Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/
Volume 7, Issue 3, Article 112, 2006

AN OSTROWSKI TYPE INEQUALITY FOR p-NORMS

A. RAFIQ AND NAZIR AHMAD MIR

Center for Advanced Studies in Pure and Applied Mathematics
Bahauddin Zakariya University
Multan, Pakistan
caspam@bzu.edu.pk

Received 22 February, 2005; accepted 04 May, 2005
Communicated by A. Sofo

Abstract

In this paper, we establish general form of an inequality of Ostrowski type for twice differentiable mappings in terms of L_{p}-norm, with first derivative absolutely continuous. The integral inequality of similar type already pointed out in literature is a special case of ours. The already established inequality contains a mistake and as a result incorrect consequences and applications. The corrected version of the inequality is pointed out and the inequality is also applied to special means and numerical integration.

Key words and phrases: Ostrowski inequality, Numerical integration, Special means.
2000 Mathematics Subject Classification 26D15.

1. Introduction

We establish here the general form of an inequality of Ostrowski type, different to that of Cerone, Dragomir and Roumeliotis [1], for twice differentiable mappings in terms of L_{p}-norm. The integral inequality of similar type already pointed out by N.S. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis and A. Sofo [2], contains a mistake which has already been reported by N.A. Mir and A. Rafiq in their research work [3]. The same mistake has been carried out in their other research article, namely Theorem 20 of [2] and as a result incorrect consequences and applications of this theorem. The corrected form of the theorem is as follows:

Theorem 1.1. Let $g:[a, b] \longrightarrow \mathbb{R}$ be a mapping whose first derivative is absolutely continuous on $[a, b]$. If we assume that the second derivative $g^{\prime \prime} \in L_{p}(a, b), 1<p<\infty$, then we have the

[^0]inequality
\[

$$
\begin{align*}
& \left|\int_{a}^{b} g(t) d t-\frac{1}{2}\left[g(x)+\frac{g(a)+g(b)}{2}\right](b-a)+\frac{1}{2}(b-a)\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right| \tag{1.1}\\
& \leq \frac{1}{2}\left(\frac{b-a}{2}\right)^{2+\frac{1}{q}}\left\|g^{\prime \prime}\right\|_{p} \\
& \times\left\{\begin{array}{l}
{\left[B(q+1, q+1)+B_{x_{1}}(q+1, q+1)+\Psi_{x_{2}}(q+1, q+1)\right]^{\frac{1}{q}} \text { for } x \in\left[a, \frac{a+b}{2}\right],} \\
{\left[B(q+1, q+1)+B_{x_{3}}(q+1, q+1)+B_{x_{4}}(q+1, q+1)\right]^{\frac{1}{q}} \text { for } x \in\left(\frac{a+b}{2}, b\right],}
\end{array}\right.
\end{align*}
$$
\]

where $\frac{1}{p}+\frac{1}{q}=1, p>1, q>1$, and $B(\cdot, \cdot)$ is the Beta function of Euler given by

$$
B(l, s)=\int_{0}^{1} t^{l-1}(1-t)^{s-1} d t, \quad l, s>0
$$

Further

$$
B_{r}(l, s)=\int_{0}^{r} t^{l-1}(1-t)^{s-1} d t
$$

is the incomplete Beta function,

$$
\Psi_{r}(l, s)=\int_{0}^{r} t^{l-1}(1+t)^{s-1} d t
$$

is the real positive valued integral,

$$
x_{1}=\frac{2(x-a)}{b-a}, \quad x_{2}=1-x_{1}, \quad x_{3}=x_{1}-1, \quad x_{4}=2-x_{1}
$$

and

$$
\left\|g^{\prime \prime}\right\|_{p}:=\left(\int_{a}^{b}\left|g^{\prime \prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}
$$

If we assume that $g^{\prime \prime} \in L_{1}(a, b)$, then we have

$$
\begin{array}{r}
\left|\int_{a}^{b} g(t) d t-\frac{1}{2}\left[g(x)+\frac{g(a)+g(b)}{2}\right](b-a)+\frac{1}{2}(b-a)\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right| \tag{1.2}\\
\leq \frac{\left\|g^{\prime \prime}\right\|_{1}}{8}(b-a)^{2}
\end{array}
$$

where

$$
\left\|g^{\prime \prime}\right\|_{1}:=\int_{a}^{b}\left|g^{\prime \prime}(t)\right| d t
$$

2. MAIN Results

The following theorem is now proved and subsequently applied to numerical integration and special means.

Theorem 2.1. Let $g:[a, b] \longrightarrow \mathbb{R}$ be a mapping whose first derivative is absolutely continuous on $[a, b]$. If we assume that the second derivative $g^{\prime \prime} \in L_{p}(a, b), 1<p<\infty$, then we have the
inequality
(2.1) $\left\lvert\, \frac{1}{\alpha+\beta}\left(\frac{\alpha}{x-a} \int_{a}^{x} g(t) d t+\frac{\beta}{b-x} \int_{x}^{b} g(t) d t\right)\right.$

$$
-\frac{1}{2} g(x)-\frac{1}{2(\alpha+\beta)}\left[\left(x-\frac{a+b}{2}\right) g(x)\left(\frac{\alpha}{x-a}-\frac{\beta}{b-x}\right)\right.
$$

$$
\left.+\frac{(b-a)}{2}\left(\frac{\alpha}{x-a} g(a)+\frac{\beta}{b-x} g(b)\right)-(\alpha+\beta)\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right] \mid
$$

$$
\leq\left(\frac{b-a}{2}\right)^{2+\frac{1}{q}}\left\|g^{\prime \prime}\right\|_{p}\left\{\begin{array}{r}
{\left[\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} B(q+1, q+1)+\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B_{x_{1}}(q+1, q+1)\right.} \\
\left.+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} \Psi_{x_{2}}(q+1, q+1)\right]^{\frac{1}{q}} \quad \text { for } x \in\left[a, \frac{a+b}{2}\right] \\
{\left[\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B(q+1, q+1)+\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B_{x_{3}}(q+1, q+1)\right.} \\
\left.+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} B_{x_{4}}(q+1, q+1)\right]^{\frac{1}{q}} \quad \text { for } x \in\left(\frac{a+b}{2}, b\right]
\end{array}\right.
$$

where $\frac{1}{p}+\frac{1}{q}=1, p>1, q>1$, and $B(\cdot, \cdot)$ is the Beta function of Euler given by

$$
B(l, s)=\int_{0}^{1} t^{l-1}(1-t)^{s-1} d t, l, s>0
$$

Further,

$$
B_{r}(l, s)=\int_{0}^{r} t^{l-1}(1-t)^{s-1} d t
$$

is the incomplete Beta function,

$$
\Psi_{r}(l, s)=\int_{0}^{r} t^{l-1}(1+t)^{s-1} d t
$$

is a real positive valued integral,

$$
x_{1}=\frac{2(x-a)}{b-a}, \quad x_{2}=1-x_{1}, \quad x_{3}=x_{1}-1, \quad x_{4}=2-x_{1}
$$

and

$$
\left\|g^{\prime \prime}\right\|_{p}:=\left(\int_{a}^{b}\left|g^{\prime \prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}
$$

If we assume that $g^{\prime \prime} \in L_{1}(a, b)$, then we have

$$
\begin{align*}
& \left\lvert\, \frac{1}{\alpha+\beta}\left(\frac{\alpha}{x-a} \int_{a}^{x} g(t) d t+\frac{\beta}{b-x} \int_{x}^{b} g(t) d t\right)-\frac{1}{2} g(x)\right. \tag{2.2}\\
& \quad-\frac{1}{2(\alpha+\beta)}\left[\left(x-\frac{a+b}{2}\right) g(x)\left(\frac{\alpha}{x-a}-\frac{\beta}{b-x}\right)\right. \\
& \left.\quad+\frac{(b-a)}{2}\left(\frac{\alpha}{x-a} g(a)+\frac{\beta}{b-x} g(b)\right)-(\alpha+\beta)\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right] \mid \\
& \leq \frac{1}{2}\left\|g^{\prime \prime}\right\|_{1}\|K(x, t)\|_{\infty}
\end{align*}
$$

where

$$
\left\|g^{\prime \prime}\right\|_{1}=\int_{a}^{b}\left|g^{\prime \prime}(t)\right| d t
$$

and

$$
\|K(x, t)\|_{\infty}=\frac{1}{\alpha+\beta} \max \left(\frac{\alpha}{x-a}, \frac{\beta}{b-x}\right) \frac{(b-a)^{2}}{4} \quad \text { for } x \in[a, b] .
$$

Proof. We begin by recalling the following integral equality proved by N.A. Mir and A. Rafiq [3] which is generalization of an integral equality proved by Dragomir and Wang [4].

$$
\begin{align*}
\left\lvert\, \frac{1}{\alpha+\beta}\left(\frac{\alpha}{x-a} \int_{a}^{x} g(t) d t+\frac{\beta}{b-x} \int_{x}^{b} g(t) d t\right)\right. & -\frac{1}{2} g(x) \tag{2.3}\\
-\frac{1}{2(\alpha+\beta)}\left[(x - \frac { a + b } { 2 }) g (x) \left(\frac{\alpha}{x-a}\right.\right. & \left.-\frac{\beta}{b-x}\right) \\
+\frac{(b-a)}{2}\left(\frac{\alpha}{x-a} g(a)+\frac{\beta}{b-x} g(b)\right) & \left.-(\alpha+\beta)\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right] \mid \\
& =\frac{1}{2}\left|\int_{a}^{b} p(x, t)\left(t-\frac{a+b}{2}\right) g^{\prime \prime}(t) d t\right|
\end{align*}
$$

whose left hand side is equivalent to that of (2.1). From the right hand side of (2.3) we have, by Hölder's inequality, that

$$
\begin{aligned}
\mid \int_{a}^{b} p(x, t) & \left.\left(t-\frac{a+b}{2}\right) g^{\prime \prime}(t) d t \right\rvert\, \\
\leq & \left(\int_{a}^{b}\left|g^{\prime \prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}\left(\int_{a}^{b}|p(x, t)|^{q}\left|t-\frac{a+b}{2}\right|^{q} d t\right)^{\frac{1}{q}} \\
& =\left\|g^{\prime \prime}\right\|_{p}\left(\int_{a}^{b}|p(x, t)|^{q}\left|t-\frac{a+b}{2}\right|^{q} d t\right)^{\frac{1}{q}}
\end{aligned}
$$

and from (2.3) we obtain the inequality

$$
\begin{align*}
& \left\lvert\, \frac{1}{\alpha+\beta}\left(\frac{\alpha}{x-a} \int_{a}^{x} g(t) d t+\frac{\beta}{b-x} \int_{x}^{b} g(t) d t\right)\right. \tag{2.4}\\
& -\frac{1}{2} g(x)-\frac{1}{2(\alpha+\beta)}\left[\left(x-\frac{a+b}{2}\right) g(x)\left(\frac{\alpha}{x-a}-\frac{\beta}{b-x}\right)\right. \\
& \left.\quad+\frac{(b-a)}{2}\left(\frac{\alpha}{x-a} g(a)+\frac{\beta}{b-x} g(b)\right)-(\alpha+\beta)\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right] \mid \\
& \quad \leq \frac{1}{2}\left\|g^{\prime \prime}\right\|_{p}\left(\int_{a}^{b}|p(x, t)|^{q}\left|t-\frac{a+b}{2}\right|^{q} d t\right)^{\frac{1}{q}}
\end{align*}
$$

From the right hand side of (2.4) we may define

$$
\begin{align*}
I: & =\int_{a}^{b}|p(x, t)|^{q}\left|t-\frac{a+b}{2}\right|^{q} d t \\
= & \left(\frac{\alpha}{\alpha+\beta} \cdot \frac{1}{x-a}\right)^{q} \int_{a}^{x}(t-a)^{q}\left|t-\frac{a+b}{2}\right|^{q} d t \\
& \quad+\left(\frac{\beta}{\alpha+\beta} \cdot \frac{1}{b-x}\right)^{q} \int_{x}^{b}|t-b|^{q}\left|t-\frac{a+b}{2}\right|^{q} d t \tag{2.5}
\end{align*}
$$

such that we can identify two distinct cases.
(a) For $x \in\left[a, \frac{a+b}{2}\right]$

$$
\begin{aligned}
& I_{A}=\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} \int_{a}^{x}(t-a)^{q}\left(\frac{a+b}{2}-t\right)^{q} d t \\
& +\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} \int_{x}^{\frac{a+b}{2}}(b-t)^{q}\left(\frac{a+b}{2}-t\right)^{q} d t \\
& +\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} \int_{\frac{a+b}{2}}^{b}(b-t)^{q}\left(t-\frac{a+b}{2}\right)^{q} d t .
\end{aligned}
$$

Investigating the three separate integrals, we may evaluate as follows:

$$
I_{1}=\int_{a}^{x}(t-a)^{q}\left(\frac{a+b}{2}-t\right)^{q} d t
$$

making the change of variable $t=a+\left(\frac{b-a}{2}\right) w$, we arrive at

$$
\begin{aligned}
I_{1} & =\left(\frac{b-a}{2}\right)^{2 q+1} \int_{0}^{x_{1}} w^{q}(1-w)^{q} d w \\
& =\left(\frac{b-a}{2}\right)^{2 q+1} B x_{1}(q+1, q+1)
\end{aligned}
$$

where $B_{x_{1}}(\cdot, \cdot)$ is the incomplete Beta function and $x_{1}=\frac{2(x-a)}{b-a}$.

$$
I_{2}=\int_{x}^{\frac{a+b}{2}}(b-t)^{q}\left(\frac{a+b}{2}-t\right)^{q} d t
$$

making the change of variable $t=\frac{a+b}{2}-\left(\frac{b-a}{2}\right) w$, we obtain

$$
I_{2}=\left(\frac{b-a}{2}\right)^{2 q+1} \int_{0}^{x_{2}} w^{q}(1+w)^{q} d w=\left(\frac{b-a}{2}\right)^{2 q+1} \Psi_{x_{2}}(q+1, q+1)
$$

where

$$
\Psi_{x_{2}}:=\int_{0}^{x_{2}} w^{q}(1+w)^{q} d w
$$

and $x_{2}=\frac{a+b-2 x}{b-a}=1-x_{1}$.

$$
I_{3}=\int_{\frac{a+b}{2}}^{b}(b-t)^{q}\left(t-\frac{a+b}{2}\right)^{q} d t
$$

making the change of variable $t=\frac{a+b}{2}+\left(\frac{b-a}{2}\right) w$, we get

$$
I_{3}=\left(\frac{b-a}{2}\right)^{2 q+1} \int_{0}^{1} w^{q}(1-w)^{q} d w=\left(\frac{b-a}{2}\right)^{2 q+1} B(q+1, q+1)
$$

where $B(\cdot, \cdot)$ is the Beta function.
We may now write

$$
\begin{aligned}
& I_{A}= I_{1}+I_{2}+I_{3} \\
&=\left(\frac{b-a}{2}\right)^{2 q+1}\left[\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B x_{1}(q+1, q+1)\right. \\
&\left.+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} \Psi_{x_{2}}(q+1, q+1)+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} B(q+1, q+1)\right]
\end{aligned}
$$

for $x \in\left[a, \frac{a+b}{2}\right]$.
(b) For $x \in\left(a, \frac{a+b}{2}\right]$

$$
\begin{aligned}
I_{B}=\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} & \int_{a}^{\frac{a+b}{2}}(t-a)^{q}\left(\frac{a+b}{2}-t\right)^{q} d t \\
& +\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} \int_{\frac{a+b}{2}}^{x}(t-a)^{q}\left(t-\frac{a+b}{2}\right)^{q} d t \\
& +\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} \int_{x}^{b}(b-t)^{q}\left(t-\frac{a+b}{2}\right)^{q} d t .
\end{aligned}
$$

In a similar fashion to the previous case, we have

$$
I_{4}=\int_{a}^{\frac{a+b}{2}}(t-a)^{q}\left(\frac{a+b}{2}-t\right)^{q} d t .
$$

Letting $t=a+\left(\frac{b-a}{2}\right) w$, we obtain

$$
I_{4}=\left(\frac{b-a}{2}\right)^{2 q+1} \int_{0}^{1} w^{q}(1-w)^{q} d w=\left(\frac{b-a}{2}\right)^{2 q+1} B(q+1, q+1)
$$

where $B(\cdot, \cdot)$ is the Beta function.

$$
I_{5}=\int_{\frac{a+b}{2}}^{x}(t-a)^{q}\left(t-\frac{a+b}{2}\right)^{q} d t
$$

making the change of variable $t=\frac{a+b}{2}+\left(\frac{b-a}{2}\right) w$, we arrive at

$$
I_{5}=\left(\frac{b-a}{2}\right)^{2 q+1} \int_{0}^{x_{3}} w^{q}(1-w)^{q} d w=\left(\frac{b-a}{2}\right)^{2 q+1} B_{x_{3}}(q+1, q+1)
$$

where $B_{x_{3}}(\cdot, \cdot)$ is the incomplete Beta function and $x_{3}=x_{1}-1$.

$$
I_{6}=\int_{x}^{b}(b-t)^{q}\left(t-\frac{a+b}{2}\right)^{q} d t
$$

making the change of variable $t=b-\left(\frac{b-a}{2}\right) w$, we get

$$
I_{6}=\left(\frac{b-a}{2}\right)^{2 q+1} \int_{0}^{x_{4}} w^{q}(1-w)^{q} d w=\left(\frac{b-a}{2}\right)^{2 q+1} B_{x_{4}}(q+1, q+1)
$$

where $B_{x_{4}}(\cdot, \cdot)$ is the incomplete Beta function and $x_{4}=2-x_{1}$.

$$
\begin{aligned}
& I_{B}= I_{4}+I_{5}+I_{6} \\
&=\left(\frac{b-a}{2}\right)^{2 q+1}\left[\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B(q+1, q+1)+\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B_{x_{3}}(q+1, q+1)\right. \\
&\left.+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} B_{x_{4}}(q+1, q+1)\right]
\end{aligned}
$$

for $x \in\left(\frac{a+b}{2}, b\right]$.

Also from (2.5)

$$
\begin{aligned}
I & =I_{A}+I_{B} \\
& =\left(\frac{b-a}{2}\right)^{2 q+1}\left\{\begin{array}{r}
\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B_{x_{1}}(q+1, q+1)+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} \Psi_{x_{2}}(q+1, q+1) \\
+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} B(q+1, q+1) \text { for } x \in\left[a, \frac{a+b}{2}\right] \\
\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B(q+1, q+1)+\left(\frac{\alpha}{\alpha+\beta} \frac{1}{x-a}\right)^{q} B_{x_{3}}(q+1, q+1) \\
+\left(\frac{\beta}{\alpha+\beta} \frac{1}{b-x}\right)^{q} B_{x_{4}}(q+1, q+1) \text { for } x \in\left[\frac{a+b}{2}, b\right] .
\end{array}\right.
\end{aligned}
$$

Using (2.4), we obtain the result (2.1). Using the inequality (2.3), we can also state that

$$
\begin{aligned}
& \left\lvert\, \frac{1}{\alpha+\beta}\left(\frac{\alpha}{x-a} \int_{a}^{x} g(t) d t+\frac{\beta}{b-x} \int_{x}^{b} g(t) d t\right)\right. \\
& \quad-\frac{1}{2} g(x)-\frac{1}{2(\alpha+\beta)}\left[\left(x-\frac{a+b}{2}\right) g(x)\left(\frac{\alpha}{x-a}-\frac{\beta}{b-x}\right)\right. \\
& \left.\quad+\frac{(b-a)}{2}\left(\frac{\alpha}{x-a} g(a)+\frac{\beta}{b-x} g(b)\right)-(\alpha+\beta)\left(x-\frac{a+b}{2}\right) g^{\prime}(x)\right] \mid \\
& \quad \leq \frac{1}{2}\left\|g^{\prime \prime}\right\|_{1}\|K(x, t)\|_{\infty}
\end{aligned}
$$

where

$$
\|K(x, t)\|_{\infty}=p(x, t)\left(t-\frac{a+b}{2}\right) .
$$

As it is easy to see that

$$
\|K(x, t)\|_{\infty}=\frac{1}{\alpha+\beta} \cdot \max \left(\frac{\alpha}{x-a}, \frac{\beta}{b-x}\right) \cdot \frac{(b-a)^{2}}{4} \quad \text { for } x \in[a, b],
$$

we deduce (2.2).
Remark 2.2. Putting $\alpha=x-a$ and $\beta=b-x$ in (2.1) and (2.2), we get the inequalities (1.1) and (1.2).
Remark 2.3. Simple manipulation of (2.1) will allow for the corrected result of (1.1) and (1.2), owing to a missing factor of $\frac{1}{2}$ in the third term of the original result 1.1 of the Barnett, Cerone, Dragomir, Roumeliotis and Sofo, this will not be done here.

References

[1] P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, An inequality of Ostrowski-Grüss type for twice differentiable mappings and applicatios in numerical integration, Kyungpook Mathematical Journal, 39(2) (1999), 331-341.
[2] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR, J. ROUMELIOTIS AND A. SOFO, A survey on Ostrowski type inequalities for twice differentiable mappings and applications, Inequality Theory and Applications, 1 (2001), 33-86.
[3] N.A. MIR AND A. RAFIQ, An integral inequality for twice differentiable bounded mappings with first derivative absolutely continuous and applications, submitted.
[4] S.S. DRAGOMIR AND S. WANG, Applications of Ostrowski's inequality for the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 050-05

