Journal of Inequalities in Pure and Applied Mathematics

SOME CYCLICAL INEQUALITIES FOR THE TRIANGLE

JOSÉ LUIS DÍAZ-BARRERO

Applied Mathematics III
Universitat Politècnica de Catalunya Jordi Girona 1-3, C2
08034 Barcelona, Spain
EMail: jose.luis.diaz@upc.edu
volume 6, issue 1, article 20, 2005.

Received 03 March, 2004; accepted 1 February, 2005.

Communicated by: A. Lupaş

Abstract
Contents
Gome Page
Go Back
Close

Abstract

Classical inequalities and convex functions are used to get cyclical inequalities involving the elements of a triangle.

2000 Mathematics Subject Classification: 26D15.
Key words: Inequalities, Geometric inequalities, Triangle inequalities, Circular inequalities

Contents

1 Introduction.. 3
2 The Inequalities .. . 4
References

Some Cyclical Inequalities for the Triangle

José Luis Díaz-Barrero

J. Ineq. Pure and Appl. Math. 6(1) Art. 20, 2005 http://jipam.vu.edu.au

1. Introduction

In what follows we are concerned with inequalities involving the elements of a triangle. Many of these inequalities have been documented in an extensive lists that appear in the work of Botema [2] and Mitrinović [5]. In this paper, using classical inequalities and convex functions some new inequalities for a triangle are obtained.

Some Cyclical Inequalities for the Triangle

José Luis Díaz-Barrero

J. Ineq. Pure and Appl. Math. 6(1) Art. 20, 2005
http://jipam.vu.edu.au

2. The Inequalities

In the sequel we present some cyclical inequalities for the triangle. We begin with:

Theorem 2.1. Let a, b, c be the sides of triangle $A B C$ and let s be its semiperimeter. Then,

$$
\begin{equation*}
\frac{1}{18} \sum_{\text {cyclic }}\left\{\frac{1}{(s-a)(s-b)}\right\}^{\frac{1}{2}} \geq\left\{\sum_{\text {cyclic }} \frac{a^{2}+b c}{b+c}\right\}^{-1} \tag{2.1}
\end{equation*}
$$

Proof. First, we will prove that

$$
\begin{equation*}
\sqrt{\frac{1}{(s-a)(s-b)}}+\sqrt{\frac{1}{(s-b)(s-c)}}+\sqrt{\frac{1}{(s-c)(s-a)}} \geq \frac{9}{s} \tag{2.2}
\end{equation*}
$$

In fact, taking into account the AM-GM inequality, we get

$$
\begin{equation*}
\frac{s}{3}=\frac{(s-a)+(s-b)+(s-c)}{3} \geq \sqrt[3]{(s-a)(s-b)(s-c)} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sqrt{s-a}+\sqrt{s-b}+\sqrt{s-c}}{3} \geq \sqrt[6]{(s-a)(s-b)(s-c)} \tag{2.4}
\end{equation*}
$$

Multiplying up (2.3) and (2.4) yields

$$
\frac{s(\sqrt{s-a}+\sqrt{s-b}+\sqrt{s-c})}{9} \geq \sqrt{(s-a)(s-b)(s-c)}
$$

or equivalently,

$$
\frac{s}{9}\left(\sqrt{\frac{1}{(s-a)(s-b)}}+\sqrt{\frac{1}{(s-b)(s-c)}}+\sqrt{\frac{1}{(s-c)(s-a)}}\right) \geq 1
$$

and (2.2) is proved.
Now we will see that

$$
\begin{equation*}
s \leq \frac{1}{2} \sum_{\text {cyclic }} \frac{a^{2}+b c}{b+c} \tag{2.5}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\frac{a^{2}+b c}{b+c}+\frac{b^{2}+c a}{c+a}+\frac{c^{2}+a b}{a+b}-(a+b+c) \geq 0 \tag{2.6}
\end{equation*}
$$

holds. In fact, (2.6) is a consequence of the well known inequality

$$
\begin{equation*}
X^{2}+Y^{2}+Z^{2} \geq X Y+X Z+Y Z \quad X, Y, Z \in \mathbb{R} \tag{2.7}
\end{equation*}
$$

that can be obtained by rewriting the inequality

$$
(X-Y)^{2}+(X-Z)^{2}+(Y-Z)^{2} \geq 0
$$

After reducing (2.6) to a common denominator and some straightforward algebra, we get

José Luis Díaz-Barrero

Title Page
Contents

Go Back
Close
Quit
Page 5 of 11
$\frac{a^{2}+b c}{b+c}+\frac{b^{2}+c a}{c+a}+\frac{c^{2}+a b}{a+b}-(a+b+c)=\frac{a^{4}+b^{4}+c^{4}-a^{2} c^{2}-a^{2} b^{2}-b^{2} c^{2}}{(a+b)(a+c)(b+c)}$.

Setting $X=a^{2}, Y=b^{2}$ and $Z=c^{2}$ into (2.7), we have

$$
a^{4}+b^{4}+c^{4}-a^{2} b^{2}-a^{2} c^{2}-b^{2} c^{2} \geq 0
$$

and (2.5) is proved. Note that equality holds when $a=b=c$. That is, when $\triangle A B C$ is equilateral.

Finally, (2.1) immediately follows from (2.2) and (2.5) and the theorem is proved.

Next we state and prove a key result to generate cyclical inequalities.
Theorem 2.2. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers and let $s_{k}=S-(n-$
Some Cyclical Inequalities for the Triangle

José Luis Díaz-Barrero 1) $a_{k}, k=1,2, \ldots, n$ where $S=a_{1}+a_{2}+\cdots+a_{n}$. If $a_{k}, s_{k}, k=1,2, \ldots, n$ lie in the domain of a convex function f, then

$$
\begin{equation*}
\sum_{k=1}^{n} f\left(s_{k}\right) \geq \sum_{k=1}^{n} f\left(a_{k}\right) \tag{2.8}
\end{equation*}
$$

Proof. Without loss of generality, we can assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$. Now it is easy to see that the vector

$$
\begin{aligned}
& \left(S-(n-1) a_{n}, S-(n-1) a_{n-1}, \ldots, S-(n-1) a_{1}\right) \\
= & \left(a_{1}+\cdots+a_{n-1}-n a_{n}, a_{1}+\cdots-n a_{n-1}+a_{n}, \ldots,-n a_{1}+\cdots+a_{n-1}+a_{n}\right)
\end{aligned}
$$

majorizes [7] the vector $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Namely,

$$
s_{n}+s_{n-1}+\cdots+s_{n-\ell+1} \geq a_{1}+a_{2}+\cdots+a_{\ell}
$$

for $\ell=1,2, \ldots, n-1$, and equality for $\ell=n$. Taking into account Karamata's inequality [6] we have

$$
\sum_{k=1}^{n} f\left(S-(n-1) a_{k}\right) \geq \sum_{k=1}^{n} f\left(a_{k}\right)
$$

and the proof is complete.
Theorem 2.3. In any $\triangle A B C$ the following inequality holds:

$$
\begin{equation*}
\prod_{\text {cyclic }}(a+b-c)^{a+b-c} \geq a^{b} b^{c} c^{a} \tag{2.9}
\end{equation*}
$$

Some Cyclical Inequalities for the Triangle

José Luis Díaz-Barrero
where a, b, c are the sides of the triangle.
Proof. Applying Theorem 2.2 to the function $f(x)=x \ln x$ that is convex for $x>0$, we get

$$
\begin{equation*}
(a+b-c)^{a+b-c}(b+c-a)^{b+c-a}(c+a-b)^{c+a-b} \geq a^{a} b^{b} c^{c} \tag{2.10}
\end{equation*}
$$

Now we claim that

$$
\begin{equation*}
a^{a} b^{b} c^{c} \geq\left(\frac{a+b+c}{3}\right)^{a+b+c} \geq a^{b} b^{c} c^{a} \tag{2.11}
\end{equation*}
$$

and the statement immediately follows from (2.10) and (2.11).
Inequalities in (2.11) have been proved in [3] using the weighted AM-GM-

Title Page
Contents
Go Back
Close
Quit
Page 7 of 11

Emil Artin in [1] proved that $f(x)=\ln \Gamma(x)$ is convex for $x>0$ where $\Gamma(x)$ is the Euler Gamma Function. Then, applying Theorem 2.2 to $f(x)$, we have

Theorem 2.4. In any triangle $A B C$, we have

$$
\begin{equation*}
\prod_{\text {cyclic }} \Gamma(a+b-c) \geq \prod_{\text {cyclic }} \Gamma(a) \tag{2.12}
\end{equation*}
$$

Using other convex functions and carrying out this procedure we get the following new inequalities:

Theorem 2.5. Let a, b and c be the sides of triangle $A B C$. Then
Some Cyclical Inequalities for the Triangle

José Luis Díaz-Barrero

$$
\begin{equation*}
\prod_{\text {cyclic }}(a+b-c)^{a+b} \geq a^{s+a / 2} b^{s+b / 2} c^{s+c / 2} \tag{2.13}
\end{equation*}
$$

holds.
Proof. Applying Theorem 2.2 to the function $f(x)=(x+a+b+c) \ln x$ that is convex for $x>0$, we get from

$$
f(a+b-c)+f(b+c-a)+f(c+a-b) \geq f(a)+f(b)+f(c)
$$

that

$$
\begin{array}{r}
2(a+b) \ln (a+b-c)+2(b+c) \ln (b+c-a)+2(c+a) \ln (c+a-b) \\
\geq(2 a+b+c) \ln a+(a+2 b+c) \ln b+(a+b+2 c) \ln c
\end{array}
$$

Title Page
Contents

Go Back
Close
Quit
Page 8 of 11
and we are done.

The function $f(x)=\frac{x^{3}}{1+x}$ is convex for $x>0$. In fact, $f^{\prime}(x)=\frac{x^{2}(3+2 x)}{(1+x)^{2}}>0$ and $f^{\prime \prime}(x)=\frac{2 x\left(3+3 x+x^{2}\right)}{(1+x)^{3}}>0$. Hence, f is increasing and convex. Applying again Theorem 2.2 to $f(x)$, we have

Theorem 2.6. In any triangle $A B C$ the following inequality

$$
\begin{equation*}
\sum_{\text {cyclic }} \frac{(a+b-c)^{3}}{1+a+b-c} \geq \sum_{\text {cyclic }} \frac{a^{3}}{1+a} \tag{2.14}
\end{equation*}
$$

holds.
Observe that the preceding procedure can be used to generate many triangle inequalities.

Before stating our next result we give a lemma that we will use later on.
Lemma 2.7. Let x, y, z and a, b, c be strictly positive real numbers. Then, we have

$$
\begin{equation*}
3\left(y z a^{2}+z x b^{2}+x y c^{2}\right) \geq(a \sqrt{y z}+b \sqrt{z x}+c \sqrt{x y})^{2} \tag{2.15}
\end{equation*}
$$

Proof. Let $\vec{u}=(\sqrt{y z}, \sqrt{z x}, \sqrt{x y})$ and $\vec{v}=(a, b, c)$. By applying Cauchy-Buniakovski-Schwarz's inequality, we get

$$
[(\sqrt{y z}, \sqrt{z x}, \sqrt{x y}) \cdot(a, b, c)]^{2} \leq\|(\sqrt{y z}, \sqrt{z x}, \sqrt{x y})\|^{2}\|(a, b, c)\|^{2}
$$

or equivalently,

$$
\begin{equation*}
(a \sqrt{y z}+b \sqrt{z x}+c \sqrt{x y})^{2} \leq(y z+z x+x y)\left(a^{2}+b^{2}+c^{2}\right) \tag{2.16}
\end{equation*}
$$

On the other hand, applying the rearrangement inequality yields

$$
\begin{aligned}
& a^{2} y z+b^{2} z x+c^{2} x y \geq b^{2} y z+c^{2} z x+a^{2} x y \\
& a^{2} y z+b^{2} z x+c^{2} x y \geq b^{2} x y+a^{2} z x+c^{2} y z
\end{aligned}
$$

Hence, the right hand side of (2.15) becomes

$$
(y z+z x+x y)\left(a^{2}+b^{2}+c^{2}\right) \leq 3\left(y z a^{2}+z x b^{2}+x y c^{2}\right)
$$

and the proof is complete.
In particular, setting $x=a+b-c, y=c+a-b$ and $z=b+c-a$ into the preceding lemma, we get the following
Theorem 2.8. If a, b and c are the sides of triangle $A B C$, then

$$
\begin{equation*}
\sum_{\text {cyclic }} a^{3} b \sin ^{2} \frac{C}{2} \geq \frac{1}{3}\left\{\sum_{\text {cyclic }} a \sqrt{(s-a)(s-b)}\right\}^{2} \tag{2.17}
\end{equation*}
$$

Proof. Taking into account the Law of Cosines, we have

$$
\sum_{\text {cyclic }} a^{3} b \sin ^{2} \frac{C}{2}=\frac{1}{2} \sum_{\text {cyclic }} a^{3} b(1-\cos C)=\frac{1}{2} \sum_{\text {cyclic }} a^{2}\left[c^{2}-(a-b)^{2}\right]
$$

On the other hand,

$$
\left\{\sum_{\text {cyclic }} a \sqrt{(s-a)(s-b)}\right\}^{2}=\frac{1}{2}\left\{\sum_{\text {cyclic }} a \sqrt{c^{2}-(a-b)^{2}}\right\}^{2} .
$$

Some Cyclical Inequalities for the Triangle

José Luis Díaz-Barrero

Title Page
Contents
Go Back
Close
Quit
Page 10 of 11

Now, inequality (2.17) immediately follows from (2.15) and the proof is completed.

References

[1] E. ARTIN, The Gamma Function, Holt, Reinhart and Winston, Inc., New York, 1964.
[2] O. BOTEMA et al., Geometric Inequalities, Wolters Noordhoff Publishing, Groningen, 1969.
[3] J.L. DÍAZ-BARRERO, Rational identities and inequalities involving Fibonacci and Lucas numbers, J. Ineq. Pure and Appl. Math., 4(5) (2003), Art. 83. [ONLINE: http://jipam.vu.edu.au/article.php?sid= $324]$
[4] G. HARDY, J.E. LITTLEWOOD AnD G. POLYA, Inequalities, Cambridge, 1997.
[5] D.S. MITIRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Dordrecht, 1989.
[6] M. ONUCU, Inegalităţi, GIL, Zalău, România, 2003.
[7] E.W. WEISSTEIN et al., Majorization, MathWorld- A Wolfram Web Resource, (2004). [ONLINE: http://matworld.wolfram.com/ Majorization.html]

J. Ineq. Pure and Appl. Math. 6(1) Art. 20, 2005 http://jipam.vu.edu.au

