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ABSTRACT. A relation between the coefficients of Legendre expansions of two-dimensional
function and those for the derived function is given. With this relation the normic inequality of
two-dimensional viscosity operator is obtained.
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1. I NTRODUCTION

Spectral methods employ various orthogonal systems of infinitely differentiable functions to
represent an approximate projection of the exact solution sought. The resulting high accuracy
of spectral algorithms was a major motivation behind their rapid development in the past three
decades, e.g., see Gottlieb and Orszag [1] and Guo [2] .

For nonperiodic problems, it is natural to use Legendre spectral methods or Legendre pseu-
dospectral methods. More attention has been paid to these two methods recently due to the ap-
pearance of the Fast Legendre Transformation. In studying the spectral methods for nonlinear
conservation laws, we have to face those equations whose solutions may develop spontaneous
jump discontinuities, i.e., shock waves. To overcome these difficulties, the spectral viscosity
(SV) method was introduced by Tadmor [3] . Maday, Ould Kaber and Tadmor [4] firstly con-
sidered the nonperiodic Legendre pseudospectral viscosity method for an initial-boundary value
problem, and Ma [5] , Guo, Ma and Tadmor [6] recently developed the nonperiodic Chebyshev-
Legendre approximation. So far, however, few works have been done in multiple dimensions.
This paper will study the relation between the coefficients of Legendre expansions of the two-
dimensional function and those for the derived function, and gives the normic inequality of the
two-dimensional SV operator, which plays important roles in the SV method.

ISSN (electronic): 1443-5756

c© 2005 Victoria University. All rights reserved.

The author wants to express his deep gratitude to Prof. Benyu Guo for research inspiration and is greatly indebted to the referee for

improving the presentation. The work is supported by the Science Foundation of Zhangzhou Teachers College (JB04302).

051-05

http://jipam.vu.edu.au/
mailto:yuehuich@21cn.com
http://www.ams.org/msc/


2 YUEHUI CHEN

2. NOTATIONS AND L EMMAS

Let x = (x1, x2), Λ = (−1, 1)2. We define the spaceLp(Λ) and its norm‖ · ‖Lp in the usual
way. If p = 2, we denote the norm of spaceL2(Λ) by ‖ · ‖, that is

‖v‖ =

(∫
Λ

|v(x)|2dx

) 1
2

.

Let N be the set of all non-negative integers andP
N

be the set of all algebraic polynomials
of degree at mostN in all variables. Letl = (l1, l2) ∈ N 2, |l| = max{l1, l2}, the Legendre
polynomial of degreel is Ll(x) = Ll1(x1)Ll2(x2). The Legndre transformation of a function
v ∈ L2(Λ) is

Sv(x) =
∞∑
|l|=0

v̂lLl(x),

with the Legendre coefficients

v̂l =

(
l1 +

1

2

)(
l2 +

1

2

)∫
Λ

v(x)Ll(x)dx, |l| = 0, 1, . . . .

Lemma 2.1([2]). For anyφ ∈ P
N
, 2 ≤ p ≤ ∞ and|k| = m, we have

‖∂k
xφ‖Lp ≤ cN2m‖φ‖Lp .

Here,c is a generic positive constant independent of any function andN .

A viscosity operatorQ is defined by

(2.1) Qv(x) :=
N∑
|l|=0

q̂lv̂lLl(x), v =
∞∑
|l|=0

v̂lLl(x).

Here,q̂l are the so-called viscosity coefficients, q̂l = 0 for |l| ≤ m

q̂l ≥ 1− m2

l21+l22
for m < |l| ≤ N.

Observe that theQ operator is activated by only the high mode numbers,≥ m. In particular, if
we letm −→∞, theQ operator is spectrally small (in the sense that‖Qv‖H−s ≤ cm−s‖v‖).

Let R denote the corresponding low modes filter

(2.2) Rv(x) :=
N∑
|l|=0

r̂lv̂lLl(x), herer̂l = 1− q̂l.

Clearly,  r̂l = 1 for |l| ≤ m

r̂l ≤ m2

l21+l22
for m < |l| ≤ N.

3. M AIN RESULTS

Firstly , we consider the relation between the coefficients of Legendre expansions ofv(x)
and those for∂xv(x).
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Theorem 3.1. For anyv(x) ∈ H1(Λ), let v̂k, v̂
(1)
k be the coefficients of Legendre expansions of

v(x), ∂xv(x), |k| = 0, 1, 2, . . . ,

v̂
(1)
k = v̂

(1)
(k1,k2) = (2k1 + 1)

∞∑
p=k1+1
k1+p odd

v̂(p,k2) + (2k2 + 1)
∞∑

q=k2+1
k2+q odd

v̂(k1,q).

Proof. By the property of the one-dimensional Legendre polynomial:

(2k + 1)Lk(x) = L′k+1(x)− L′k−1(x), k ≥ 1,

we have

L′k(x) =
k−1∑
l=0

k+l odd

(2l + 1)Ll(x), k = 0, 1, 2, . . . .

Then, forx = (x1, x2),

∂xLk(x) = L′k1
(x1)Lk2(x2) + Lk1(x1)L

′
k2

(x2)

=

k1−1∑
l1=0

k1+l1 odd

(2l1 + 1)Ll1(x1)Lk2(x2) +

k2−1∑
l2=0

k2+l2 odd

(2l2 + 1)Ll2(x2)Lk1(x1);

∂xv =
∞∑

|k|=0

v̂k∂xLk(x)

=
∞∑

k1=0

∞∑
k2=0

v̂(k1,k2)

 k1−1∑
l1=0

k1+l1 odd

(2l1 + 1)Ll1(x1)Lk2(x2)

+

k2−1∑
l2=0

k2+l2 odd

(2l2 + 1)Ll2(x2)Lk1(x1)

 .

On the other hand,

∂xv =
∞∑

|k|=0

v̂
(1)
k Lk(x) =

∞∑
k1=0

∞∑
k2=0

v̂
(1)
(k1,k2)Lk1(x1)Lk2(x2).

We can obtain

v̂
(1)
(k1,k2) = (2k1 + 1)

∞∑
p=k1+1
k1+p odd

v̂(p,k2) + (2k2 + 1)
∞∑

q=k2+1
k2+q odd

v̂(k1,q).

�

Specially, for anyv ∈ P
N
, we have

(3.1) v̂
(1)
(k1,k2) = (2k1 + 1)

N∑
p=k1+1
k1+p odd

v̂(p,k2) + (2k2 + 1)
N∑

q=k2+1
k2+q odd

v̂(k1,q).

Let Jk,N = {j
∣∣k + 1 ≤ j ≤ N, k + j odd}, then

v̂
(1)
(k1,k2) = (2k1 + 1)

∑
p∈Jk1,N

v̂(p,k2) + (2k2 + 1)
∑

q∈Jk2,N

v̂(k1,q) ∀ v ∈ P
N
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Theorem 3.2.Consider the SV operatorQ = Qm, (2.1) with the parametrization and operator
R, (2.2). For anyφ ∈ P

N
, the following inequalities hold:

‖∂x(Rφ)‖2 ≤ cm4 ln N‖φ‖2

‖∂xφ‖2 ≤ 2‖∂x(Qφ)‖2 + cm4 ln N‖φ‖2

‖∂x(Qφ)‖2 ≤ 2‖∂xφ‖2 + cm4 ln N‖φ‖2

Proof. We decompose∂x(Rφ(x)) = A1(x) + A2(x), where

A1(x) := ∂x

 m∑
|k|=0

r̂kφ̂kLk(x)

 , A2(x) := ∂x

 N∑
|k|=m+1

r̂kφ̂kLk(x)

 .

By Lemma ,‖∂xφ‖ ≤ cN2‖φ‖, ∀ φ(x) ∈ P
N
, and hence‖A1(x)‖2 ≤ cm4‖φ‖2.

Further letJ (0)
k,N = {j

∣∣j ∈ Jk,N , j > m}, J
(d)
k,N = {j

∣∣j ∈ Jk,N , max{j, kd} > m}, here,
m ∈ N , d = 1, 2. Then

‖A2(x)‖2 ≤
N∑

|k|=0

(2k1 + 1)
∑

p∈J
(2)
k1,N

r̂(p,k2)φ̂(p,k2) + (2k2 + 1)
∑

q∈J
(1)
k2,N

r̂(k1,q)φ̂(k1,q)


2

‖Lk‖2

≤ 8 (A2,1 + A2,2) ,

in which

A2,1 =
N∑

k1=0

N∑
k2=0

(2k1 + 1)2

 ∑
p∈J

(2)
k1,N

r̂(p,k2)φ̂(p,k2)


2

1

(2k1 + 1)(2k2 + 1)

=
N∑

k1=0

N∑
k2=0

2k1 + 1

2k2 + 1

 ∑
p∈J

(2)
k1,N

r̂(p,k2)φ̂(p,k2)


2

≤
N∑

k1=0

N∑
k2=0

2k1 + 1

2k2 + 1

 ∑
p∈J

(2)
k1,N

|r̂(p,k2)|2‖L(p,k2)‖−2


 ∑

p∈J
(2)
k1,N

|φ̂(p,k2)|2‖L(p,k2)‖2


≤

N∑
k1=0

N∑
k2=0

2k1 + 1

2k2 + 1

 ∑
p∈J

(2)
k1,N

m4(2p + 1)(2k2 + 1)

4(p2 + k2
2)

2

∑
p∈J

(2)
k1,N

|φ̂(p,k2)|2‖L(p,k2)‖2


≤ c1m

4

N∑
k2=0

 N∑
k1=0

(2k1 + 1)

 ∑
p∈J

(2)
k1,N

2p + 1

(p2 + k2
2)

2

( N∑
p=0

|φ̂(p,k2)|2‖L(p,k2)‖2

)
≤ c2m

4

N∑
k2=0

(
N∑

p=0

|φ̂(p,k2)|2‖L(p,k2)‖2

)
N∑

k1=0

(2k1 + 1)
∑

p∈J
(0)
k1,N

p−3
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≤ 2c2m
4

N∑
k2=0

N∑
p=0

|φ̂(p,k2)|2‖L(p,k2)‖2

(
m−2

m∑
k1=0

(2k1 + 1) +
N∑

k1=m+1

(2k1 + 1)k−2
1

)

≤ c3m
4 ln N

N∑
k2=0

N∑
p=0

|φ̂(p,k2)|2‖L(p,k2)‖2

≤ c3m
4 ln N‖φ‖2;

Similarly,

A2,2 =
N∑

k1=0

N∑
k2=0

2k2 + 1

2k1 + 1

 ∑
q∈J

(1)
k2,N

r̂(k1,q)φ̂(k1,q)


2

≤ c4m
4 ln N‖φ‖2.

Thus
‖A2(x)‖2 ≤ c5m

4 ln N‖φ‖2.

‖∂x(Rφ)‖2 ≤ 2‖A1(x)‖2 + 2‖A2(x)‖2 ≤ cm4 ln N‖φ‖2.

Since∂xφ ≡ ∂x(Qφ) + ∂x(Rφ), the desired estimates follow. �

Remark 3.3. The theorem shows the equivalence of theH1 norm before and after application
of the SV operator ,Q = Qm for moderate size ofm

N
� N1/4. This holds despite the fact that

for m = m
N
∼ cNβ −→ ∞, 0 < 4β < 1, the corresponding SV operatorQm is spectrally

small.
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