

n=1

where the constant factar® is the best possible. Inequalitiés (3.1) ahd (3.4) are equivalent.

Proof. Since>_>°  na? > 0, there existé;, > 1, such that for any > ko, we havey*_, na2 >
0, andb, (k) = L 3°F Lol >0 (n€ N).By( -), we have

m=1 Inemn

— k‘ 2
0< ani(k)]
| n=1
— 2 2
-y (e
—~n \ = Inemn
5) [y o] a5 e s e
. N | n=1 m=1 lnemn " n=1 nn:l " .
Thus we find
E g k | 2 k k
3.6 0 - n = b2 (k 2 2
(3.6) <;n<:1lnemn) ;nmm;nan

It follows that0 < »~>° | nb?(c0) < 723> naZ < oo. Hence by[(3]1), fok — oo, neither
(3.9) nor [3.6) takes equality, and we have

2 2
- < - — :
;n <m:1 1nemn> - ;n (m:1 lnemn) <7 ;nan
Inequality [3.4) is valid.
On the other hand, i[('f_s‘].4) holds, by Cauchy’s inequality, we have

o) 1 0 O, .
Z lnemn N ; <"_5m2=1 lnemn> (mb")

1
2

3.7) = 25 (2:1 lnemn> an
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By (3.4), we have[(3]1).

Hence inequa.l) and (8.4) are equivalent. If the constant fattior(3.4) is not the
best possible, we may show that the constant facior(3.1) is not the best possible, by using
(3.1). This is a contradiction. The theorem is proved. O

Remark 3.4. Inequality [3.4) is similar to the following equivalent form §f (IL.1) (see [2]):
o0 o0 2 [e.@]
am 2 2
(3.8) ;<mzom+n+1> <r Z

Since inequalities (3]1) anfl (3.4) are similar[to [1.1) and its equivalent form with the best
constant factors, we have provided some new results.
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