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Abstract

In the present paper a class of geometric inequalities concerning the angle
bisectors and the sides of a triangle are established. Moreover an interesting
open problem is proposed.
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1. Introduction and Main Results
For a given triangleABC we assume thatA, B, C denote its angles,a, b,
c denote the lengths of its corresponding sides,wa, wb, wc denote respectively
the bisectors of anglesA, B, C. Let R, r and s be the circumradius, the
inradius and the semi-perimeter of a triangle respectively. In addition we will
customarily use the symbols

∑
(cyclic sum) and

∏
(cyclic product), such as∑

f(a) = f(a) + f(b) + f(c),
∏

f(a) = f(a)f(b)f(c).

The angle bisectors of triangles have many interesting properties. In par-
ticular, inequalities for angle bisectors is a very attractive subject and plays an
important role in the study of geometry. A large number of related results can be
found in the well-known monographs [1] – [3]. In recent years, we have given
considerable attention to these inequalities (see [4] – [8]). Recently, the follow-
ing interesting double inequality concerning the angle bisectors and the sides,
which was presented by X.-Zh. Yang, T.-Y. Ma and W.-L. Dong in [9, 10], has
come to our attention:

(1.1)
3
√

3

2
+

(
8

3
− 3
√

3

2

)(
1− 2r

R

)
≤
∑ wa

a
≤ 3
√

3

2
+ 2
√

3

(
R

2r
− 1

)
.

The above result also motivates us to investigate some similar inequalities.
We give here sharp lower and upper bounds for the sum

∑
a

wa
. Moreover,

in Section3 the obtained result will be used for establishing an analogue of
inequality (1.1).
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Theorem 1.1. In any triangleABC the following double inequalities hold

(1.2)
1

2

(s

r
+
√

3
)
≤
∑ a

wa

≤
√

2

2

(s

r
+ 2
√

6− 3
√

3
)

,

with equality if and only if the triangle is an equilateral. Furthermore,1
2

and
√

2
2

are the best coefficients in (1.2).
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2. Proof of Theorem1.1
To prove Theorem1.1, we shall use the following known results [2, p. 3, p.
241] (see also [1])

Lemma 2.1. In any triangleABC we have the following inequalities

(2.1) s4 ≤ s2(4R2 + 20Rr − 2r2)− r(4R + r)3,

(2.2) 2R2 + 10Rr − r2 − 2(R− 2r)
√

R2 − 2Rr

≤ s2 ≤ 2R2 + 10Rr − r2 + 2(R− 2r)
√

R2 − 2Rr,

with equality if and only if the triangle is isosceles.

(2.3) s ≤ 1√
3
(4R + r),

with equality if and only if the triangle is equilateral.
In any acute triangleABC we have

(2.4) s2 ≥ 4R2 + 4Rr + r2,

with equality if and only if the triangle is equilateral.

Proof of Theorem1.1. By the formula for angle bisector of triangleABC wa =
2bc
b+c

cos A
2
, we have∑ a

wa

=
∑

(csc B + csc C) sin
A

2

=
(∑

csc A
)(∑

sin
A

2

)
− 1

2

∑
sec

A

2
.
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Based on the above result, it follows from the identity
∏

cot A
2

= s
r

that the
inequality (1.2) is equivalent to the following inequality

1

2

∏
cot

A

2
+

√
3

2
≤
(∑

csc A
)(∑

sin
A

2

)
− 1

2

∑
sec

A

2
(2.5)

≤
√

2

2

∏
cot

A

2
+

4
√

3− 3
√

6

2
.

Using a substitutionA → π − 2A, B → π − 2B, C → π − 2C in (2.5), then
the inequality (2.5) can be translated to

1

2

∏
tan A +

√
3

2
≤
(∑

csc 2A
)(∑

cos A
)
− 1

2

∑
csc A(2.6)

≤
√

2

2

∏
tan A +

4
√

3− 3
√

6

2
.

Now, in order to prove the inequality (2.5), it is enough to prove that the in-
equality (2.6) to be valid for any acute triangle.

Note that the following known identities for a triangle [2, p. 55-60]:∑
csc 2A =

s4 + s2(2r2 − 8Rr − 4R2) + 16R3r + 20R2r2 + 8Rr3 + r4

4rs (s2 − 4R2 − 4Rr − r2)
,

∏
tan A =

2rs

s2 − 4R2 − 4Rr − r2
,

∑
csc A =

s2 + 4Rr + r2

2rs
,
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∑
cos A =

R + r

R
,

taking these identities into (2.6), we find that the inequality (2.6) is equivalent
to

(2.7) 4Rr2s2 + 2
√

3
(
s2 − 4R2 − 4Rr − r2

)
srR

≤ H ≤ 4
√

2Rr2s2 + (8
√

3− 6
√

6)
(
s2 − 4R2 − 4Rr − r2

)
srR,

where

H = (R + r)
[
s4 + s2(2r2 − 8Rr − 4R2)

+ 16R3r + 20R2r2 + 8Rr3 + r4
]

−R
(
s2 + 4Rr + r2

) (
s2 − 4R2 − 4Rr − r2

)
.

Let us now prove the inequality (2.7) to be valid for any acute triangle.
Using the inequalities (2.1), (2.3) and (2.4), we have

H − 4
√

2Rr2s2 −
(
8
√

3− 6
√

6
) (

s2 − 4R2 − 4Rr − r2
)
srR(2.8)

≤ (R + r)
[
s2(4R2 + 20Rr − 2r2)− r(4R + r)3

+s2(2r2 − 8Rr − 4R2) + 16R3r + 20R2r2 + 8Rr3 + r4
]

−R
(
s2 + 4Rr + r2

) (
s2 − 4R2 − 4Rr − r2

)
− 4
√

2Rr2s2

− (8− 6
√

2)
(
s2 − 4R2 − 4Rr − r2

)
(4R + r)rR

= s2
[(
−40 + 24

√
2
)

R +
(
6 + 2

√
2
)

r
]
Rr

+
(
160− 96

√
2
)

R4r +
(
152− 120

√
2
)

R3r2
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+
(
52− 48

√
2
)

R2r3 +
(
6− 6

√
2
)

Rr4

= F (s, R, r).

From Euler’s inequalityR ≥ 2r, we observe that(−40 + 24
√

2)R + (6 +
2
√

2)r < 0.

Case1. WhenR > (
√

2 + 1)r, by inequality (2.4) we have

F (s, R, r) ≤ (4R2 + 4Rr + r2)
[(
−40 + 24

√
2
)

R +
(
6 + 2

√
2
)

r
]
Rr

+
(
160− 96

√
2
)

R4r + (152− 120
√

2)R3r2

+
(
52− 48

√
2
)

R2r3 +
(
6− 6

√
2
)

Rr4

=
(
16− 16

√
2
)

R3r2 +
(
36− 16

√
2
)

R2r3 +
(
12− 4

√
2
)

Rr4

= −4Rr2
[
R−

(√
2 + 1

)
r
] [(

4
√

2− 4
)

R +
(
4
√

2− 5
)

r
]

< 0.

Case2. When2r ≤ R ≤ (
√

2 + 1)r, by inequality (2.2) we get

F (s, R, r) ≤
[
2R2 + 10Rr − r2 − 2(R− 2r)

√
R2 − 2Rr

]
×
[(
−40 + 24

√
2
)

R +
(
6 + 2

√
2
)

r
]
Rr +

(
160− 96

√
2
)

R4r

+
(
152− 120

√
2
)

R3r2 +
(
52− 48

√
2
)

R2r3 +
(
6− 6

√
2
)

Rr4

= 4Rr3(R− 2r)[F1(R, r) + F2(R, r)],
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where

F1(R, r) =

[(
20− 12

√
2
)(R

r

)
− 3−

√
2

]√(
R

r

)(
R

r
− 2

)
,

F2(R, r) =
(
20− 12

√
2
)(R

r

)2

+
(
−19 + 7

√
2
)(R

r

)
+
√

2.

We deduce from2 ≤ R/r ≤
√

2 + 1 that

F1(R, r) ≤
[(

20− 12
√

2
)(√

2 + 1
)
− 3−

√
2
]√(√

2 + 1
)(√

2 + 1− 2
)

= 7
√

2− 7,

F2(R, r) ≤
(
20− 12

√
2
)(√

2 + 1
)2

+
(
−19 + 7

√
2
)(√

2 + 1
)

+
√

2

= 7− 7
√

2,

which leads toF (s, R, r) ≤ 0.
Consequently

(2.9) H − 4
√

2Rr2s2 −
(
8
√

3− 6
√

6
) (

s2 − 4R2 − 4Rr − r2
)
srR ≤ 0.
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On the other hand, utilizing the inequalities (2.3) and (2.4), we have

H − 4Rr2s2 − 2
√

3
(
s2 − 4R2 − 4Rr − r2

)
srR

≥ (R + r)
[
s4 + s2(2r2 − 8Rr − 4R2) + 16R3r + 20R2r2 + 8Rr3 + r4

]
−R

(
s2 + 4Rr + r2

) (
s2 − 4R2 − 4Rr − r2

)
− 4
√

2Rr2s2 − 2
(
s2 − 4R2 − 4Rr − r2

)
(4R + r)R

= r
(
s2 − 4R2 − 4Rr − 3r2

)2
+ 4r(R + r)F (s, R, r),

where

F (s, R, r) = −s2(3R− 2r) + 12R3 + 4R2r −Rr2 − 2r3.

By Euler’s inequalityR ≥ 2r, we conclude that3R − 2r > 0. Using the
inequality (2.2) yields

F (s, R, r) ≥ −(3R− 2r)
[
2R2 + 10Rr − r2 + 2(R− 2r)

√
R2 − 2Rr

]
+ 12R3 + 4R2r −Rr2 − 2r3

= 2(R− 2r)
[
R(3R− 5r) + r2 − (3R− 2r)

√
R2 − 2Rr

]
= 2(R− 2r)

[Rr2(3R− 2r) + r4]

R(3R− 5r) + r2 + (3R− 2r)
√

R2 − 2Rr

≥ 0.

Consequently

(2.10) H − 4Rr2s2 − 2
√

3
(
s2 − 4R2 − 4Rr − r2

)
srR ≥ 0.
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Combining (2.9) and (2.10) yields the inequality (2.7), then from (2.7), the
inequality (1.2) follows immediately. Moreove, from the process of proving
inequality (1.2), it is easy to observe that the equalities hold in (1.2) if and only
if the triangle is equilateral.

Next, we need to show that the coefficients1
2

and
√

2
2

in (1.2) are best possible
in the strong sense.

Consider the inequality (1.2) in a general form as

(2.11) λ

(
s

r
+

2
√

3

λ
− 3
√

3

)
≤
∑ a

wa

≤ k

(
s

r
+

2
√

3

k
− 3
√

3

)
.

Puttinga = 1, b = 1, c = 2t in (2.11) yields that

λ(1 + t)+
(
2
√

3− 3
√

3λ
)

t

√
1− t

1 + t
(2.12)

≤ 4t2 + (1 + 2t)
√

2− 2t

2 + 2t

≤ k(1 + t) +
(
2
√

3− 3
√

3k
)

t

√
1− t

1 + t
.

In (2.12), passing the limit ast→ 0 andt→ 1 respectively, we find thatλ ≤ 1
2

andk ≥
√

2
2

. Thus the best possible values forλ andk in (2.11) is thatλmax = 1
2
,

kmin =
√

2
2

. This completes the proof of Theorem1.1.
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3. An Application
As an application of Theorem1.1, we establish an analogue of the inequality
(1.1), as follows.

Theorem 3.1. In any triangleABC the following double inequalities hold

(3.1) 2
√

3 +
3

2

(
1− 2r

R

)
≤
∑ a

wa

≤ 2
√

3 + 2
√

2

(
R

2r
− 1

)
,

with equality if and only if the triangle is equilateral. Furthermore,2
√

2 is the
best coefficient in the right-hand side of inequality (3.1).

Proof. Applying Theorem1.1and Blundon’s inequality [11] s ≤ 2R +(3
√

3−
4)r, it follows that

∑ a

wa

≤
√

2

2

(s

r
+ 2
√

6− 3
√

3
)
≤ 2
√

3 + 2
√

2

(
R

2r
− 1

)
.

On the other hand, by using Theorem1.1and Gerretsen’s inequality [12] s2 ≥
16Rr − 5r2, we have∑ a

wa

− 2
√

3− 3

2

(
1− 2r

R

)
≥ 1

2

(s

r
+
√

3
)
− 2
√

3− 3

2

(
1− 2r

R

)
=

1

2Rr
[sR− 3(R− 2r)r − 6

√
3Rr]
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≥ 1

2Rr

[
R
√

16Rr − 5r2 − 3(R− 2r)r − 3
√

3Rr
]

=
R2(16Rr − 5r2)−

[
3(R− 2r)r + 3

√
3Rr

]2
2Rr

[
R
√

16Rr − 5r2 + 3(R− 2r)r + 3
√

3Rr
]

=
16(R− 2r)3 + (55− 18

√
3)(R− 2r)2 + (64− 36

√
3)(R− 2r)

2R
[
R
√

16Rr − 5r2 + 3(R− 2r)r + 3
√

3Rr
]

≥ 0,

so that ∑ a

wa

≥ 2
√

3 +
3

2

(
1− 2r

R

)
.

The inequality (3.1) is proved. It follows directly from Theorem1.1 that the
equalities hold in (3.1) if and only if the triangle is equilateral.

Let us now show that the coefficient2
√

2 in the right-hand side of inequality
(3.1) is best possible.

Consider the inequality (3.1) in a general form as

(3.2)
∑ a

wa

≤ 2
√

3 + µ

(
R

2r
− 1

)
.

Puttinga = 1, b = 1, c = 2t in (3.2) yields that

(3.3)
4t2 + (1 + 2t)

√
2− 2t

2 + 2t
≤ µ

4
√

1− t2
+
(
2
√

3− µ
)

t

√
1− t

1 + t
.

Passing the limit ast → 0 in (3.3), we getµ ≥ 2
√

2. Thus the best possi-
ble value forµ in (3.2) should beµmin = 2

√
2. The proof of Theorem3.1 is

complete.
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It is worth noticing that the coefficient3
2

is not best possible for the left-hand
side of inequality (3.1), this may lead us to further discussion of the following
significant problem.

Open Problem.Determine the best coefficientµ for which the inequality below
holds

(3.4)
∑ a

wa

≥ 2
√

3 + µ

(
1− 2r

R

)
.

It seems that the problem is complicated and difficult. Indeed, it is unable to
be solved in a same way as the foregoing technique.
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