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Abstract

In this paper, we try to solve the problem which arises in connection with the
stability theory of a periodic equilibrium solution of Navier-Stokes equations on
an infinite strip R×

]
−1

2 , 1
2

[
.
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1. Introduction
This problem arises in connection with the stability theory of a periodic equili-
birium solution of Navier-Stokes on infinite stripΩ = R×

]
−1

2
, 1

2

[
.

Consider the Navier-Stokes equation on an infinite stripΩ = R×
]
−1

2
, 1

2

[
:

(1.1) ∂tU = ν∆U − (U · ∇)U +∇p+ f

with f = f(x, y) a smooth time independent outer force onΩ ,which isL
-periodic inx for someL.

Let a smooth equilibrium solutionU0 = (u0, v0), p0 of (1.1) be given, which
is L -periodic inx andU0 = 0 on∂Ω. The stability ofU0 = (u0, v0), p0 can be
studied against small perturbations under two aspects:

(I) The perturbations are themselvesL -periodic inx.

(II) The perturbations are in(L2(Ω))2.

The relation between (I) and (II) is the mathematical tools used by physicists
in connection with Schroedinger equations with periodic potentials [3]. The
main tool thereby is the notion of direct integrals (see [1] , [3] , [5], [8]). This
notion is based onΘ-Periodic functions (ie. generalisation of periodic func-
tions).

In this paper we study the Stokes operators which arise in the so-called Bloch
space theory of equation (1.1). This theory, well established in the case of
Schroedinger equations with periodic potentials [3] extends to the Stokes oper-
ators which occur in Navier-Stokes and related equations, but the corresponding
theory is now more involved, see [8] where the three dimensional case (3d) is
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treated. The Stokes operators which appear in connection with (1.1), either 2d
or 3d, are of the form:

(1.2) P∆U − P (V · ∇)− P (U · ∇)V.

HereV is a fixed velocity field, periodic in the unbounded space directions (x
orx, y),U is the argument on which the operator acts, whileP is the orthogonal
projection onto the space of divergence free fields. Three cases are of interest:

(a) U ∈ (H2(Ω) ∩H1
0 (Ω))3, divU = 0.

(b) U is periodic in the unbounded space directions.

(c) U is Floquet - periodic in the unbounded space directions.

Case (b) subsumes under case (c) [2]; case (a) is handled in [4]. Case
(a) and (c) are related by certain spectral formulas, well known in case of
the Schroedinger equations with periodic potentials. In the 3d-case however,
these spectral formulas associated with (1.2) are more complicated than in the
Schroedinger case due to the appearance of singularities ([8, Sect 9.4, 9.5]). The
purpose of the present paper is to show that in the 2d-case these singularities are
absent and that the spectral formulas associated with (1.2) have precisely the
same formula as in the Schroedinger case. To this effect we study first the most
important special, ie.V = 0. We have to perform estimates similar to those
in Sections 6.4–6.7 of [8]. In our estimates, which are considerably simpler,
singularities do not appear.

How this fact can be exploited so as to obtain the mentioned spectral formu-
las is outlined in subsequent sections.
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2. Notation
ForX ,Y Banach spaces,‖·‖X , ‖·‖Y are their respective norms.L(X ,Y) is the
space of bounded operators fromX toY with ‖T‖ the operator norm.

ForA a linear operator onX andE ⊆ X a subspace,A |E is the restriction
of A toE.

For anyΩ, Hp(Ω) is the Sobolev space of functions having square integrable
derivatives up to orderp with (·, ·)p and ‖·‖Hp(Ω) the usual scalar product and
norm onHp(Ω).We setL2(Ω) = H0(Ω) and‖·‖Hp = ‖·‖Hp(Ω) and extend this
notation to vectors and set:

‖u‖2
L2 = ‖u1‖2

L2 + ‖u2‖2
L2 ,

whereu = (u1, u2) ∈ (L2)2, Likewise with the Sobolev norms. The scalar
product on(Hp(Ω))2 is 〈·, ·〉p, with:

〈u, v〉p =
2∑

i=1

(ui, vi)p, ui, vi ∈ Hp(Ω),

whereu = (u1, u2), v = (v1, v2) we set 〈·, ·〉 = 〈·, ·〉0.
Cp(Ω̄) is the space of functionsp times continuously differentiable on̄Ω

andCp
0 (Ω̄) is the space of functionsf ∈ Cp(Ω̄) with supp f compact.
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3. Θ -Periodic Function
We fix a periodL > 0, setQL =]0, L[ andQ = QL ×

]
−1

2
, 1

2

[
, for some small

ε > 0 and putMε =]− ε, 2π+ ε[ with M = [0, 2π]. Also, letṀε beMε minus
the numbers 0 and2π.

We define aΘ-Periodic function: ForΘ in Mε; f ∈ Cp
Θ(Q) if f ∈ Cp(Q)

and
f(x+ jL, y) = eijΘf(x, y), j ∈ Z, (x, y) ∈ Ω.

We define the functional spaces:Hp
Θ(Q) is the set off ∈ L2(Q) such that

limn ‖fn − f‖Hp = 0 for some sequencefn ∈ Cp
Θ(Q).

We also letL2
g be the subspace ofL2(Q) containing the elementsf such

thatf(x,−y) = f(x, y) a.e. Likewise withL2
u andf(x,−y) = −f(x, y) a.e.

Finally, we putL2 = (L2)2, L2
g = L2

g × L2
u andL2

u = L2
u × L2

g.
It is easy to prove that:

L2 = L2
g ⊕ L2

u.
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4. Fourier Series
We consider the eigenvalue problem:y” + λy = 0 on

]
−1

2
, 1

2

[
with Neumann

resp. Dirichlet boundary conditions.
In the first case we have a complete orthonormal (C.O.N) system inL2(Q):

ϕ2k = (−1)k
√

2 cos 2πky for k ≥ 1, ϕ0 = 1,

ϕ2k+1 = (−1)k
√

2 sin(2k + 1)πy for k ≥ 0,

Λp = p2π2 is an eigenvalue associated toϕp, ϕ2k is even,ϕ2k+1 odd and more-
overϕp(1/2) =

√
2 for p ≥ 1. For the other case we have a (C.O.N) system

given by
√

Λpψp = ϕ′p, whereψ′p = −
√

Λpϕp for p ≥ 1.
Since parity iny will be important we introduce notations:σk = ϕ2k+1, τk =
ψ2k+1, λk = Λ2k+1, k ≥ 0, andρk = ϕ2k, πk = ψ2k for k ≥ 1, ϕ0 = 1 and
µk = λ2k. Forθ ∈Mε we set:α̂ = (2πα + θ)L−1, α ∈ Z andeα = eiα̂x.

We have a characterization of spacesH1
θ,0, H

1
θ , H

2
θ with the Fourier series:

Let f ∈ L2(Q) have Fourier series:

f =
∑

fα,ieαϕi =
∑

f̃α,ieαψi.

With respect to{eαϕi} resp{eαψi}.
Proposition 4.1. (a) f ∈ H1

θ iff∑
(α̂2 + Λi) |fα,i|2 <∞.

(b) f ∈ H1
θ,0 iff ∑

(α̂2 + Λi)
∣∣∣f̃α,i

∣∣∣2 <∞.
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For a proof see [6]. We have the characterization of spaceH2
θ too:

Proposition 4.2. Let f ∈ L2(Q) satisfy
∑

(α̂2 + Λi)
2 |fα,i|2 < ∞. thenf ∈

H2
θ and

‖F‖2
H2 ≤ C

(∑
(α̂2 + Λi)

2 |fα,i|2
)

for aC independent ofθ ∈Mε. Likewise with
∑

(α̂2 + Λi)
2
∣∣∣f̃α,i

∣∣∣2 .
For a proof see [6].
Our aim is to prove:

Theorem 4.3. (a) There isC > 0 as follows. IfU ∈ dom(As(θ)) ∩ Eg
θ and

As(θ)U = f for someθ ∈Mε, f ∈ Eg
θ thenU ∈ (H2

θ )2 and

‖U‖H2 ≤ C ‖f‖L2 .

(b) Under the conditionsU ∈ dom(As(θ))∩Eu
θ or U ∈ dom(As(θ))∩Eθ the

assertion (a) holds.

Proposition 4.4. If f ∈ H1
θ has Fourier series

∑
α,j aα,jeασj then

∑
j |aα,j| ≤

∞ andf ∈ H1
θ,0 iff

∑
j aα,j = 0, α in Z.

Remark 4.1. Proposition4.4 is a consequence of Propositions 6.1 and 6.3 in
[8].

For the proof of this theorem we need the Proposition 6 used in [7]; we recall
λk = (2k+1)2

π2 :

Proposition 4.5. There areΓ0,Γ1 such that fors ≥ 0:

http://jipam.vu.edu.au/
mailto:
mailto:alidal@fsr.ac.ma
mailto:
mailto:sidati@caramail.com
http://jipam.vu.edu.au/


Regularity Properties of Some
Stokes Operators on an Infinite

Strip

A. Alami-Idrissi and S. Khabid

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 9 of 18

J. Ineq. Pure and Appl. Math. 5(2) Art. 41, 2004

http://jipam.vu.edu.au

(i) Γ0(1 + s)−3 ≤
∑

(λk + s2)−2 ≤ Γ1(1 + s)−3;

(ii)
∑

(λk + s2)−1 ≤ Γ1(1 + s)−1;

(iii)
∑
λ−1

k (λk + s2)−2 ≤ Γ1(1 + s)−4;

(iv)
∑
λk(λk + s2)−2 ≤ Γ1(1 + s)−1.

Proof of Theorem4.3. Since, in the first part of the proof, the factorα̂−1 appears
which is later cancelled, it is advantageous to assume first thatθ ∈ Ṁε.

We takeU = (A,B) ∈ (H1
θ,0) ∩ L2

g such thatdivU = 0.
We know that ifL2

g = L2
g × L2

u thenA ∈ L2
g andB ∈ L2

u and with the
characterization of spaceH1

θ,0 by Fourier series we have

A =
∑

Ajαeατj andB =
∑

Bjαeασj

such that
∑

(λj + α̂2)|Ajα|2 <∞, likewise forB, the components off = (a, b)
admit expansions too,

a =
∑

ajαeατj andb =
∑

bjαeασj.

U is a weak solution ofAs(θ)U = f for f ∈ Eθ if and only if:

(4.1)
2∑

j=1

〈∇Uj,∇Vj〉+ 〈f, V 〉 = 0

for all V ∈ (H1
θ,0)

2.
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As a test vector in (4.1) we take:

V = (u0τ0 + ujτj, w0σ0 + wjσj) ∈ (H1
θ,0)

2,

wherebydivV = 0, thus:

(4.2)
√
λjwj = −∂xuj and

√
λ0w0 = −∂xu0.

Hereu0 ∈ H2
θ (QL) is arbitrarily fixed.

As in paper [7], we havew0 + wj = 0. From the divergence condition we

deduce that since1√
λ0
u0 + 1√

λj
uj is constantΘ-periodic, thenuj = −

√
λj√
λ0
u0.

By exploiting the arbitrariness ofU0, ψ we reach certain equations for the
Fourier coefficientsAj,α, Bj,α, aj,α, bj,α.
We note:

λ̂j = λj + α̂2, j ≥ 0, α ∈ Z,

(A)j(α) = λ̂jAj,α − aj,α, j ≥ 0, α ∈ Z,

(B)j(α) = λ̂jBj,α − bj,α, j ≥ 0, α ∈ Z.

We obtain:

(4.3) −
√
λj√
λ0

(A)j(α)+(A)0(α)− iα̂√
λ0

(B)j(α)+
iα̂√
λ0

(B)0(α) = 0, , j ≥ 0.

From the divergence condition foru, f we get:

(4.4) (B)j(α) = − iα̂√
λj

(A)j(α), j ≥ 0.
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From the conditionθ ∈ Ṁε we getα̂ 6= 0 then:

(4.5) (A)j(α) =
i
√
λj

α̂
(B)j(α).

So according to (4.3) and (4.5) we have:

(4.6) λ̂j(B)j(α) = λ̂0(B)0(α).

By using Proposition4.4we have
∑

j Bjα = 0, and then:

(4.7)


B0,α = k

(
λ̂0

∑
j≥1

(λ̂j)
−2b0,α −

∑
j≥1(λ̂j)

−1bj,α

)
,

k =

(
1 + (λ̂0)

2
∑
j≥1

(λ̂j)
−2

)−1

= k(α).

HavingB0,α, we can expressBj,α, j ≥ 1 via (4.7) and thenAj,α, j ≥ 0 via (4.5).
Then (4.3) becomes:

(4.8)
λ̂j√
λj

(A)j =
λ̂0√
λ0

(A)0

Equation (4.5) gives us (forj = 0):

(A)0(α) =
i
√
λ0

α̂
(B)0(α).
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Thus,

(4.9) (A)j(α) =
i
√
λjλ̂0

α̂λ̂j

(B)0(α),

and from (4.7) we deduce:

(4.10) (B)0(α) = −k(b0,α + λ̂0

∑
j≥1

(λ̂j)
−1bj,α).

By the divergence condition we replacebj,α by aj,α in (4.10). If we replace
(B)0(α) in (4.9) by its value we obtain:

(4.11) (A)j(α) =
−
√
λjλ̂0k

λ̂j

(
1√
λ0

a0,α + λ̂0

∑
s≥1

(λ1/2
s λ̂s)

−1as,α

)
.

As can be seen from (4.11), the expression for(A)j(α) does not contain any
factor α̂−1, that is no singularity, we may therefore assume from now on that
θ ∈Mε.

By (4.11) we have:
(A)j(α) = Ij + IIj,

where

Ij =
−
√
λjλ̂0k

λ̂j

λ̂0

∑
j≥1

(λ
1/2
j λ̂j)

−1aj,α

and

IIj =
−
√
λjλ̂0k

λ̂j

√
λ0

a0,α.
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We note that by Proposition4.4(i) aΓ2 is found such that,

k ≤ Γ2(1 + s)−1, (s = |α̂|),

then:

|Ij|2 ≤
λjλ̂0

2
k2

λ̂j

2

(∑
s≥1

(λ̂s)
−2(λ̂0)

2(λs)
−1

)(∑
s≥1

|as,α|2
)

≤ Γ2
2(1 + s)−2(λ0 + s)2λj

(λj + s2)2

(∑
s≥1

λ−1
s

)(∑
s≥1

|as,α|2
)

≤ C ′

λj

∑
s≥1

|as,α|2.

Thus, ∑
α

∑
j≥1

|Ij|2 ≤ C
∑

α

∑
s≥1

|as,α|2

and forIIj we have:

|IIj|2 =
λjλ̂0

2
k2

λ̂j

2
λ0

|a0,α|2

then:

|IIj|2 ≤
λj(λ0 + s2)2Γ2

2(1 + s)−2

(λj + s2)2λ0

|a0,α|2

and ∑
j≥1

|IIj|2 ≤ C ′(1 + s)−2|a0,α|2.
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Therefore ∑
α

∑
j≥1

|IIj|2 ≤ C1

∑
α

|a0,α|2.

We still have to look at(A)0(α). We recall (4.11) for j = 0 and we can
estimatek(α) by Proposition4.5.

For (B)j(α): By (4.4) and (4.9) we can deduce by using Proposition4.4that
there is aθ−independentC2 such that:∑

α

∑
j

|(B)j(α)|2 ≤ C2

∑
α

∑
j

|bj,α|2.

The proof of(b) is very similar.
Conclusion:

‖U‖H2 ≤ C ‖F‖L2 .
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5. Comments
As indicated, due to the fact that the singularityθ = 0 resp.θ = 2π drops out in
the computations presented in the previous sections, the spectral theory, carried
out for dimensiond = 3 in [6], [8] simplifies considerably. Partly for this
reason and partly for reasons of space we concentrate here on briefly describing
the final result which emerges from this simplification. In order to describe the
manner in which the spectral formula (**) in [6] simplifies, we recall the objects
which appear in it. Following Sections2 and3, we have theθ-periodic Sobolev
spacesHp

θ (Q), H1
θ,0(Q), θ ∈] − ε, 2π + ε[, the orthogonal projectionPθ from

L2(Q)2 ontoEθ, with Eθ theL2-closure of the set off ∈ H1
θ (Q) × H1

θ,0(Q)
such thatdiv f = 0. The periodic Stokes operatorAS(θ) is now defined as
follows:

f ∈ dom(AS(θ)) iff f ∈ (H2
θ (Q) ∩H1

θ,0(Q))2(5.1)

and div f = 0, and for suchf, AS(θ)f = νPθ∆f.

Next, we recall that, as stressed in the introduction, we are given a smooth
velocity fieldv = (v1, v3) onR × [1

2
, 1

2
] which isL-periodic in the unbounded

variablex, that gives rise to an operatorT acting on elementsu = (u1, u3) ∈
dom(AS(θ)) according to

(5.2) Tu = −(v1∂xu1 + v3∂zu1, v1∂xu3 + v3∂zu3).

We briefly digress on the periodic case which arises forθ = 0 of θ = 2π. In
accordance with [6] we stress this case by the label ‘per’ rather than byθ = 0
or θ = 2π. ThusAS(per) = AS(0) = AS(2π), Hp

per(Q) = Hp
0 (Q) = Hp

2π(Q),
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etc. In order for the spectral formulas below to be valid, we have to defineEper,
AS(per), Pper as follows:

Eper is the L2−closure of all vector fields v = (f, h)(5.3)

in H1
per(Q)×H1

per,0(Q) such that div f = 0 and

∫
Q

f dxdz = 0

v = (f, h) is in dom(AS(per)) if v ∈ (H2
per(Q) ∩H1

per,0(Q))2,(5.4)

div v = 0 and

∫
Q

f dxdz = 0; for such v we set

AS(per)v = νPper∆v, where Pper is the orthogonal projection

from L2(Q)2 onto Eper.

With this definition,As(per) is selfadjoint onEper.
Finally we need corresponding objects defined on the whole stripΩ = R ×(

−1
2
, 1

2

)
. Thus

E is the L2−closure of f ∈ H1(Ω)×H1
0 (Ω)(5.5)

such that div f = 0,

f ∈ dom(AS) iff f ∈ (H2(Ω) ∩H1
0 (Ω))2 and div f = 0,(5.6)

and for such f we set ASf = νP∆f.

For elementsf ∈ dom(AS), the operatorT acts again via (5.2). Under these
stipulations, the operators

G = AS + PT, Gθ = AS(θ) + PθT, Gper = AS(per) + PperT

http://jipam.vu.edu.au/
mailto:
mailto:alidal@fsr.ac.ma
mailto:
mailto:sidati@caramail.com
http://jipam.vu.edu.au/


Regularity Properties of Some
Stokes Operators on an Infinite

Strip

A. Alami-Idrissi and S. Khabid

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 18

J. Ineq. Pure and Appl. Math. 5(2) Art. 41, 2004

http://jipam.vu.edu.au

all become holomorphic semigroup generators onE, Eθ, Eper respectively. The
spectral formulas, announced above now are:

σ(AS + PT ) = closure

 ⋃
θ∈(0,2π)

(AS(θ) + PθT )

 ,((22)1)

σ(AS + PT ) =
⋃

θ∈[0,2π]

(AS(θ) + PθT ).((22)2)

These formulas correspond to formulas (*), (**) in [6, p. 169]. While(22)1

looks the same as (*) in [6], (22)2 is definitely simpler; it implies in particular
that if λ ∈ σ(AS(per) + PperT ) thenλ ∈ σ(AS + PT ), a statement which
cannot be asserted in dimensiond = 3 as can be seen from formula (**) in [6].
The proof of(22)2 is based on the computations in the present Section4, which
entail that the singularities which arise in dimensiond = 3 in [6], drop out. The
detailed verification of this claim is by a careful examination of the arguments
in [6], a task within the scope of this paper.
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