Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 3, Issue 1, Article 1, 2002

NORM INEQUALITIES IN STAR ALGEBRAS

A.K. GAUR
Math Department
DUQUESNE UNIVERSITY Pittsburgh, PA 15282, U.S.A. Gaur@mathcs.duq.edu

Received -; accepted 21 June, 2001. Communicated by S.P. Singh

Abstract. A norm inequality is proved for elements of a star algebra so that the algebra is noncommutative. In particular, a relation between maximal and minimal extensions of regular norm on a C^{*}-algebra is established.

[^0]2000 Mathematics Subject Classification. 46H05, 46J10, 47A50.

Let H be a Hilbert space and $B(H)$ be the algebra of all bounded linear operators on H. A subset of $B(H)$ is a W^{*}-algebra on H if X is a C^{*}-algebra which is closed in the weak operator topology, see [1]. Also, a W^{*}-algebra is a C^{*}-subalgebra of $B(H)$ which is weakly closed. In particular, a W^{*}-algebra is an algebra of operators. We note that a C^{*}-algebra acting on H is commutative if and only if zero is the only nilpotent element of the algebra.
Let X be a W^{*}-algebra and $X_{S A}$ be the set of self-adjoint elements of X, that is if $T \in$ $S(X) \Longrightarrow T=T^{*}$, where T^{*} is the adjoint of T. Here we prove the following theorem.
Theorem 1. A unital W^{*}-algebra X of operators is noncommutative if $\forall A, B \in X_{S A}$,

$$
\|A\|=1=\|B\| \Longrightarrow\|A+B\|>1+\|A B\| .
$$

Proof. Since X is noncommutative, there exists an operator T in X such that $T^{2}=0$. Suppose X_{1} is the range of T and X_{2} is the orthogonal complement of X_{1}. Then $H=X_{1} \oplus X_{2}$. Let S be an operator with $\|S\|=1$. Then

$$
T=\left(\begin{array}{cc}
0 & S \\
0 & 0
\end{array}\right) \quad \text { and } \quad T^{*}=\left(\begin{array}{cc}
0 & 0 \\
S^{*} & 0
\end{array}\right) .
$$

[^1]We use these representations for T and T^{*} to define the operators A and B as follows: For $\sigma_{1}>0, \sigma_{2}>0$ and $\sigma_{1}+\sigma_{2}=1$, we have

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
S S^{*} & 0 \\
0 & 0
\end{array}\right)=T T^{*} \\
B & =\left(\begin{array}{cc}
\sigma_{1} S S^{*} & \sigma_{2} S \\
\sigma_{2} S^{*} & \sigma_{1} S^{*} S
\end{array}\right)=\sigma_{1}\left(T T^{*}+T^{*} T\right)+\sigma_{2}\left(T+T^{*}\right)
\end{aligned}
$$

Clearly, $A=A^{*}, B=B^{*}$ and $A, B \in X$. Next, we consider the following two cases.
Case 1. Let $\sigma_{1}=\sigma_{2}=\frac{1}{2}$ and

$$
B=\frac{1}{2}\left(\begin{array}{cc}
S S^{*} & S \\
S^{*} & S^{*} S
\end{array}\right)=\frac{1}{2}\left(T T^{*}+T^{*} T+T+T^{*}\right) .
$$

It is not difficult to see that $\|A\|=1$ and $\|B\| \leq 1$. To obtain $\|B\| \geq 1$, let $\|S\|=1$ then $\exists a_{n} \in X \ni:\left\|a_{n}\right\|=1$. Also,

$$
\begin{aligned}
\left\|S S^{*} a_{n}-a_{n}\right\|^{2} & =\left\|S S^{*} a_{n}\right\|^{2}-2\left\|S^{*} a_{n}\right\|^{2}+\left\|a_{n}\right\|^{2} \\
& \leq 2\left(\left\|a_{n}\right\|^{2}-\left\|S^{*} a_{n}\right\|^{2}\right)
\end{aligned}
$$

and if $\left\|S^{*} a_{n}\right\| \rightarrow 1$ then $S S^{*} a_{n}-a_{n} \rightarrow 0$. Further, $(B b-b) \rightarrow 0$, where $b=\left(a_{n}+S^{*} a_{n}\right)$ and hence, $\|B\| \geq 1$, which concludes that $\|B\|=1$.

Let

$$
\begin{aligned}
A B & =\frac{1}{2}\left(\begin{array}{cc}
S S^{*} & S \\
S^{*} & S^{*} S
\end{array}\right) \text { and } \\
A+B & =\left(\begin{array}{cc}
S S^{*}+\frac{S S^{*}}{2} & \frac{S}{2} \\
\frac{S^{*} S}{2} & \frac{S^{*}}{2}
\end{array}\right)=\frac{1}{2}\left(T T^{*}+T^{*} T+T+T^{*}\right) .
\end{aligned}
$$

Choose a_{n} as above and $b_{n}=\frac{S^{*} a_{n}}{(2 \mu-1)}$, where $\mu>1$. Let

$$
\mu_{1}=\sigma_{1}+\frac{1}{2}+\left(\sigma_{2}+\frac{1}{4}\right)^{\frac{1}{2}}
$$

so that it satisfies the equation

$$
\left(\mu_{1}-\sigma_{1}-1\right)\left(\mu_{1}-\sigma_{1}\right)=\sigma_{2}^{2}
$$

Then

$$
\left[(A+B)\left(a_{n}+b_{n}\right)-\mu\left(a_{n}+b_{n}\right)\right] \rightarrow 0
$$

and $\|A+B\| \geq \mu>1$. If we choose σ_{1} and σ_{2} so that

$$
\sigma_{1}+\frac{1}{2}+\left(\sigma_{2}+\frac{1}{4}\right)^{\frac{1}{2}}>1+\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)^{\frac{1}{2}}
$$

then we have

$$
\|A+B\|>1+\|A B\|
$$

For example, it is sufficient to take $\sigma_{1}=\frac{2}{3}$ and $\sigma_{2}=\frac{1}{3}$. We note that $\sigma_{1}>\sigma_{2}$. If $\sigma_{1}<\sigma_{2}$ then the above inequality fails. Since $\mu>1+\sqrt{2} \sigma_{1}$ the proof in this case is complete.
Case 2. Let $\sigma_{1} \neq \sigma_{2}$. Then $\|A B\| \leq a_{0}$, (by mimicking the proof of Case 1 , where

$$
a_{0}=\sup \left\{\sigma_{1}\|a\|+\sigma_{2}\|b\|:\|a\|^{2}+\|b\|^{2}=1\right\}=\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}
$$

Let $b_{n}\left(\mu_{1}-\sigma_{1}\right)=\sigma_{2} S^{*} a_{n}$, where μ_{1} depends on σ_{1} and σ_{2}. Then $\|A+B\| \geq \mu_{1}$ and one can have the following form of μ_{1}, that is, $2 \mu_{1}=\left(2 \sigma_{1}+1\right)+\sqrt{1+\sigma_{1}^{2}}$. Hence, $\mu_{1}>1+a_{0}$ and this concludes the proof of the theorem.

Remark 2. If X is commutative then for $A, B \in X_{S A}$ with $\|A\|=1=\|B\|$, we have $0 \leq$ $I-B-A+A B$, where I is the identity operator. Thus $\|A+B\| \leq 1+\|A B\|$.

Let $0<p, q, r$ be real numbers such that $q(2 r+1) \geq(2 r+p)$ and $q \geq 1$. If two bounded linear operators $A, B \in B(H)$ on a Hilbert space H satisfy $0 \leq B \leq A$ then $\left(B^{r} A^{p} B^{r}\right)^{\frac{1}{q}} \geq$ $B^{\frac{p}{q}} B^{\frac{2 r}{q}}$. This inequality is called the Furuta inequality and can be found in [3]. Recently, Kotaro and others in [6] have extended this inequality in a unital hermitian Banach $*$-algebras with continuous involution. We give a slightly different version of these inequalities in the following corollary.
Corollary 3. Suppose that $X_{C^{*}}$ is a C^{*}-algebra acting on H. Let λ, μ and σ be three real numbers with $\sigma>0, \lambda>0$. Then there exists operators T_{1}, T_{2} and T_{3} in $X \ni: \lambda T_{1}+\mu T_{2}+$ $\sigma T_{3} \geq 0 \Longleftrightarrow \lambda \sigma \geq \mu^{2}$.
Proof. We recall that an operator $O \in B(H)$ is positive if $\langle O h, h\rangle \geq 0$ for every vector h. Using the techniques of Theorem 1 , the following operators belong to $X_{C^{*}}$. That is,

$$
\begin{aligned}
T_{1} & =\left(\begin{array}{cc}
S S^{*} & 0 \\
0 & 0
\end{array}\right), \quad T_{2}=\left(\begin{array}{cc}
0 & \sqrt{S S^{*}} S \\
S^{*} \sqrt{S S^{*}} & 0
\end{array}\right), \text { and } \\
T_{3} & =\left(\begin{array}{cc}
0 & 0 \\
0 & S^{*} S
\end{array}\right)
\end{aligned}
$$

are in $X_{C^{*}}$. In this case we have

$$
\lambda T_{1}+\mu T_{2}+\sigma T_{3}=\left(\begin{array}{cc}
\lambda S S^{*} & \mu \sqrt{S S^{*}} S \\
\mu S^{*} \sqrt{S S^{*}} & \sigma S^{*} S
\end{array}\right)
$$

Let $\lambda T_{1}+\mu T_{2}+\sigma T_{3}=\Lambda$. Then we observe that the determinant of Λ is zero if $\lambda \sigma=\mu^{2}$. If $\varepsilon<0$ and $h \in H$, then we have

$$
\|(\Lambda-\varepsilon) h\|^{2}=\|\Lambda h\|^{2}-2 \varepsilon\langle\Lambda h, h\rangle+\varepsilon^{2}\|h\|^{2} \geq-2 \varepsilon\langle\Lambda h, h\rangle+\varepsilon^{2}\|h\|^{2} \geq+\varepsilon^{2}\|h\|^{2} .
$$

Thus $\varepsilon \notin S P_{a p}(\Lambda)$, the approximate point spectrum of Λ. This means that $(\Lambda-\varepsilon)$ is left invertible. Since $(\Lambda-\varepsilon)$ is hermitian, it must also be right invertible. That is, $\varepsilon \notin S P(\Lambda)$ and so $\Lambda \geq 0 \Longleftrightarrow \lambda \sigma \geq \mu^{2}$.

Alternatively, for $a \in X_{1}$ and $b \in X_{2}$, we have

$$
\langle\Lambda(a+b),(a+b)\rangle=\left\|\sqrt{\sigma} S b+\mu \sqrt{\frac{S S^{*}}{\sigma}} a\right\|^{2}+\left(\lambda-\frac{\mu^{2}}{\sigma}\right)\left\|S^{*} a\right\|^{2}
$$

Since $a \in X_{1}$, therefore

$$
\exists b_{n} \in X_{2} \ni: \sqrt{\sigma}\left(S b_{n}\right)+\mu \sqrt{\frac{S S^{*}}{\sigma}} a \rightarrow 0 \Longrightarrow \Lambda \geq 0 \Longleftrightarrow \lambda-\frac{\mu^{2}}{\sigma} \geq 0
$$

Hence the proof of the corollary is complete.
Remark 4. By reducing the matrix Λ into a product of three matrices the above corollary can also be proved. That is, $\Lambda=L^{*} D L$, where

$$
L=\left(\begin{array}{cc}
I & W \\
0 & I
\end{array}\right) \quad \text { and } \quad W=\frac{\mu}{\sigma} \sqrt{S S^{*}} S \sqrt{S^{*} S}
$$

By the partial commutation relation, we have

$$
\sqrt{S S^{*}} S=S \sqrt{S^{*} S}
$$

and hence

$$
D=\left(\begin{array}{ll}
\left(\lambda-\frac{\mu^{2}}{\sigma}\right) S S^{*} & 0 \\
0 & \sigma S^{*} S
\end{array}\right)
$$

Under the above assumption about σ and $S^{*} S$, the Sylvester type test applies. That is, Λ is positive (semi definite) if and only if $\sigma>0$ and $\lambda-\frac{\mu^{2}}{\sigma} \geq 0$.

Let $A, B>0$ be invertible operators on H. In this case a Furuta type inequality is obtainable by replacing 1 with 0 in the original Furuta inequality in Remark 2. In fact, we have

$$
A^{2 r} \geq\left(A^{r} B^{p} A^{r}\right)^{\frac{2 r}{(2 r+p)}}
$$

Also, if $A \geq B \geq 0, \ni: A>0$, then for each $\alpha \in[0,1]$ and $p \geq 1$ we have

$$
\left\{A^{\frac{r}{2}}\left(A^{\frac{-\alpha}{2}} B^{\alpha} A^{\frac{-\alpha}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{(1+r-\alpha)}{(p-\alpha) s+r]}} \leq A^{(1+r-\alpha)} \text { for } s \geq 1 \text { and } r \geq \alpha
$$

For more details, see [3]. The following examples give an application of these inequalities in case of C^{*}-algebras.
Example 0.1. Let X be a commutative C^{*}-algebra acting on H. If we take

$$
\begin{aligned}
A & =6 T_{1}+0 T_{2}+3 T_{3} \text { and } \\
B & =3 T_{1}+2 T_{2}+T_{3}
\end{aligned}
$$

then

$$
A-B=3 T_{1}-2 T_{2}+T_{3}
$$

and by the Corollary 3 we have $A-B \geq 0$. We further note that A^{2} is not greater than or equal to B^{2}, since for $b \in X_{2}$,

$$
\left\langle\left(A^{2}-B^{2}\right) b, b\right\rangle+\left\langle\left(S^{*} S\right)^{2} b, b\right\rangle=0
$$

Example 0.2. Let

$$
\begin{aligned}
& A=2 T_{1}, \quad B=T_{1}+T_{2}+T_{3} \text { and } \\
& C=4 T_{1}+T_{2}+T_{3} .
\end{aligned}
$$

Then $A \geq 0$ and $B+C \geq 0$. Further, by the Corollary 3, we have $B+C-A \geq 0$. Let $\Psi \leq B$ and $\Phi \leq C$, where $A=\Psi+\Phi$. Then $\Psi \leq A$. Hence, from Corollary 3 , for $a \in X_{1}$ and $b \in X_{2}$, we have

$$
\left\langle\left(T_{1}+T_{2}+T_{3}\right)(a+b),(a+b)\right\rangle=\left\|\sqrt{S S^{*}} a+S b\right\|^{2}
$$

Also, $b_{n} \in X_{2} \Longrightarrow \Psi=0$, because $\left(S b_{n}+\sqrt{S S^{*}} a\right) \rightarrow 0$. Thus

$$
A=\Phi=2 T_{1} \leq 4 T_{1}+T_{2}+T_{3}
$$

Example 0.3. Let

$$
\begin{aligned}
& A=\frac{1}{3} T_{1}, \quad B=T_{1}+T_{2}+T_{3} \text { and } \\
& C=4 T_{1}+2 T_{2}+T_{3}
\end{aligned}
$$

Then $A \geq 0$ and $B+C \geq 0$. Next, by Corollary 3 , we get $B+C-A \geq 0$. Now by Example 0.2 it follows that $A=\Phi=\frac{1}{3} T_{1} \leq C$. This contradicts Corollary 3, since for $(C-A), \lambda \sigma<\mu^{2}$.

Remark 5. The algebra norm $\|\cdot\|$ on a non-unital Banach algebra \mathfrak{J} can be extended to an algebra norm on the unitization $\mathfrak{J}^{+}=C e+\mathfrak{J}$, (where e is the unit in the algebra) in many ways. In particular, the following two norms,

$$
l_{1}-\operatorname{norm}=\|(\lambda) e+a\|_{1}=|\lambda|+\|a\|
$$

and the operator norm,

$$
\|(\lambda) e+a\|_{O P}=\sup \{\|(\lambda) b+a b\|,\|(\lambda) b+b a\| ; b \in \mathfrak{J},\|b\| \leq 1\}, \lambda \in C, a \in \mathfrak{J}
$$

are the maximal and the minimal extensions of the original norm respectively, if it is a regular norm, that is,

$$
\|a\|=\sup \{\|a b\|,\|b a\| ; b \in \mathfrak{J},\|b\| \leq 1\}
$$

see [4]. The unitization \mathfrak{J}^{+}is complete under both $\|\cdot\|_{1}$ and $\|\cdot\|_{O P}$, so by the two norm lemma, [2] II, 2.5] these two norms are equivalent. If \mathfrak{J} is a C^{*}-algebra, $a \in \mathfrak{J}$ is self-adjoint, and λ is complex, then $\|(\lambda) e+a\|_{1} \leq 3\|(\lambda) e+a\|_{O P}$. So far the constant 3 is the best possible in this case.
Recently, in [5], we extended the above result to locally m-convex algebras. Now we prove the following corollary.
Corollary 6. If is a commutative non-unital C^{*}-algebra $A, B \in Y_{S A}$ with $\|A\|=1=\|B\|$, and λ is complex, then

$$
\|(\lambda I+\Psi)\|_{1} \leq \lambda_{0}+3\|\Phi\|_{O P},
$$

where $\lambda_{0}>0, \Psi=A+B$, and $\Phi=A B$.
Proof. Since

$$
\|(\lambda I+A+B)\|_{1} \leq 3\|(\lambda I+A+B)\|_{O P}
$$

we have

$$
\frac{1}{3}\|(\lambda I+A+B)\|_{1} \leq|\lambda|+\|(A+B)\|_{O P} \Longrightarrow\|(\lambda I+\Psi)\|_{1} \leq \lambda_{0}+3\|\Phi\|_{O P}
$$

where $\lambda_{0}=3(|\lambda|+1)>0$. This concludes the proof of the corollary.
Remark 7. $\|(\lambda i+\Psi)\|_{O P} \leq \frac{\lambda_{0}}{3}+\|\Phi\|_{O P}$.

References

[1] R.G. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press, Inc., (1970).
[2] N. DUNFORD and J.T. SCHWARTZ, Linear Operators, Part I, Interscience, New York, (1958).
[3] T. FURUTA, M. HASHIMOTO and M. ITO, Equivalence relation between generalized Furuta inequality and related operator functions, Sci. Math. I (electronic), 2 (1998), 257-259.
[4] A.K. GAUR and Z.V. KOVARIK, Norms on unitizations of Banach algebras, Proc. Amer. Soc., 117(1) (1993), 111-113.
[5] A.K. GAUR, Maximal and minimal semi-norms and g-bounded operators, IJNSNS, 2 (2001), 283288.
[6] T. KOTARO and U. ATSUSHI, The Furuta inequality in Banach *-algebras, Proc. Amer. Math. Soc. 128(6) (2000), 1691-1695.

[^0]: Key words and phrases: W^{*}-algebras, C^{*}-algebras, Self-adjoint elements (operators), Maximal and minimal extensions of a regular norm, Furuta type inequalities.

[^1]: ISSN (electronic): 1443-5756
 (C) 2002 Victoria University. All rights reserved.

 The author is grateful to the referee for valuable suggestions.
 051-01

