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ABSTRACT. The inequalities, which Pachpatte has derived from the well known Hadamard’s
inequality for convex functions, are improved, obtaining new integral inequalities for products of
convex functions. These inequalities are sharp for linear functions, while the initial Pachpatte’s
ones do not have this property.
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1. PRELIMINARIES

A largely applied inequality for convex functions, due to its geometrical significance, is
Hadamard’s inequality (see [3] or [2]) which has generated a wide range of directions for ex-
tension and a rich mathematical literature. Below, we recall this inequality, together with its
framework.

A function f : [a, b] → R, with [a, b] ⊂ R, is said to be convex if wheneverx ∈ [a, b],
y ∈ [a, b] andt ∈ [0, 1], the following inequality holds

(1.1) f (tx + (1− t) y) ≤ tf (x) + (1− t) f (y) .

This definition has its origins in Jensen’s results from [4] and has opened up the most ex-
tended, useful and multi-disciplinary domain of mathematics, namely, convex analysis. Convex
curves and convex bodies have appeared in mathematical literature since antiquity and there are
many important results related to them. They were known before the analytical foundation of
convexity theory, due to the deep geometrical significance and many geometrical applications
related to the convex shapes (see, for example, [1], [5], [7]). One of these results, known as
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2 GABRIELA CRISTESCU

Hadamard’s inequality, which was first published in [3], states that a convex functionf satisfies

(1.2) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

2
.

Recent inequalities derived from Hadamard’s inequality can be found in Pachpatte’s paper
[6] and we recall two of them in the following theorem, because we intend to improve them.
Let us suppose that the interval[a, b] has the property thatb− a ≤ 1. Then the following result
holds.

Theorem 1.1.Letf andg be real-valued, nonnegative and convex functions on[a, b]. Then

(1.3)
3

2
· 1

(b− a)2

∫ b

a

∫ b

a

∫ 1

0

f (tx + (1− t) y) g (tx + (1− t) y) dtdydx

≤ 1

b− a

∫ b

a

f (x) g (x) dx +
1

8

[
M (a, b) + N (a, b)

(b− a)2

]
and

(1.4)
3

b− a

∫ b

a

∫ 1

0

f

(
tx + (1− t)

(
a + b

2

))
g

(
tx + (1− t)

(
a + b

2

))
dtdx

≤ 1

b− a

∫ b

a

f (x) g (x) dx +
1

4
· 1 + b− a

b− a
[M (a, b) + N (a, b)] ,

where

(1.5) M (a, b) = f (a) g (a) + f (b) g (b)

and

(1.6) N (a, b) = f (a) g (b) + f (b) g (a) .

Remark 1.2. The inequalities (1.3) and (1.4) are valid when the length of the interval[a, b] does
not exceed1. Unfortunately, this condition is accidentally omitted in [6], but it is implicitly used
in the proof of Theorem 1.1.

Of course, there are cases when at least one of the two inequalities from the previous theorem
is satisfied forb− a > 1, but it is easy to find counterexamples in this case, as follows.

Example 1.1. Let us take[a, b] = [0, 2]. The functionsf : [0, 2] → R andg : [0, 2] → R are
defined byf (x) = x andg (x) = x. Then it is obvious thatM (a, b) = 4, N (a, b) = 0. Then,
the direct calculus of both sides of (1.3) leads to

3

2
· 1

(b− a)2

∫ b

a

∫ b

a

∫ 1

0

f (tx + (1− t) y) g (tx + (1− t) y) dtdydx =
11

6
,

1

b− a

∫ b

a

f (x) g (x) dx +
1

8

[
M (a, b) + N (a, b)

(b− a)2

]
=

35

24

and, obviously, inequality (1.3) is false.

Remark 1.3. Inequality (1.3) is sharp for linear functions defined on[0, 1], while inequality
(1.4) does not have the same property.

In this paper we improve the previous theorem, such that the condition

b− a ≤ 1

is eliminated and the derived inequalities are sharp for the whole class of linear functions.
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2. I MPROVED INEQUALITIES

Let us consider an interval[a, b] ⊂ R and a functionf : [a, b] → R. The following classical
result is very useful in this section.

Lemma 2.1. The following statements are equivalent:
(i) Functionf is convex on[a, b],

(ii) For everyx, y ∈ [a, b], the functionγ : [0, 1] → R, defined by

(2.1) γ (t) = f (tx + (1− t) y)

is convex on[0, 1].

The main result of this section is in the following theorem.

Theorem 2.2.Letf andg be real-valued, nonnegative and convex functions on[a, b]. Then

(2.2)
3

2
· 1

(b− a)2

∫ b

a

∫ b

a

∫ 1

0

f (tx + (1− t) y) g (tx + (1− t) y) dtdydx

≤ 1

b− a

∫ b

a

f (x) g (x) dx +
1

8
[M (a, b) + N (a, b)]

and

(2.3)
3

b− a

∫ b

a

∫ 1

0

f

(
tx + (1− t)

(
a + b

2

))
g

(
tx + (1− t)

(
a + b

2

))
dtdx

≤ 1

b− a

∫ b

a

f (x) g (x) dx +
1

2
[M (a, b) + N (a, b)] ,

where the numbersM(a, b) andN (a, b) are defined by (1.5) and (1.6).

Proof. The proof follows, mainly, the same procedure as that of the previous theorem from [6].
But, at a certain point, it becomes more refined. Since both functionsf andg are convex, for
every two pointsx, y ∈ [a, b] andt ∈ [0, 1], the following inequalities are valid

f (tx + (1− t) y) ≤ tf (x) + (1− t) f (y)

and
g (tx + (1− t) y) ≤ tg (x) + (1− t) g (y) .

Multiplying the above mentioned inequalities, we find the following one

f (tx + (1− t) y) g (tx + (1− t) y)

≤ t2f (x) g (x) + (1− t)2 f (y) g (y) + t (1− t) [f (x) g (y) + f (y) g (x)] .

Both sides of this inequality are integrable with respect tot on [0, 1], due to Lemma 2.1 together
with the known properties of the convex functions. Then, integrating them over[0, 1], one gets

(2.4)
∫ 1

0

f (tx + (1− t) y) g (tx + (1− t) y) dt

≤ 2 (b− a)

3

∫ b

a

f (x) g (x) dx +
1

3

(∫ b

a

f (x) dx

) (∫ b

a

g (y) dy

)
.

The convexity properties off andg allows us to use the right side of the inequality (1.1), written
as below:

(2.5)
∫ b

a

f (x) dx ≤ (b− a)
f (a) + f (b)

2
,
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(2.6)
∫ b

a

g (y) dy ≤ (b− a)
g (a) + g (b)

2
.

Replacing (2.5) and (2.6) in the last two integrals from the right side of (2.4), one obtains the
following inequality

(2.7)
∫ 1

0

f (tx + (1− t) y) g (tx + (1− t) y) dt

≤ 2 (b− a)

3

∫ b

a

f (x) g (x) dx +
(b− a)2

12
[f (b) + f (a)] [g (b) + g (a)] .

Direct calculus shows that

(2.8) [f (b) + f (a)] [g (b) + g (a)] = M (a, b) + N (a, b) ,

according to (1.5) and (1.6). Replacing (2.8) in (2.7) and multiplying both sides of (2.7) by
3

2(b−a)2
one completes the proof of (2.2).

Inequality (2.3) has a similar starting point for its proof. Again the convexity of the two
functionsf andg gives us the starting inequalities

f

(
tx + (1− t)

(
a + b

2

))
≤ tf (x) + (1− t) f

(
a + b

2

)
and

g

(
tx + (1− t)

(
a + b

2

))
≤ tg (x) + (1− t) g

(
a + b

2

)
.

As above, we multiply the previous inequalities, obtaining

(2.9) f

(
tx + (1− t)

(
a + b

2

))
g

(
tx + (1− t)

(
a + b

2

))
≤ t2f (x) g (x) + (1− t)2 f

(
a + b

2

)
g

(
a + b

2

)
+ t (1− t)

[
f (x) g

(
a + b

2

)
+ f

(
a + b

2

)
g (x)

]
.

As in the proof of the first inequality, we integrate both sides of (2.9) over[0, 1], deriving the
following relation

(2.10)
∫ 1

0

f

(
tx + (1− t)

(
a + b

2

))
g

(
tx + (1− t)

(
a + b

2

))
dt

≤ 1

3

[
f (x) g (x) + f

(
a + b

2

)
g

(
a + b

2

)]
+

1

6

[
f (x) g

(
a + b

2

)
+ f

(
a + b

2

)
g (x)

]
.
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Now, using the convexity off andg and integrating both sides of (2.10) over[a, b], we get

(2.11)
∫ b

a

∫ 1

0

f

(
tx + (1− t)

(
a + b

2

))
g

(
tx + (1− t)

(
a + b

2

))
dtdx

≤ 1

3

∫ b

a

f (x) g (x) dx +
b− a

12
[f (a) + f (b)] [g (a) + g (b)]

+
g (a) + g (b)

12

∫ b

a

f (x) dx +
f (a) + f (b)

12

∫ b

a

g (x) dx.

Once again we replace (2.5) and (2.6) in the last two integrals of the right side of the last
inequality and, using (2.8), we obtain

(2.12)
∫ b

a

∫ 1

0

f

(
tx + (1− t)

(
a + b

2

))
g

(
tx + (1− t)

(
a + b

2

))
dtdx

≤ 1

3

∫ b

a

f (x) g (x) dx +
b− a

6
[M (a, b) + N (a, b)] .

The multiplication of both sides of this inequality by3
b−a

completes the proof of (2.3). �

Remark 2.3. Both inequalities (2.2) and (2.3) are sharp for the whole class of linear functions
defined on an arbitrary closed real interval[a, b].

Indeed, let us suppose that the functionsf : [a, b] → R andg : [a, b] → R are defined by
f (x) = mx + n andg (x) = px + q. Then, direct calculus shows that

M (a, b) = mp
(
a2 + b2

)
+ (mq + np) (a + b) + nq

and
N (a, b) = 2mpab + (mq + np) (a + b) + nq.

Both sides of the inequality (2.2) become, in this case, equal to
mp

24

(
11a2 + 14ab + 11b2

)
+

3

4
(mq + np) (a + b) +

3

2
nq,

while both sides of (2.3) are
mp

6

(
5a2 + 8ab + 5b2

)
+

3

2
(mq + np) (a + b) + 3nq.

Therefore, both (2.2) and (2.3) are sharp if the two functionsf andg are linear. It is an expected
result, taking into account the fact that all the inequalities used during their proofs (the definition
of convex functions, the inequality of Hadamard) are sharp for the linear functions.

It would be of interest to study various inequalities for functions that have generalized con-
vexity properties corresponding to non-connected domains with generalized convexity proper-
ties, as discussed in [1] and [7].
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