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Abstract: In this paper we prove that there are no domainsE ⊂ R2, other than the
ellipses, such that the Lebesgue measure of the intersection ofE and its ho-
mothetic imageεE translated to a boundary pointq ∈ ∂E is independent
of q, provided thatE is "centered" at a certain interior pointO ∈ E (the
center of homothety).
Similar problems arise in various fields of mathematics, including, for ex-
ample, the study of stationary isothermal surfaces and rearrangements.
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1. Introduction

In this paper we devote ourselves to the investigation, in two dimensions, of the
following problem, which was originally proposed in a more generalN -dimensional
setting by one of the authors in [4] and up to this moment has remained an open
problem.

O.

.

ε

εε
q

Figure 1: The area of the shaded regionεE is independent ofq.

Problem 1. Determine all the open bounded convex setsE in R2 for which there
exists a pointO ∈ E such that, for everyε > 0, the measure of the intersection ofE
with its homothetic imageεE with respect toO, translated to a boundary pointq, is
independent ofq, for every chosenq belonging to the boundary ofE .
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In other words, we are interested in determining all the open bounded convex sets
E in R2 satisfying the following property:

(1.1) ∀ε > 0 ∃C = C(ε) > 0 s.t. |E ∩ [εE + (q −O)]| = C ∀q ∈ ∂E ,

with C independent ofq (see Fig.1).
In fact, we will answer this question by solving a more general problem:

Problem 2. Determine all those open bounded convex setsE ⊂ R2 such that there
exists an open bounded convex setE ⊂ R2, with the property that the measure of the
intersectionE ∩ [εE + (q −O)] is independent ofq, for anyq ∈ ∂E , i.e.

(1.2) ∀ε > 0 ∃C = C(ε) > 0 s.t. |E ∩ [εE + (q −O)]| = C ∀q ∈ ∂E ,

whereC is independent ofq andO is a suitable interior point ofE.

We will prove that, assuming sufficient regularity for the setsE andE , the only
setsE for which property (1.2) is satisfied are the ellipses. Hence, if a solution to
Problem1 exists, it must be an ellipse (thus giving uniqueness). On the other hand,
homothetic ellipses clearly satisfy (1.1). Indeed, ifE andE are two discs, (1.1) is
obviously satisfied, and the homothetic ellipses case can be reduced to this last one,
by means of a proper dilatation, under which our problem is invariant.

Actually, we will show that, in Problem2, E must be an ellipse as well (see
Corollary2.5). This result is not trivial forN > 2 and it is obtained in [7].

The result proved here strongly suggests that also inRN the only admissible
convex setsE should be the ellipsoidal domains. This multidimensional version of
our result will be the object of future investigations.

It is worthwhile to point out that the assumption thatE is bounded is crucial since,
otherwise, many more cases appear. For example, inR2, whenE is the half plane,
E can be any bounded set, or inR3, whenE is a sphere, many classes of unbounded
domainsE are admissible (see [7]).
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The problem treated in this paper, though interesting in itself, is strangely related
to some other problems appearing in different contexts. For example, in [7] the
authors show that the domainsE satisfying (1.2), whereE is a sphere, are related to
the determination of stationary isothermic surfaces. They prove that, in the bounded
case, the only admissible setsE must be the spheres, while, in the unbounded case,
the admissible setsE are classified, as recalled above.

The result obtained in [7] suggests many possible extensions, among which the
one studied in this paper is definitely the most general, at least in the two dimensional
setting.

Another possible application of the result obtained in this paper is in connection
with rearrangements (see [3]), with the aim of deriving a generalized version of the
Riesz-Sobolev type inequality making use of the Hardy-Littlewood inequality (see
[5]).

An abstract version of the Riesz-Sobolev inequality can be written in the form

(1.3)
∫

RN

(f ? g) (x)h(x) dx ≤
∫

RN

(
f#B ? g#B) (x)h#B(x) dx ,

whereB = {Br : r ∈ R+} is the family of all the homothetic sets of a givenopen
convex neighborhoodof the origin with compact closure, and, for any measurable
functionφ with level sets of finite measure,φ#B is itsB-rearrangement, i.e

(1.4) φ#B(x) = sup
{

λ > 0 : x ∈ (φλ)
#B

}
,

where(φλ)
#B is theB-rearrangementof the sublevelφλ := {x ∈ RN : φ(x) < λ}

(see, for instance, [2], [6], [8]). Here,f, g, h are measurable functions onRN and?
denotes the convolution products.

In the first place, an argument based on linearity reduces the task of proving in-
equality (1.3) for B-rearrangements to the proof of its validity in the case of positive

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


A Non Local Quantitative
Characterization of Ellipses

M. Amar, L.R. Berrone
and R. Gianni

vol. 9, iss. 4, art. 94, 2008

Title Page

Contents

JJ II

J I

Page 7 of 28

Go Back

Full Screen

Close

step functions. In particular, we have to prove such an inequality for the case

I :=

∫
RN

∫
RN

χBr
(x− y)f(y)χB(x) dxdy,

(see the beginning of pg. 24 in [6]). A simple calculation shows that, in this case,
inequality (1.3) is clearly satisfied when, for example,

(1.5) |(Br + y) ∩B| =
∣∣∣[(Br + y) ∩B]#B

∣∣∣ .

But (1.5) holds if and only if, for every chosenr > 0, there existsC > 0 such that

|B ∩ (x + Br)| = C when x ∈ ∂Br .

In this paper, it is proved that this last property holds only for ellipsoidal domains.
We conclude by observing that the proof of our main theorem strongly relies on

the McLaurin expansion, with respect toε, of the functionε 7→ A(ε, q) := |E ∩
(εE + q)|, which allows us to obtain a particular differential equation, satisfied by
anyE having property (1.2). This particular technique connects our problem to other
related ones, already studied by the authors (see, e.g., [1]).

The paper is organized as follows: in Section2 we give the definition of a “proper
testing set” and state our main result (see Theorem2.2), with its consequences. In
Section3 we give the McLaurin expansion, with respect toε, up to the fifth order, of
the area functionε 7→ A(ε, q), defined above (see Propositions3.1and3.2). Finally,
in Section4 we prove the main theorem. A Section5, with the conclusions and some
final remarks, is added.
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2. Position of the Problem

Let E andE be two bounded convex subsets ofRN , with |E| = 1. Let O be a point
in the interior ofE andεE be the set

εE := {y ∈ RN : y = ε(x−O) with x ∈ E} .

Finally, for every pointq ∈ ∂E , we denote withA(ε, q) the Lebesgue measure of the
regionE ∩ εEq, whereεEq = εE +(q−O). From now on, we will call the setE the
“tested convex set” and the setE the “testing convex set”.

In agreement with the notations introduced in [7], we will make use of the fol-
lowing definitions:

Definition 2.1. Given two setsE andE, we will say thatE is uniformlyE-dense on
its boundary ifA(ε, q) does not depend onq ∈ ∂E . In this case,E will be called a
“proper testing set”.

In this regard, the question arises of whether it is possible to characterize the con-
vex setsE, together with the pointO (which will be later chosen as the origin of both
the cartesian axis and the polar coordinates), for which a convex setE , uniformlyE-
dense on its boundary, exists.

In theN -dimensional setting, the problem has been treated by Magnanini, Pra-
japat and Sakaguchi in [7], where it is proved that, ifE is a sphere, then it is a proper
testing set and, in this case,E must be a sphere, too. In the2-dimensional case this
property is a consequence of Proposition3.2, as it is stated in Corollary3.3 (see
Section3).

Remark1. In general, it is possible to prove that any ellipsoid is a proper testing set.
This can be easily obtained observing that the problem is invariant under dilatation
of the axes under which any ellipsoid can be reduced to a sphere. Clearly, in this

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


A Non Local Quantitative
Characterization of Ellipses

M. Amar, L.R. Berrone
and R. Gianni

vol. 9, iss. 4, art. 94, 2008

Title Page

Contents

JJ II

J I

Page 9 of 28

Go Back

Full Screen

Close

case the pointO must be the center of the testing ellipsoid and the tested convex set
is, up to a translation, homothetic to the testing one.

Nevertheless, the problem of determining all the proper testing sets remains open.
In this paper, this problem will be solved for the caseN = 2, for tested convex sets
of classC4 and testing convex sets of classC2, as stated in Theorem2.2below.

From now on, we assumeN = 2.

Theorem 2.2. Let E andE be a tested set and a testing convex set of classC4 and
C2, respectively. If the McLaurin expansion up to the fifth order, with respect toε, of
the functionA(ε, q) = |E ∩ [εE + (q−O)]| has coefficients which do not depend on
q ∈ ∂E , thenE must be an ellipse andO must be its center.

Corollary 2.3. The only proper testing sets of classC2 are the ellipses.

Proof. It is a direct consequence of the previous theorem since, ifE is a proper
testing set, by definition the functionA(ε, q) does not depend onq, so that its fifth
order power expansion also does not depend onq.

Corollary 2.4. The ellipsesΩ are the only sets which are uniformlyλΩ-dense on
their boundary, whereλ = 1/|Ω| (see Definition2.1with E = Ω andE = λΩ).

Proof. It is a direct consequence of Corollary2.3.

Corollary 2.5. Let E andE be a tested set and a testing convex set of classC4 and
C2, respectively. IfE is uniformlyE-dense on its boundary, thenE is an ellipse and
E ≡ λE, for a suitableλ > 0.

Proof. From Corollary2.3, we get thatE is an ellipse. Since the problem is invariant
under dilatation of the axes, we can perform a proper dilatationΛ in such a way that
E is transformed in a circleΛ(E). Using the forthcoming Corollary3.3, we have
thatΛ(E) is a circle, too. Hence,E is an ellipse homothetic toE.
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3. Preliminary Results

Let us now fix a system(x, y) of cartesian coordinates and let(θ, ρ) be the associated
polar coordinates (in whichθ = 0 corresponds to the positivex-axis), centered in the
pointO belonging to the interior ofE. In the following, we will use a local cartesian
representation for the tested convex setE , while for the testing convex setE we will
use a global polar representationρ = ρ(θ), 0 ≤ θ ≤ 2π. Moreover,E andE are
always assumed to be of classC4 andC2, respectively.

Given a unit vectorν ∈ S1, we setC(ν) as the area of the portion of the plane,
not containing the vectorν, bounded byE and by the straight line orthogonal toν
passing through the origin.

Proposition 3.1. The second order McLaurin expansion of the functionA(ε, q) with
respect toε is given by

(3.1) A(ε, q) = C(ν(q))ε2 + o(ε2) ,

whereν(q) is the outward unit normal vector toE in q.
Moreover, such a power expansion does not depend onq if and only if the testing

convex setE is centrally symmetric with respect toO; i.e.,ρ(θ) = ρ(θ+π) for every
θ ∈ R. Obviously, in this case,C(ν(q)) = 1/2.

Proof. SinceA(ε, q) = |E ∩ εEq| and the diameter ofεEq is of the orderε, the
first term in the expansion ofA(ε, q) is of orderε2. Moreover, keeping account of
this fact, it is clear that we can locally approximate the arĉR2qR1 with the segment
P2P1, up to an error of orderε2 (see Figure2); thus producing in the computation
of A(ε, q) an error of orderε3, which does not affect the second order McLaurin
expansion.
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x0

f(x0)

ε

εEq

P1

P2

R1

f(x)

y=f(x0)+f'(x0)(x-x0)

R2 ν(q)

O

Figure 2:q =
(
x0, f(x0)

)
, A(ε, q) is the area of the grey region andD(ε, q) is the area of the black

region.

This implies thatA(ε, q) = C(ν(q))ε2 + o(ε2). Clearly, if the second order
power expansion ofA(ε, q) does not depend onq, the functionC(ν(q)) also does
not depend onq. RewritingC(ν(q)) in terms of the angleφ, between the normal
ν(q) and the positivex-axis, and calling this new functioñC(φ), we have that it is
constant if and only if

0 = C̃ ′(φ) =
C̃(φ + dφ)− C̃(φ)

dφ
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=
ρ2(φ + 3π/2) dφ− ρ2(φ + π/2) dφ

dφ

which impliesρ(φ+3π/2) = ρ(φ/2). Since the boundary ofE is a closed connected
simple curve,φ attains any value in[0, 2π), asq varies on∂E . Consequently,ρ(θ +
π) = ρ(θ); i.e., E is centrally symmetric with respect toO. Clearly, in this case,
C(ν(q)) = C̃(φ) = 1

2
|E| = 1/2.

Having found the second order expansion ofA(ε, q), we will now devote our
attention to determining its fifth order expansion. To this purpose, given the convex
setE , let us assume thaty = f(x) is a local parametrization of classC4 of ∂E , in a
neighborhood ofq, such thatq = (x0, f(x0)).

Let t1 andt2 be the tangent lines (in their cartesian representation) toεE at the
points (expressed in polar coordinates)

p1 = (arctan f ′(x0), ερ
(
arctan f ′(x0)

)
)

p2 = (arctan f ′(x0) + π, ερ
(
arctan f ′(x0) + π

)
) .

Because of the central symmetry we have

ρ
(
arctan f ′(x0) + π

)
= ρ

(
arctan f ′(x0)

)
andt1 ‖ t2.

We denote byα the angular coefficient of the tangent linet1 to εE at the point
p1. Straightforward computations give the following expression forα:

(3.2) α =
ρ′(θ0) sin θ0 + ρ(θ0) cos θ0

ρ′(θ0) cos θ0 − ρ(θ0) sin θ0

,

whereθ0 = arctan f ′(x0) (see Figure3).
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O

y= f'(x0) x

p
1

p2

εΕ

t1

t2

ϕ
ϕ

ερ(θ)

θ

Figure 3:α = tan ϕ.

Let P1, P2 ∈ εEq be the corresponding points ofp1, p2 ∈ εE andS1 andS2 be
the intersection points of the tangent lines toεEq atP1 andP2 with the curve whose
equation is

y = T(x0,4)(x) := f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)

2

2

+
f ′′′(x0)(x− x0)

3

3!
+

f (iv)(x0)(x− x0)
4

4!
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(i.e. the fourth order expansion ofE).
Finally, t1 + q andt2 + q are the tangent lines, obtained translating the linest1

andt2 by adding the vector(q −O) (see Figure4).

T
(x0,4)

(x)

q

P1

P2

S2

S1

t2+q

t1+q

Q2

Q1

Figure 4: C1(ε, q) is the area of the grey region, whileC2(ε, q) − C1(ε, q) is the area of the black
region.
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Proposition 3.2. Let us assume thatE is centrally symmetric with respect toO.
Then the fifth order McLaurin expansion of the functionA(ε, q) with respect toε is
given by

(3.3) A(ε, q) =
1

2
ε2 + C3(q)ε

3 + C5(q)ε
5 + o(ε5) ,

where

C3(q)=
f ′′(x0)

3
[
1 +

(
f ′(x0)

)2
]3/2

ρ3
(
arctan f ′(x0)

)
;(3.4)

C5(q)=

[ (
f ′′(x0)

)3

4
(
α− f ′(x0)

)2 +
f ′′(x0)f

′′′(x0)

6
(
α− f ′(x0)

) +
f (iv)(x0)

60

]
ρ5

(
arctan f ′(x0)

)[
1 +

(
f ′(x0)

)2
]5/2

;(3.5)

and the term of fourth order is zero.

Remark2. It is a straightforward computation to prove that the ellipsesC3(q) and
C5(q) given in (3.4) and (3.5) are actually constants independent ofq.

Proof. It is clear that, ifε is sufficiently small, the differenceD(ε, q) between the
areaA(ε, q) of E ∩ εEq and its second order expansion is given by the area (with
the minus sign) of that portion ofεEq in betweenf(x) and the liney = f(x0) +
f ′(x0)(x− x0) (i.e. the black regionP2P1R1R2 in Figure2).

Since we are looking for the fifth order expansion ofA(ε, q), we can locally (i.e.
in a neighborhood ofq) replace the cartesian representation(x, f(x)) of E by means
of its fourth order Taylor expansionT(x0,4)(x), centered inx0 (in this regard, we use
the fact that the length|P1P2| is of orderε).

Henceforth,D(ε, q) = −C1(ε, q)+o(ε5), whereC1(ε, q) is the area of that portion
of εEq in betweeny = T(x0,4)(x) and the liney = f(x0) + f ′(x0)(x − x0) (i.e. the
grey regionP2P1Q1Q2 in Figure4).
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Nevertheless,C1(ε, q) cannot be easily computed; for this reason we need a fur-
ther approximation which, however, does not affect the fifth order of the McLaurin
expansion ofC1(ε, q). To this purpose, we replace the boundary ofεEq with the
tangent linest1 + q andt2 + q. Accordingly, we denote byC2(ε, q) the area of the
region thus obtained, which is bounded by the graph of the functiony = T(x0,4)(x)
and by the linesy = f(x0) + f ′(x0)(x− x0), t1 + q andt2 + q, i.e. the grey region
together with the black one in Figure4.

We claim thatC1(ε, q) = C2(ε, q) + o(ε5). This is mainly due to the following
facts:

1. Firstly, |(P1 − q) ∧ (P1 − S1)| ≥ η > 0, for everyq ∈ ∂E , with η independent
of q. Indeed, if this is not the case, due to the compactness ofE, there will be
a pointq for which the tangent linet1 + q to εEq at the corresponding point
P1 will coincide with the tangent lineP1P2 to E . Consequently, allE should
stay either on the left or on the right side of the lineP1P2, in contrast with the
central symmetry ofεEq with respect toq, proved in Proposition3.1.

2. Secondly, the length|P1S1| is of orderε2. This is a consequence of the fact that
the difference between the abscissae ofP1 andS1 is of orderε2, as it can be
seen using (3.16) below (withδ replaced byδ0 as given in (3.9)), provided that
|α− f ′(x0)| ≥ η̃ > 0. This final inequality is guaranteed by (1).

3. Using (1) and (2), it is easy to realize that the area of the black regionP1S1Q1 in
Figure4 can be bounded from above by the integral (with respect to a cartesian
reference frame attached to the linet1 + q) of the function whose graphs gives
the profile ofεEq (which, in the cartesian representation, is clearly a function of
second order) along the interval|P1S1| ∼ ε2. Henceforth, such area isO(ε6).
Obviously the same holds for the black regionP2S2Q2.
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Having proved the claim, we now evaluate the areaC2(ε, q).
To this purpose, let us consider the liney = α(x − x0) − (δ − f(x0)) which

is parallel tot1 + q and t2 + q. Moreover, let us callP (δ) the intersection point
between the two linesy = f(x0) + f ′(x0)(x−x0) andy = α(x−x0)− (δ− f(x0))
andS(δ) the intersection point between the liney = α(x− x0)− (δ − f(x0))) and
y = T(x0,4)(x) (see Figure5).

Clearly, thex-coordinateXP of the pointP (δ) is given by

(3.6) α(XP − x0)− (δ − f(x0)) = f(x0) + f ′(x0)(XP − x0)

=⇒ XP − x0 =
δ

α− f ′(x0)
.

In particular, we setδ0 to be the value of the parameterδ for whichP (δ0) = P1 and
P (−δ0) = P2; consequently,S(δ0) = S1 andS(−δ0) = S2.

Keeping in mind that the angular coefficient of the lineP1P2 is f ′(x0), by (3.6)
we get

(3.7) |P (δ0)− q| = δ0

α− f ′(x0)

√
1 +

(
f ′(x0)

)2
.

On the other hand,

(3.8) |P (δ0)− q| = |P1 − q| = |p1| = ερ
(
arctan f ′(x0)

)
(see Figure5) ,

hence, by (3.7) and (3.8), it follows that

(3.9) δ0 =

(
α− f ′(x0)

)
ρ
(
arctan f ′(x0)

)√
1 +

(
f ′(x0)

)2
ε .
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T
(x0,4)

(x)

q

P2

S2

S1

t2+q

t1+q

x0

y
0

y=α(x-x0)-(δ-f(x0))

{
q(δ)

δ=
S(δ)

P1

P(δ)

O

Figure 5:C2(ε, q) is the area of the shaded region.

Moreover, thex-coordinateXS of the pointS(δ) is obtained by solving the fol-
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lowing algebraic equation:

(3.10) α(XS − x0)− (δ − f(x0))

= f(x0) + f ′(x0)(XS − x0) +
f ′′(x0)(XS − x0)

2

2

+
f ′′′(x0)(XS − x0)

3

3!
+

f (iv)(x0)(XS − x0)
4

4!
,

which gives

(3.11) XS − x0 =
δ

α− f ′(x0)
+

f ′′(x0)

2[α− f ′(x0)]
(XS − x0)

2

+
f ′′′(x0)

3![α− f ′(x0)]
(XS − x0)

3 +
f (iv)(x0)

4![α− f ′(x0)]
(XS − x0)

4 .

This is a non trivial computation. For this reason, we confine ourselves to finding
the fourth order McLaurin expansion with respect toδ of XS − x0, i.e.:

XS − x0 = D1(x0)δ + D2(x0)δ
2 + D3(x0)δ + D4(x0)δ

4 + o(δ4) ,

which is, however, enough to carry on all the other computations of this paper.
Firstly, let us observe thatXS − x0 = O(δ) and hence,

(3.12) (at the 1st order) XS − x0 =

[
1

α− f ′(x0)

]
δ + o(δ) .

Replacing (3.12) in the right hand side of (3.11), we get

(3.13) (at the 2nd order) D2(x0) =

[
f ′′(x0)

2(α− f ′(x0))3

]
.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


A Non Local Quantitative
Characterization of Ellipses

M. Amar, L.R. Berrone
and R. Gianni

vol. 9, iss. 4, art. 94, 2008

Title Page

Contents

JJ II

J I

Page 20 of 28

Go Back

Full Screen

Close

Finally, by means of a standard bootstraps argument, we have

(at the 3rd order) D3(x0) =

[
f ′′′(x0)

3!(α− f ′(x0))4
+

2
(
f ′′(x0)

)2

4(α− f ′(x0))5

]
,(3.14)

(at the 4th order) D4(x0) =

[
5
(
f ′′(x0)

)3

8(α− f ′(x0))7
+

5f ′′(x0)f
′′′(x0)

12(α− f ′(x0))6
(3.15)

+
f (iv)(x0)

4!(α− f ′(x0))5

]
.

Hence,

(3.16) XP −XS = −
[

f ′′(x0)

2(α− f ′(x0))3

]
δ2

−

[
f ′′′(x0)

3!(α− f ′(x0))4
+

2
(
f ′′(x0)

)2

4(α− f ′(x0))5

]
δ3

−

[
5
(
f ′′(x0)

)3

8(α− f ′(x0))7
+

5f ′′(x0)f
′′′(x0)

12(α− f ′(x0))6
+

f (iv)(x0)

4!(α− f ′(x0))5

]
δ4 + o(δ4) .

This implies, in accordance with Figure6, thatC2(ε, q) is obtained by integrating
with respect toδ, from−δ0 to δ0, the infinitesimal areadA(δ) of the shaded region
in Fig. 6, found by multiplying the base|P (δ)S(δ)| = |XP − XS|

√
1 + α2 by the
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T
(x0,4)

(x)

q

S(δ+dδ){dδ =

S(δ)

P(δ)

P(δ+dδ)

y=α(x-x0)-(δ-f(x0))

Figure 6: The shaded region is the infinitesimal areadA(δ).

corresponding height, whose value isdδ/
√

1 + α2. Hence, we have

C2(ε, q) =

∫ δ0

−δ0

|XP −XS| dδ(3.17)

= −
[

f ′′(x0)

3(α− f ′(x0))3

]
δ3
0

−

[ (
f ′′(x0)

)3

4(α− f ′(x0))7
+

f ′′(x0)f
′′′(x0)

6(α− f ′(x0))6
+

f (iv)(x0)

60(α− f ′(x0))5

]
δ5
0,
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and, replacingδ0 as given by (3.9), it follows that

(3.18) C2(ε, q) = −

[
f ′′(x0)ρ

3
(
arctan f ′(x0)

)
3
(
1 +

(
f ′(x0)

)2)3/2

]
ε3

−
ρ5

(
arctan f ′(x0)

)(
1 +

(
f ′(x0)

)2)5/2

[ (
f ′′(x0)

)3

4(α− f ′(x0))2
+

f ′′(x0)f
′′′(x0)

6(α− f ′(x0))
+

f (iv)(x0)

60

]
ε5 .

Recalling that

A(ε, q) =
1

2
|εEq|+D(ε, q) =

1

2
ε2 − C1(ε, q) + o(ε5) =

1

2
ε2 − C2(ε, q) + o(ε5)

and using (3.18), we finally get the required result.

Corollary 3.3. If the proper testing convex setE ∈ C2 is a circle, then the tested
convex setE ∈ C4 must also be a circle.

Proof. SinceE is a proper testing set, by Definition2.1A(ε, q) is constant. Hence,
Proposition3.2applied to this particular case, implies

f ′′(x0)[
1 +

(
f ′(x0)

)2
]3/2

= cost .

It follows that the boundary of the tested convex setE has a positive constant curva-
ture, which, as far as bounded sets are concerned, implies that it is a circle.

In the caseN ≥ 2, the same result stated in Corollary3.3was previously proven
in [7, Theorem 1.2].
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4. Proof of the Main Theorem

Proof. By (3.4) and (3.5) in Proposition3.2 and the fact that, by assumption, the
McLaurin expansion of the functionA(ε, q) up to the fifth order does not depend on
the pointq ∈ E , we obtain

C3 =
f ′′(x0)

3
[
1 +

(
f ′(x0)

)2
]3/2

ρ3
(
arctan f ′(x0)

)
;(4.1)

C5 =

[ (
f ′′(x0)

)3

4
(
α− f ′(x0)

)2 +
f ′′(x0)f

′′′(x0)

6
(
α− f ′(x0)

) +
f (iv)(x0)

60

]
ρ5

(
arctan f ′(x0)

)[
1 +

(
f ′(x0)

)2
]5/2

;(4.2)

whereC3 andC5 are now constants independent ofq. The next step is to eliminate
the functionf putting together (4.1) and (4.2), thus obtaining an ordinary differential
equation for a new functionw defined by

(4.3) w(f ′) =

(
1 + (f ′)2

)1/2

ρ
(
arctan(f ′)

) .

Note that, now,w is regarded as a function of the new variablef ′.
By (4.1), we obtain

(4.4) f ′′(x) =
C

[
1 +

(
f ′(x)

)2
]3/2

ρ3
(
arctan f ′(x)

) ,

which gives

(4.5) f ′′(x) = Cw3
(
f ′(x)

)
.
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Hence, differentiating iteratively the previous equation with respect tox, we get

f ′′′(x) = 3C2w5
(
f ′(x)

)
w′(f ′(x)

)
;(4.6)

f (iv)(x) = 3C3w7
(
f ′(x)

) [
5(w′)2

(
f ′(x)

)
+ w

(
f ′(x)

)
w′′(f ′(x)

)]
.(4.7)

Recalling thatf ′(x) = tan θ, (4.3) implies

ρ(θ) =
1

w(tan θ) cos θ
,

ρ′(θ) =
w(tan θ) tan θ − (1 + tan2 θ)w′(tan θ)

w2(tan θ) cos θ
,

and, by (3.2),

(4.8) α(θ) = tan θ − w(θ)

w′(θ)
=⇒ α(θ)− f ′(x) = − w(θ)

w′(θ)
.

Replacing (4.3) and (4.5)–(4.8) in (4.2), we get

(4.9) C5 =

[
C3w9

4w2/(w′)2
− C3w8w′

2w/w′ +
C3w7

20

(
5(w′)2 + ww′′)] · 1

w5
,

which, after a simplification, gives

(4.10) w′′(f ′(x)
)
w3

(
f ′(x)

)
= C̃ ,

whereC̃ is a proper constant.
From equation (4.10), it easily follows thatE has a boundary of classC∞.
At this point, using Lemma4.1below, withy(ξ) = w(ξ) andξ = f ′(x) = tan θ,

together with (4.3) and (4.14), we get

(4.11) w2(tan θ) =
1 + tan2 θ

ρ2(θ)
=

C̃ + (B + 2A tan θ)2

2A
.
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Hence,

(4.12) ρ(θ) =

√
2A

(C̃ + B2) cos2 θ + 4A2 sin2 θ + 4AB sin θ cos θ
.

It is well known that equation (4.12) is the polar representation of a conic curve
whose center is the origin of the polar coordinates. On the other hand, the testing
convexE is a closed curve and hence it must be an ellipse.

Lemma 4.1. Lety(ξ) be aC2-function satisfying the equation

(4.13) y′′(ξ)y3(ξ) = C̃ .

Then,

(4.14) y(ξ) = ±

√
C̃ + (B + 2Aξ)2

2A
,

whereA andB are two arbitrary constants.

Proof. Introducing the auxiliary functionv(p) = y′ (y−1(p)), with p = y(ξ), the
equation (4.13) reduces to

dv(p)

dp
· v(p) =

C̃

p3
=⇒ v2(p) = − C̃

p2
+ 2A,

whereA is an arbitrary constant. This implies

y′(ξ) = ±

√
2Ay2(ξ)− C̃

y(ξ)
.
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This is a standard ordinary differential equation, whose solution is given by

y2(ξ) =
C̃ + (B + 2Aξ)2

2A
.
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5. Conclusions and Final Remarks

We want to stress the fact that, though applied to the case in whichE andE are
convex sets, the technique used in this paper should work equally well in the case in
whichE is star-shaped with respect to a pointO and its boundary is a simple closed
curve such that in any pointP , the vector(P − O) and the unit tangent vector~t in
P satisfy the condition|(P − O) ∧ ~t | ≥ δ, for someδ > 0, while E has a curvature
k(s) (wheres is the arc-length) which does not change sign infinitely many times.
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