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Abstract

In this paper, bounds are obtained for the location of vertical asymptotes and
other types of singularities of solutions to certain nonlinear differential equa-
tions. We consider several different families of nonlinear differential equations,
but the main focus is on the second order initial value problem (IVP) of gener-
alized superlinear Emden-Fowler type

y'(x) = p(x)[y(2)]", ylzo)=A, ¢(r)=B, n>1

A general method using bounded operators is developed to obtain some of the
bounds derived in this paper. This method allows one to obtain lower bounds
for the cases A = 0 and A < 0 under certain conditions, which are not han-
dled by previously discussed bounds in the literature. We also make several
small corrections to equations appearing in previous works. Enough numerical
examples are given to compare the bounds, since no bound is uniformly better
than the other bounds. In these comparisons, we also consider the bounds
of Eliason [11] and Bobisud [5]. In addition, we indicate how to improve and
generalize the bounds of these two authors.

2000 Mathematics Subject Classification: 26D15.
Key words: Bounded operator, Comparison methods, Generalized Emden-Fowler
equations, Nonlinear differential equations, Vertical asymptote.
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Many papers have been written on oscillatory and/or nonoscillatory behavior of
differential equations. The literature for this topic will not be cited here since it

is too vast. However, most nonlinear differential equations do not have closed
form solutions, so a numerical method must often be used, such as Runge-Kutta
type methods. If a singularity is present in the solution, then such methods may
give meaningless results. Hence, it would be useful to have easily computable
(preferably closed form) bounds for the location of such singularities, since the

Bounds for Asymptote

interval of existence of the solutions must contain the interval on which the nu- Singularities of Certain
merical method is applied. In this way, we can ‘move forward’ to the singularity ~ Nonlinear Differential Equations
starting at the initial value,. Hence, lower bounds for singularities to the right Steven G. From

of zy are of especially important interest. It is the aim of this paper to supply
a number of easily computable lower bounds. In some cases, we shall also ob-

tain some upper bounds for the singularity. We focus on asymptote (vertical) Title Page

singularities, but the methods used can work for other types of singularities as Contents

well. <« NS
In this paper, we shall present bounds for the location of certain types of

singularities of certain nonlinear differential equations of order two or higher. < >

We shall focus on those differential equations which have vertical asymptotes. Go Back
The common theme of this paper is maximization or minimization of cer-

tain operators combined with comparison techniques, in addition to standard Sioee

integration techniques. Quit

Definition 1.1. A solutiony = y(z) has a vertical asymptote at= c if ¢ > x, Page 4 of 78
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Throughout this paper, we assume the existence of a singularity to the right
of zo. We shall be interested in the location of the first vertical asymptote to
the right ofz, in this paper. Conditions guaranteeing the existence of vertical
asymptotes and other types of singularities/noncontinuation can be found in the
works of Eliason (f], [1(], [11]), Bobisud [5], Hara et al. (I.€], [17]), Burton
[7], Burton and Grimmer(], Petty and Johnsor’[], Saito [2&], Kwong [29],
and Tsukamoto et al.3[]. Throughout this paper, we assume the existence of
a singularity to the right of, of some type. We mainly focus on the case of
a vertical asymptote. For singularities to the leftzgf the obvious modifica- Bounds for Asymptote
tions can be made. The emphasis is on obtaining easily computable bounds.  Singularities of Certain

. .. . I Nonlinear Differential Equations
Many of these bounds are obtained merely by finding the unique root of certain

equations and are sometimes of closed form and computable by hand. We shall SRR i
present enough numerical examples to compare the bounds discussed in this

paper, since no single bound is always the best. A very general method is dis- Title Page
cussed to obtain lower bounds for the location of vertical asymptotes, which can FE—
be generalized to certain other kinds of singularities (such as a derivative blow-

up). This general method handles some cases which are not handled by the <44 44
bounds given in Eliasonl[l] and Bobisud §]. It can also be extended to handle < >
many families ofn*® order nonlinear equations. Let us first consider methods

for obtaining bounds for for the generalized superlinear Emden-Fowler IVP: Go Back
1.1 Y'(x) =p@)y@)]", ylzro) =4, y(z)=B, n>1 Close
Several authors have discussed existence and uniqueness of solutibri}. to ( EEL
None of these results will be presented here. The interested reader should see Page 5 of 78
the good survey paper by Erbe and Radg]] See also TaliaferroZ[F]. For

results on oscillation and nonoscillation see Wong’J[[37]). See also Biles 3. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sfrom@unomaha.edu
http://jipam.vu.edu.au/

[2], Dang et al. §], Fowler [1Z], Habets 5], and Harris [ €]. Only a few
authors discuss locations of vertical asymptotes. Since this is the main point
of interest of this paper, we briefly present the most germaine results of these
authors here for the convenience of the reader.

First we present some results given in Eliason

Theorem 1.1 (Eliason [L1]). Suppose(x) is continuous orfg, ¢] and positive
on [z, ¢). Lety(z) be a solution to{.1). Supposel > 0 andB = 0. If y(z) is
continuous onzy, ¢), then upper and lower bounds fosatisfy

1.2) Aﬂffﬂmamuswﬂsﬁ?/ﬂﬁamm

where
(1.3) pr(t) = Oiggfgtp(ﬂf% pu(t) = Oiugtp(w)
and
T ()T (5
(L.4) 2(n) = 200 + )] — €j>7
r(3+555)

I'(-) denotes the gamma function. Let; and Ug; denote the Eliasonl[!]
lower and upper bounds faer;, obtained from {.2) above.

Theorem 1.2 (Eliason [L.1]). Suppose(z) is continuous oy, ¢) and positive
on (g, c). Supposed > 0 and B = 0. If y(x) is continuous onzy, z*), then
the following hold:
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a) If p(x) is nondecreasing ofx, ], then an upper bound faris defined by

(1.5) A’ / Vpa)dt < z(n),

wherep 4 (z) is given by (.7).

b) If p(x) is nonincreasing ofizy, |, then a lower bound for satisfies

c Bounds for Asymptote
n—1 Singularities of Certain
(1-6) A2 / V pA(t)dt Z 2(77) ) Nonlinear Differential Equations
zo

] i Steven G. From
wherep(z) is the average value @f(x) on [z, z], i.e.,

(. — o)™t [T p(t)dt, if x> mx, Title Page
(1.7) palx) = ’ . Content
p(o), if z = x. ontents
44 44

Let Ly » andUg » denote the lower and upper bounds of Eliasan][ob-
tained from (.5) and (L.7) above. Note that the upper bounds of Theorems < 4
1.1and1.2are valid for B > 0 also. However, the lower bounds are not

valid unlessy’'(zo) = B = 0. We shall obtain later several new lower Go Back
bounds for the cas8 > 0. Close
Next, we present some results of Bobistfl [The lower bounds of Bobisud EEL
[5] are valid under more general conditions than the lower bounds of Eliason Page 7 of 78
[11]. However, Bobisudf] does not present any upper boundsdolt should
be mentioned that the lower bounds of BobisG{idre for the more general 3. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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differential equation” = p(z)f(y). However, they are the only lower bounds
given in the literature for the cade > 0. (We shall also discuss the above more
general differential equation later and discuss the ¢ase( for some choices

of f(y), a case not considered by Bobisud and Eliason.) We shall also discuss
the cased = 0 whenp(x) may have a singularity at = z.

Theorem 1.3 (Theorem 2 of Bobisud §]). Supposep(z) is continuous on
[z9, ¢] and positive onjzg, ¢). Supposey(z) > M > 0forzy < = < ¢ is
the solution to

(1.8) y'(x) =p(x), fly(@), wylxe)=A, ¥(x)=B.

Supposed >0, B>0andA+ B > 0. If f(y) >0andf'(y) >0, M <y <
oo, and ify(x) has a vertical asymptote at= ¢, then an implicit lower bound
for c satisfies

* du ¢ B
(1.9) [ < / e wplwdo + (e~ 7o)

Let L » denote the lower bound of Bobisug] pbtained from (..9).

As a consequence of TheoreinB, we obtain the following corollary, which
is a small correction of Theorem 2.2.8 of Erbe and R&aj.[

Corollary 1.4. Suppose(x) is continuous ony, ¢|. Suppose(z) > M > 0
for o < x < c¢. Then alower bound forin IVP (1.1) is implicitly given by

(1.10) AT < /C(c — w)p(w)dw + %(c — Zp).

77_1 xQ
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Equivalently,

1 ¢ B
o <A [ e wptwide e m),
providedA > 0.

Theorem 1.5 (Theorem 3 of Bobisud ]). Lety(x) be a solution to 1.8).
Supposef (y) is continuous foy > A, with f(y) > 0fory > Aif A > 0, and
f(y) > 0fory > 0if A = 0. Suppose(z) > 0 has a nonnegative derivative
on[A,c0). If A > 0andB > 0, thenc satisfies Bounds for Asymptote

Singularities of Certain
/ NAGL

Nonlinear Differential Equations

(1.11)

Steven G. From

Let L ; denote the lower bound efobtained from {.11).

Title Page

The results of Bobisuds] and Eliason [ 1] require continuity ofp(x) atz = F——
xo. This limits the applicability of these results tb.§) when A = y(xy) = 0
since the initial conditiotd = 0 often will necessitate a singularity at= z, in <44 44
the functionp(z). One of the main contributions of this paper is to handle this < >
singular case. In Eliason [], the author remarks, in reference foX), that ‘due
to the methods of our proof, we are not able to draw many conclusions for the Go Back
casey/'(ro) = B < 0, nor for the boundary conditiongzy) = A =0, ¢/ (xy) = Close
B > 0. In this paper, we shall present lower bounds é@ven in some cases "

wherep(z) has a singularity at,. Moreover, we will show that the methods
used can be extended to other differential equations of much more general form Page 9 of 78
than Emden-Fowler type. The methods used are based on maximization and

minimization of certain operators as well as classical integration techniques.  3ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
http://jipam.vu.edu.au
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Throughout this section, it is always assumed that 0. Consider the follow-
ing IVP of Emden-Fowler type:

1)  y'(x) =p@)|y@)]", ylxe) =A, y(x)=B, n>1L1

To obtain bounds for the vertical asymptetef (2.1), we first need a few lem-
mas. It will be helpful to consider the more general differential equation

(22)  y'(2) = (z —=0)q(w) - fly(x)), wlzo) = A, y(w) =B,

whereg(xz) > 0 is continuous onjzy, o), n > 1, andd is real. Thus, %.2)
allows for a singularity in the coefficient function ag if 6 < 0. We will
sometimes writed.1) and @.2) in the more respective compact forgis= py™
andy” = (z — x0)%q(z)f(y). To prove some new results, we will first need
some lemmas. Lemnialis a generalization and slight variation of Lemma 0.2
of Taliaferro [29].

Lemma 2.1 (Comparison lemma).Suppose; (z) and ¢ (x) have the form
(2.3) ¢1(z) = (x — Io)e%(x)
(2.4) and by () = (7 — 20)’ (),

whered is a real number, and wherg (x) and ¢»(z) are continuous positive
functions on[xy,c0). LetY;(z) and Yz(x) be respective solutions on some

Bounds for Asymptote
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interval I = [zg, xo + A), A > 0, of the equations

Y'(x) = (z = z0) qu(2) f(Yr ()
(2.5) and

Yy'(w) = (¢ — 20) g2() f (Ya(z))

wheref(y) > 0 is continuous and nondecreasing. Suppose

/ /
(2.6) Yl(l’g) < YQ(IO) and Y, (l‘o) < YQ(Z’O) . Boun(ljs for Asfymptote
Singularities of Certain
Nonlinear Differential Equations

If ¢1(z) < g2(x) ON [z, 00), thenY;(z) < Ys(z), forzin I.
Steven G. From

Proof. Since the proof is similar to that of Lemma 0.2 of Taliaferr¢]] we
merely sketch a few key steps that are different from the proof given in Talia-

ferro [29]. Proceeding as in Taliaferré ] with some modifications, we obtain, 1iE [PEEE
forzy <z < x9+ A: Contents
<44 >»
(2.7) Yi(z) = Yi(zo) + (x — 20)Y (20)
x < >
+ [t - n) a0 SO 1= 1.2
0 Go Back
The above integral will exist (near= x,) since it is essentially an integrated Close
form of the second derivative df;, ¢ = 1,2. This is an important point espe- Quit

cially for # < 0. Subtraction gives
Page 11 of 78

Yl(t) - YZ(t) < /JC(Qj - t) (t - xﬂ)e[ql <t>f(Yl (t)) - QQ(ﬂf(Y?(t))]dt? J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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which is nonpositive since the integrand is nonpositive. The lemma may also
be proven by considering the difference functib(t) = Y;(¢t) — Y5(¢). Forz
in (zo, c), there existel = d(x) in (xg,x) such thatD(z) = ¢1(d) f(Yi(d)) —
¢2(d) f(Ya(d)), which is nonpositive. However, equatio.{) will be useful
later. ]

Remark 1. The famous Thomas-Fermi equation

(2.8) y// — x71/2y3/2

Bounds for Asymptote
Singularities of Certain

has many applications in atomic physics and has the fdir®) discussed in : , : _
Nonlinear Differential Equations

Lemma2.1as well as the Emden-Fowler equation
Steven G. From

y// — ix(’yl_g.
See Hille ([L9], [ 20]) for a discussion of Z.8). We shall consider differential Title Page
equation R.8) later in Sections and3. Before presenting the next few lemmas, Contents
we need to define some upper and lower coefficient functions. Fora\ZR (
define <4 >
. < 4

(2.9) qr(v) = inf q(t), qu(z)= sup q(t).

rosts zostsw Go Back
Theng,(z) andq, (z) are nondecreasing and nonincreasing, respectively. Close
Lemma 2.2. Consider IVP 2.2). Suppose(z) > 0 is continuous orjzg, oo) Quit

and ¢(z) is differentiable oz, c0). Let Z, denote the zero séf, = {z €
[z9,00) : ¢'(z) = 0}. Suppose thaf, has no accumulation points. Then

(@) gr(z) andg,(x) are continuous offizg, 0o).

Page 12 of 78
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(b) Letqy () = £(qu(2)), ¢,(z) = L (qu(2)). Theng;(x) andg,(x) are
continuous onxg, o) \ Z,, the complement of,, in [z, c0).

(€) ¢;.(x) and ¢, (z) have finite left-handed limits at each point> x, (but
may not be continuous atin Z,), that is, forz > z,

lim ¢} (t) and lim ¢/ (t)

t—x— t—x—

exist as real numbers.
Bounds for Asymptote

. L. . Singulariti f Certai
Proof. We merely sketch a few key steps, since the result is intuitively Clear. yoninea Difierential Equations

The conditions on the zero sgf, guarantees that only a finite number of zeros
can exist in[zg, c0), by the Bolzano-Weierstrass Theorem. goand ¢, are
piecewise continuous off, in [z, c). The same is true fof;, andg,,. Since

Steven G. From

there are only a finite number of continuous ‘pieces’, the results (a)—(c) now Title Page
follow easily. O Contents
Lemma2.2above will be needed in subsequent lemmas and theorems which <« >

use L'Hospital's Rule in a deleted left half neighborhoodedf From Lemma

2.2, it would follow that ¢ >
Go Back

(2.10) lim ¢} (z) and lim g, ()

x—(zx) ™ xz—(z*)~ Close
exist, wherer, andz* are any asymptotes of solutions t.3) with ¢(x) re- Quit
placed byg; (x) andg,(z), respectively. Throughout this paper, when we write Page 13 of 78
¢ (z,) andgq, (z*), we shall mean the respective limits given in (c) above. Also,
we assume throughout th&t has no accumulation points. 3. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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Remark 2. From Lemma2.2, we can conclude that there exists ap, in
(xo, x4) OF (z9, x*) such that on the respective interval, we have:

(@) v.¥ (x) and YL(3) (x) are continuous on the respective intervéls, x.)
and (zgo, z*), and

(b) ¢;, andq,, are continuous there.

Now let us give a major idea for comparison purposes throughout the rest of
the paper. Many methods are based upon comparing the following three IVPs: Bounds for Asymptote

Singularities of Certain
Nonlinear Differential Equations

(1)
Steven G. From
(211)  y(z) = (z — x0)’q(2) f(y(2)), y(xo) = A, y'(w0) = B.
Vertical asymptote at = ¢ (actual IVP of interest in this paper) Title Page
Contents
2)
<44 44
(2.12) Y, (x) = (2 — 20)°qu(2) f (Yu(z)), Yulzo) = A, Y(x0) = B. p X
Vertical asymptote at = x*. Go Back
(3) Close
Quit

(2.13) Yi(x) = (z — x0)’qu(x) f(Vi(2)), Yi(zo) = A, Y[(x0) = B.
Page 14 of 78

Vertical asymptote at = z,.
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By comparison, we have:* < ¢ < z, and
Vi(z) <y(r) <Yu(z), z <z <2,

andYy(z) < y(z), z* < x < c. In some cases, it may be that only the solutions

of (1) and (2) have asymptotes, in which case only a lower bound ¢an be
found. However, if (1) has an asymptote, then so does (2).

Lemma 2.3. Let Y, (x) be a solution of Z.12) with ¢(x) > 0 continuously
differentiable oz, o). Suppose

. /
Z = lim M > 1, possibly infinite
w—oo - f(w)
Then Y. (2)
wlT
lim =0.
z—(z*)~ Yu/(l')
Proof. Let
Y,
R = limsup u(z) > 0.

x—(x*)~ Yu,($)
First, we establish that is real. Forz > x, there is al = d(z) in (z¢, ) such

that
Y, (x) _ A+ Y, (d)(x — xg)

Yu/(x) Yu/(I) ’
from which it follows that) < R < 2* — 2y < oo. Also,
Yu(x) B Y;L(x) '
Let us consider two cases.

(2.14)

Bounds for Asymptote
Singularities of Certain
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Case 1.6 > 0. From (2.14), several consecutive applications of L’Hospital's
Rule and Lemma.2 gives

Y/ v,
T 1CON A i C)
x—(z*)~ Yu(l’> xz—(z*)~ Yu”(l‘)

since the expression in parenthesis is nonnegative. Sincel, this necessi-
tates lim (gég) = 400, sinced < R < 0. Thus, lim =& — .

x—(z*)~ ()~ Y. ()

Case 2.6 < 0. From (2.14), we have
Yow) _ B+ (@ —20)” [, ault) - F(Yalt))dt
Yi(z) — Y (z)
Applying L’Hospital's Rule several times in succession in conjunction with

LemmaZ2.2 again and proceeding in much the same manner as done in Case
1 above, we obtain (we omit details)

w K0y (7.0, o) Y
lim & >  lim 7 2 4+ >7. lim -2 ,

Bounds for Asymptote
Singularities of Certain
Nonlinear Differential Equations
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from which it follows again thalfim, . ;- ?Eg = +00.
O
Lemma 2.4. LetY,(t) be a solution ofZ.12). Suppose
Y, (t - f! O e
hm /() —0and Z = lim 2 / (w) > 1, possibly infinite
—@)= Yi(z) w—so  f(w)
Suppose’(x) > 0 is continuous ofixy, co). Then Bounds for Asymptote
Singularities of Certain
I Y, (t)YJ(t) 1+7 Nonlinear Differential Equations
11m = .
z—(x*)~ [Yu/<t>]2 2 Steven G. From

Proof. We apply L'Hospital's Rule and Lemma 2. After much cancellation

and simplification, we finally obtain Title Page
. Yu(t)Yé'(t) Contents
ez [YI(1)]? < >
(3) < >
—1+ lim w
2 a—(e) Y/(z ))Yu (JE) ( | | Go Back
1 [V f(Ya@) | Vil ( bgu(x )1
=5t lim + () + Close
2 e [ 2fule) T ava) \ ST
/ Quit
Ly gy [ROIOW] 147
2 e | 2f(Yu(x)) 2 Page 17 of 78
upon application of Lemmas.2and2.3. O
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Remark 3. The above lemmas remain truegifr) is merely differentiable on
some left deleted neighborhoodadfor z, that is, on an intervalz* — ¢, z*)

or (z, — 0, z,) for somes > 0. This will be an important observation needed

later.

Remark 4. Lemma2.4 holds in particular for the generalized Emden-Fowler

choicef(y) = y", n > 1, corresponding to IVP1(.1) with Z = .

For comparison purposes, Igt(z) andY, (x) be solutions to

(2.15) Yi(z) = pr(x)[Yr(2)]", Yi(zo) = A, Yi(zo) =B
(216)  Y!(@) = p(@)Va(@)'s Yulwo) = A, Yi(ro) = B
where

pr(r) = inf p(z) and p,(r)= sup p(z).

zo<t<w o<tz

Lety(x) denote a solution to

(2.17) y'(x) = p(@)[y(@)]",  y(zo) = A, y'(x) =DB.

Lemma 2.5. Consider IVP 2.12. Lete = 1‘7’7 Suppose(z) > 0 is continu-
ously differentiabléz,, co) and thatA > 0 and B > 0. Then

lim e[V, (2)] Y/ (2) = ——e\/pu(a).

x—(z*)~ 1 —

[

Proof. From Lemma2.2, we have

PR 10 4(€.2) Y
e—@)~ pu(z) - [YVo(z)rtt

Bounds for Asymptote
Singularities of Certain
Nonlinear Differential Equations

Steven G. From

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 18 of 78

J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sfrom@unomaha.edu
http://jipam.vu.edu.au/

which implies that
m Y= @
2=(@)" \/pu(T)[Yulz)]' ¢

Rearranging terms, we finally conclude

fim [V, () V() = 2

o (z%)- 1—¢’
thereby proving the lemma. ]

Lemma 2.6. Let Y (z) be a solution ofZ.13) with ¢(z) > 0 continuously dif-
ferentiable oz, c0). Suppose, (z) is continuously differentiable dn,, co),

w - f'(w)

7= lim ——~2 >1,

w=oo  f(w)

possibly infinite, that4.11) has a vertical asymptote at = z,, andf < 0.
Then:

. Yi(z)
a) lim

= 0, provided

(2.18) Z>1—0+ sup [(:p — ) - (_q“”)H .

>10 qr ($)

, Yi)Y/(t) 1+Z
b) 1 = .
S R T IOE 2
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Proof. We prove part (a) only since the proof of (b) follows in a very similar

way to the proof of Lemma&.4. Proceeding as in the proof of Lemfia&, we
obtain

Y Y//
Y]
= lim sup o) L@’

upon application of results in TayloB(] on L'Hospital's Rule. Clearly0 <
R < oo. We shall rule ouf? > 0, using €.18. We have

where

<
f< Z + RL’
o9 d)
Ty — X QL<x*)

Suppose on the contrary thAt> 0. ThenZ + RL < 1. By condition .18,

we have ) )
I C]L@*)) 7
Ty — Lo QL(I'*)

Z>1+(m0—x*)(

which givesZ + RL > 1, a contradiction. Sé& = 0 andlim,_.,,)- % =0,
L
as claimed. N
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Remark 5. For the generalized Emden-Fowler IVR.{), condition .19 re-
ducestgf =0andZ =n)

7 > sup (M-(x—xo)> +1
>0 pL(ac)

which holds automatically if(z) is nondecreasing im, in particular. It will

also hold for certain choices of nonincreasipg:) provided that(x) does not

decrease ‘too fast'.

Lemma 2.7. Consider IVP(2.13). Suppose(z) > 0 is continuously differ-
entiable on[zg, c0), pr(z) is continuously differentiabled > 0 and B > 0.
Suppose IVR2.13) has a vertical asymptote at= z.. Then, if¢ <0, we have

lim (Y2 (2)) Vi (2) = ———+/au(z2),

c—(z4)” VvV1—c¢
provided
]
(2.19) n > sup ( @) (x — :L‘o)) +1-6.
x>0 qL(x)
Proof. Follow the proof of Lemm&.5, using Lemma2.6, part (b), instead of
LemmaZ2.2 [

Note that Lemmag.6and2.7 remain true ifsup, -, is replaced byup, ;,
wherelL is any lower bound for.

Remark 6. In Lemmas2.6, 2.7, the sets of conditions under whigh(x) and
P, (x) will be continuously differentiable include (but are not exhausted by) the
cases below:
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(1) qr(z), p(x) are nonincreasing or nondecreasing pn, oo).
(2) qr(z), pr(x) are ‘bath-tub’ shaped, that is, there is ah > z( with:
{ q(z), if zo<az<a,

qr(z) =
(@) @x), if z>a,

whereg, (+), ¢2(-) continuously differentiable functions are such thigt:’) =
¢,(x"), q1(x) is nonincreasing onxo, 2') and ¢o(z) is nondecreasing on
[x’, oo) Bounds for Asymptote
Singularities of Certain
(3) QL(ﬂf) andpL(x) are unimodal. Nonlinear Differential Equations

Lemmas of type2.3and2.4 will be indispensable throughout this paper.
We are now in a position to state and prove several main results. Throughout

Steven G. From

Section®4 below, we assume the existence of a vertical asymptate-at > Title Page
Xo- Contents
Theorem 2.8. Let y(x) be a solution to IVP1.1). Supposed > 0. Suppose <« S
p(z) > 0 is continuously differentiable ofxy,c]. Lete = 52 and letZ, =
{z >z : p'(z) = 0}. SupposeZ, has no accumulation points. Then: < 4
a) Letp, () = sup,, <<, p(t) and Go Back
Close
: - €
(2.20) g1(x) = min (GA 'B, ﬁ\/pu(fﬂ)) » L > Zo- Quit
Then a lower bound., for ¢ is the unique root (value af) satisfying Page 22 of 78
(221) ([EO — l’)gl (.I') = AE. J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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b) Letp(z)
is continuous oz,

= inf,,<;<. p(t). Suppose(x) > 0 on [z, c0). SUPpPOSe’ (x)

00). Let

(2.22) hi(z) = max (eAE_lB, \/% pL(x)) , T > X,
Suppose
(H1) lim inf ((x ~ ) - \/pL(:L’)) > Al— V_le)_g possibly infinite
A%/1 —
or limsup ((:L‘ — xo)\/pL(x)> < (_—6)6 :
(H2) sup (zg — x)hy(xz) > A, and

r>x (
)

(H3) 1+ sgp(x — ) < PL(() ) < nall hold.

Then an upper bound; for c is the largest root of
(2.23) (xo — x)hi(x) = A°.

Proof. Of (a): Letu = u(z) = [Y.(2)]".
existsd = d(z) in (zg, z) such that

(2.24) w(z) = u(zg) +u'(d) - (x — x0) .

By the Mean Value Theorem, there

Differentiation ofu(z) produces

(2.25) u' = e(Y,) Y]

u
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and
(2.26) u' = e(Y) YY) +ele — 1YY,

To boundu’(d) in (2.24), we obtain from 2.26) thatu”(z) = 0 for values ofx
(if any) satisfying

Pu)[Yu(2)]"

(2.27) Y!(z) = R

Substitution of this into4.25 results in
/ € e—1+7
()] = ALY, (@) ().

By choice ofe, for anyx satisfying ¢.27), we have

€]
vV1—e¢

By LemmaZ2.5, (2.28 holds also ag: — (z*)~. From all this, we may infer
that

(2.28) [u'(z)| = pu().

[/ (d(2))] < —g1(z") andv/(d(x)) > g1(27), wo <z < 2",

which implies that
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Sinceu(zy) = A andv/(zg) = eA“"! B, we obtain from 2.24) that

Ae
ld * —
W) =
and
A€ o
x - TN )
’ gi(z*) ~

upon lettingx — (z*)~. Thus,(zo — 2*)g:(2*) > A€ holds. But we also have
(xo — L1)g1(Ly) = A-. Slnce(xo — x)gi1(x) is strictly increasing inc, we must
havex* > L;. Sincec > z*, we haver > L. This completes the proof of part
(a).

The proof of part (b) is analogous except we hsenstead ofg; andpy,
instead ofp, in the above arguments, along with Lem&&. For this reason,
we only give the details for the parts of the proof that are different from the
proof of part (a).

To prove (b), we proceed as in the proof of (a). Hypothesik Quarantees
that the zero set of the equation — z)h,(x) = A€ is bounded above by a real
numberz > x,. Hypothesisi2) guarantees that this zero set is nonempty. Hy-
pothesisd3) allows us to apply Lemma.7to obtain|u’(d(z))| > # pr(x)
and

u(d(x)) < hi(x), x9<ax<a”.

Thus,(z¢ — z,)hi(x.) < A° holds. Now suppose on the contrary that> U;.
By the Intermediate Value Theorem, there would exist a #6ot |z, Z) of the
equation(zy — z)hi(z) = A°. Soa’ > U, and(xzg — 2’)hi(2') = A°. Soz'is
aroot of(xy — z)hi(x) = A<, a contradiction td/; being the largest such root.
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We can conclude that, < U;. Sincec < z., we must have < U; andU, is
an upper bound of. This completes the proof. ]

Remark 7. If any upper bound for: is available (call itU), then it should be
computed first. Then a search for a lower bound cén be confined to a search
on the compact intervalk,, U], sincex, < L < U must hold. However, if{3)
does not hold, it may be the case that conditieid’) holds:

, —p) (@)
(H3) n> 1+ sup (‘75 - xO) ( ) Bounds for Asymptote

z2L Pr (:L’) Singularities of Certain
. . . . Nonlinear Differential Equations
whereL is any lower bound of. In this situation, we would want to compute

L = L, firstinstead. In any caseli@) can also be replaced by the requirement steven G. From

~ Yi(@) _
hmz_%z*)f Yi(x) = 0.

Remark 8. The above theorem makes use of the operater Y. In this Jo

paper, we shall also consider operators of the form:= e, o < 0, u = Contents

(r — 20)"'Y,. The author has also considered the operators- Y (Y./)<2, pp >

€1 <0, e <0,andu = (Y, + aY, + b)<, but these did not consistently provide

better lower bounds. < d
Go Back

Remark 9. Note that the existence of a lower bouhddoes not depend on the
initial values A > 0 and B > 0. However, the existence of an upper bound Close
U; may depend on the values dfand B, if p.(z) is not constantf(z) is

nondecreasing), for example. In fact, we shall see that more stringent conditions EEL
guaranteeing the existence of an upper bound*aire usually more necessary Page 26 of 78

than those guaranteeing the existence of a lower bound,dbr the remaining
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Remark 10. In his concluding comments section, Eliaséri][mentions that
the methods used in his paper cannot be used for the following cases:

1) B<O 2) A=0 and B>0.

He also mentions that these cases certainly are of interest. A check of the liter-
ature revealed no subsequent work providing bounds for these two cases. When
6 < 0. Bobisud [] provides lower bounds wheh= 0 for a more generaf (y),
however. Theorera.8clearly provides bounds in Cade In Sectior3, we shall

offer bounds for Cas@&. Moreover, the methods of this paper can also provide

Bounds for Asymptote
Singularities of Certain

bounds for the following cases: Nonlinear Differential Equations
(3) A<0 and B>0 (4) A=0, B=0, y"(x¢) > 0. Steven G. From
We elect to discuss (3) and (4) in a future work. However, for an example of Title Page
Case (3), see Example 4.8.
Contents
Remark 11. We can relax the requirement thatz) > 0. We merely neeg(z)
to be eventually positive, at least in the case of providing lower bounds for « dd
We would use; (z) instead ofp, () in part (a) of Theoren2.8above, where < >
Py () = max(0, p,(7)) EYIEE S
The conditionp(z) > 0 on [z, %) is necessary to have any chance to obtain Close
upper bounds fot, however. Quit
Next, we consider a few other bounds foin the case ofA > 0. One is Page 27 of 78
a modification of a bound given in Eliasonl]. The others are based upon a
numerical integration, after a transformation, of the differential equafidry, 3. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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The following theorem is a generalization of a theorem given in Hiilg [

and Eliason1].

Theorem 2.9. Consider IVP (.1). Suppose/(z) < 0, x > z. Suppose

[ V/p(t)dt — oo asz — oc. Then:
a) there exists with zq < ¢ < oo and lim y(z) = +oo

b) If, in addition, B2 > 2220) gn+1 then
n+1
2 ¢ 2
2.29 — t)dt < ——A°,
(2.29) T mo\/p() S
wheree = 1;—” LetUy denote the upper bound forgiven by 2.29).

c) If B2 > %A”“, then there exists a constahf > 0 independent of

such that ,
y(x) < M(c—2z)1, xy<z<c.

Proof. The proof is similar to that given in Hille’[], exceptp(t) = t~3/2 there.

Multiplication of (2.17) by 2y’ gives
2y ()y"(t) = 2y (O)p(t)y(1)".
Integration by parts from, to x and using/(¢) < 0 gives

@30 gz Ay e I g
n n
(2.31) = ipj(fl)y(x)"“ + ¢, Ssay.
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Let Uy denote the upper bound efdefined by 2.29. Multiplying by
y(z)~1=" and taking square roots, we get

(2.32) /(@) - yla) 5 \/ 2) + coy(a) 1,

where @.32 is valid onzy < d < ¢ for somed > xp. Integration of .32
fromx = dtox = w gives

(2.33) % y(w)' T — y(d \/ 2) + coyla) 1 -de.

The left-hand side ofA.33 remains bounded as — oo. The integral in2.33
diverges toco asw — oo, sinceffO Vp(t)dt — oo asx — oo. Thus, there
existsc with 2y < ¢ < oo such thatlim y(x) = +occ. This proves part (a).

To prove part (b), we proceedxmcan analogous manner, starting itg) (
above. Sincey > 0 by assumption, fromA.33, we obtain

77—1 \/:/ ZOLE

Lettingz = z( proves part (b). By the Mean Value Theorem, for integrals, there
is anz’ in (z, c) with

Vi [ Vi = e ).

Sincep/(t) < 0, we deduce

2 1-n
—y(x) 2 > m\/M(C—ZE)

n—1
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Consequently, we obtain

(234)  yl) < [(”;1) \/:217] (O] (e — )™

This proves part (c). O

Example 2.1. Consider the IVP

1

"o__ _ / _
Yy ( + 1)2y ’ y<0) - 1’ Yy <O) =1. Bounds for Asymptote
Singularities of Certain

Nonlinear Differential Equations

Then a vertical asymptote exists to the solutidm), by Theoren?.9 above.

Theorem 1 of Bobisudy] is not applicable here, sinccE)Lg)/‘2 = 2 does not SIEIEED (RO
i : lp'()| _

SatlsfyleI& p(x)]?/2 0. Title Page
Remark 12. Theorem2.9 requiresp’(z) < 0. It is interesting to note that if c

, . . _ ontents
P’ (x) > 0 andp(z) is absolutely monotone dmg, oo) (as defined by Boas!]),
then certain derivative inequalities found in Boa$and Pecaric [26], together <44 44
with Bernstein’s Theorem, can be used to prove existence of vertical asymptotes < >
using Lemmag.3 and 2.4 above. We omit details here, since the emphasis is
on bounds for. Go Back
Remark 13. In Theoren?.9, the conditionB? > QP(JfO A"lis a generalization Close
of a condition given by Hille ([9], [2(]) and Ellason which guarantees the Quit

existence of a vertical asymptote for the Thomas-Fermi equation
Page 30 of 78
y// _ $—1/2y3/2
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Application of Theoren2.9in this case leads to the following upper bound on
c:

4
3 3
c < (:cﬁ“ + 5\/5A1/4)

which is Equation (1.9) of Eliasonl[l] and Equation (4.4) of Hille £0]. We
shall have a little more to say about the Thomas-Fermi equation in Segtion
later.

Theorem 2.10. Consider the IVP 1.1). Suppose(xz) > 0 is continuous on Bounds for Asymptote
[SL’ OO) Singularities of Certain
0s ) Nonlinear Differential Equations
a) Letu* denote any initial upper bound fer Let Steven G. From
2p,, (u*) At
w, = B? and Wy = % , Title Page
Contents
Let D; = wy — wy @and Dy = 27%2 and supposé); < 0. Then a lower
boundL, for cis given by « dd
i < >
24 1\"2| *
(235) L2 = X9 + — W2 + D1 (—) ] s Go Back
n—1 2
Close
provided the expression in brackets is positive. Quit
b) Suppose that either* exists or that Page 31 of 78
D3 = inf p(l’) Z 0. J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
xo<r<o0
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DefineD, as follows:

Dy, if Dy >0
D4: i
u*, if D;=0.

Letws = 2L (D)ATT g wy, < ws, then an upper bound; for ¢ is given

n+1
by
A —-1/2 —-1/2 B ds for A: tot
(2.36) Uy =+ — (1w +up?) S o
U Nonlinear Differential Equations
Proof. Starting with Steven G. From
(2.37) vy = p(a)y"y Title Page
and integration of both sides df.37) eventually results in Contents
_1 <44 44
o0 2p(t") 2p(t") 2
c— Ty = B? — LAt L T ()t dt ,
0 /A ( | | y(t) < >
Go Back

for somet’ € (g, ¢), by the Generalized Mean Value Theorem for integrals. By
1l Close

the change of variable=1 — <i> * , we obtain
y(t) Quit

24 1 (1 - Page 32 of 78
(2.38) ¢ xy= _/ {wz N (wl _ MAW) ZDQ} "
n—1J n+1

N
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Sincep(t') < p,(Uy), the result now follows by the convexity of the integrand

of (2.39 and the Midpoint Rule approximation to the integral 8f39. This
completes the proof of part (a).

The proof of (b) is very similar except the Trapezoidal Rule approximation

is used at the end of the proof instead. Hence, the proof of (b) is omittedL

Remark 14. We may take.* = U;, whereU; is given in Theoren2.8 above.
Also, the lower bound. would exist, in particular, ifp(x) is nonincreasing in
x, and the upper bountl would exist, in particular, ip(z) is nondecreasing in

x, provided thaty(x¢) = A andy'(x¢) = B satisfied the other conditions of the

Bounds for Asymptote
Singularities of Certain

theorem. The bounds of this theorem are of closed form and are offered as maore Nonlinear Differential Equations

easily computable alternatives to other bounds already discussed. We shall
numerically compare many of the bounds discussed in this paper in subsequent

examples. We may replapg(«*) in part (a) by any constan®, if there exists
P > 0 such that) < p(z) < P, for x > z,. Similarly, we may replacé.,(D,)
by any constanf) such that) > 0 and@ < P(z), for x > xz,. For example, if

zo = 0, andp(z) = 22, we may usé” = 1 andQ = 2.

Next, we show that the methods of Eliasdn]can be modified to produce
a lower bound for in the cased > 0 and B > 0, after applying comparison
results discussed earlier.

Theorem 2.11.Supposed > 0 and B > 0in IVP (1.1). Under the conditions
stated in Theorem B, a lower boutd for c is the unique root (value af) of:

(2.39) AT / VPu(®)dt = z(n),
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wherez(n) is given by {.4) and

Pu(z) = sup {p(t)~(l+w)n].

ro<t<z

(2.40)

Proof. Let w be the operator given by = w(x) = Y,(z) — B(x — o). Then

w' = Yu/ — A’ w' = Yu//7 U)(JJ()) = A’ w/($0) =0.

IVP (1.1) becomes

(2.41)

By comparison with the IVP
W(x) = (pu(x)) - W (2)]",

applying Lemma2.1, we see that if IVP 1.1) has an asymptote at= ¢ and
IVP (2.42 has asymptote at = z*, thenc > x*. Butx* is at least as large as
the unique root of4.39 above, by Theorerh. 1 This completes the proof.[]

(2.42) W(zo) = A, W(xzo) =0,

Next, we state that Theorein5(Theorem 3 of Bobisud])) can be extended
to p(z) that are not nondecreasing after applying Lemitra We omit the
straightforward proof.
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Theorem 2.12.Consider IVP {.1). Under the conditions of Theorehb, omit-
ting the nonnegative derivative pfz) requirement, a lower bountls 4 for ¢ is
the unique root of the equation

:/:mdt.

> dx
(2.43) /A \/ B2 _'_QLZ flu)d

p(0)

Next, we state a famous inequality which will be used to obtain one more
lower bound fore, whenp(z) is nonincreasing inc. Since there are many
versions of this inequality, we state a form most convenient for our use here.
It is the Griss inequality, a special case of Chebyshev-type inequalities. For a
discussion on these inequalities, see Barza and Perds@&epsack and Faric
[7], and Mitrinovic, P&aric and Fink P7].

Griss Inequality. Let F'(z) andG(x) be continuous ofu, b]. Supposer is
nonincreasing and is nondecreasing o, b]. Then

2.44)  (b—a) / bF(x)G(x)dxg / bF(x)dx- / bG(a:)da:.

Theorem 2.13.Consider IVP {.1) with A > 0, B > 0. Suppose(x) > 0is
continuous onA, co). If p(x) is nonincreasing oA, oo), then a lower bound
L for ¢ is the unique root of the equation

1

(2.45) ﬁAlfﬁ = (z — x0) " Ay (2) As(2)
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where

Ay(z) = / "I,

o

z ] Bt —x0)\"" A
A(x)= | — |1+ —— 2 — 1|t
o= [ | 25) 5|
t
(2.46) I(t) = (t — :170)_1/ p(u)du.
zo
Proof. As done in the proof of Theorerd.11, the substitutionv = w(x) = Sﬁ‘sﬂfai.i?é!‘ of ggrtgﬁ]
Y. (x) — B(x — x0) into (1.1) leads to the equivalent IVP Nonlinear Differential Equations
Y B w(m) + B(:)E _ IO) n . Steven G. From
(o) = (plo) - | (u(z)",
(2.47) w(rg) = A, w'(zg) =0, Title Page
So Contents
B(t — K
(2.48) w0 < (p) - |1+ 22Ny W
A < >
Integration of .48 from x, to x, using Gruss’ Inequality, gives
/ - B(t B SEo) . Go Back
(2.49) w'(x) < I(x) (/ {1 + T] dt) Jw(z)]", Close
zo
using the obvious inequality” w(t)"dt < (z — zo)(w(x))". Integration of Quit
(2.49 one more time yields, after division hy(x)", Page 36 of 78
1
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The result follows upon letting — (z*) and usingLs < z* < c.

Next, we shall numerically compare the new bounds given in this paper to
those of Eliason11] and Bobisud §]. The bounds of Bobisud] are more gen-
eral from the standpoint of being valid for the more general differential equation
y" = p(x)f(y). However,p(x) is not allowed to have a singularity in his The-
orems 2 and 3 (Theorenis3 and 1.5 above), whereas we shall, in Sectign
allow for the possibility of a singularity in(x) atz = z,. Thus, the new

bounds complement, and in some cases, improve on the bounds of the above

two authors as we shall see in subsequent examples. O

Bounds for Asymptote
Singularities of Certain

Next, we present a few numerical examples to compare the lower bounds Nenlinear Differential Equations

and upper bounds (if they exist) af

Example 2.2. Table 1 below gives a numerical comparison of various lower
and upper bounds faf for the IVP

y'(x) = (3" + e”)y(@)), ylzo) =A>0, y(w)=D5>0

wherey = (3 — ¢”)~! for various choices of;y. The actual value ot is
c = Ln3 ~ 1.0986123. Here,p(x) = 3e® + e*,n =3, e = —1.

This example illustrates many points which seem to hold in many other ex-
amples considered by the author, but not presented here. These are:

1) If p(x) is nondecreasing im andn > 2 the Theorem 3 lower bound of Bo-
bisud [5], L s = Lp .4 is the best bound, unlessg is near the asymptote,
in which case the new bounf;, is best. The Theorem 2 bound of Bobisud
[5], Lg s, is more generally applicable, but not as good/asin this case.
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Zo Ly Lo LB,2 LB,3 L Uy Us UE,1 UE,Q

—2.0 0.011 —-1.990 0.317 0.882 0.864 19.17 11.69 6.16 1.80
—1.0 0.419 —-0.992 0.373 0.954 0.887 6.15 4.25 3.38 1.63
0.0 0.819 0.333 0.573 1.034 0942 200 1.71 186 1.41
0.5 0989 0.890 0.769 1.067 0.996 1.32 1.26 1.41 1.28
1.0 1.094 1.093 1.038 1.087 1.078 1.10 1.17 1.13 1.13

Table 1:Lp 3 = Lp 4 Sincep(x) is nondecreasing.

2) No bound is the best in all cases (all choicestgf. This has been ob-
served in many other IVPs for a wide rangepdf) behavior and value
of n > 1. It does not seem possible to easily compare all bounds in this
paper analytically for this reason. Hence, we shall give enough numerical
examples to compare the various asymptote bounds and also to illustrate
the application of theorems obtained in this paper.

3) Among the upper bounds, the upper bound of Eliasoi, [Ur » and Uy
are usually the best. However, there were many IVPs for which the com-
puter algebra package MAPLE would not compitgx) given by (.7),
which is needed to computéz , mainly because’,(z) is often not of
closed form. The above example was chosen soithét) would be of
closed form. Note that the upper boubidis of closed form and is easily
hand computable. These two new upper bounds are also more accurate
thanUg o, if x, is not too far frome.
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4) An iterative version of the Runge-Kutta (4,4) (RK) numerical method was
applied to this problem to obtain a sequence of ‘pseudo’-lower and upper
bounds. The current lower bound valuelgfwas taken as the new value
of xy at each iteration. Thus, the RK method was successively applied on
intervals of the fornd = [L{*), L{*™], whereL®) = iteration K value

of the L, lower bound. ThusL{"* " is the L lower bound for the IVP

y// — (3636 + 62;1c)y37
K ~ K K K B ds for A tot
o) =),y ) =7 ), e o oo
Nonlinear Differential Equations

wherey(-) and?/(-) are the RK approximations afandy’, respectively.
The RK method was applied to eath interval, moving forward from
below to a final lower bound approximation #6. Table2 below gives

Steven G. From

the values ofZ.\*) and U\", the K iteration value (approximation of Title Page
Ul(L§K)). After 20 iterations, however, these values start deteriorating, Contents
K LgK) Ul(K) 4« 44
< >
1 0.818507 2.000000
2 1.068355 1.141719 Cio EEES
3 1.098107 1.09909 Close
4 1.098545 1.098545 Quit
5 1.098545 1.098545
6 1.098545 1.098545 Page 39 of 78
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because of truncation and round-off error. Also, the ‘pseudo’-upper bounds
are no longer real upper bounds fa& > 4. Here, the ‘final’ value of

L, = 1.098545 is in error by only6.73 x 10~°, using 5000 equally-spaced
values in intervall i at each iteration.

Example 2.3. Consider the IVPs below. The Runge-Kutta method was used to
approximater in IVPs (a) and (b), since the exact solution was unknowi.
not applicable or computable not considered). The results are given in Bable

@) y"(x) = (x+ 1)~ [y(=)P, y(0) = 2,4'(0) = 1 (c = 0.960). Singuiarites of Cerain
Nonli Diff ial E i
) y//(x) _ (x N 1)_1[y<x>]4, y(O) 1 y’(O) _ % (c ~ 1.33). onlinear Differential Equations

Steven G. From

©) y"(z) = [;(gflﬂ w(x)]", y(0) =1, y/(0)= 2. The exact solution is

y(zr) = (%)1/3, with ¢ = 1.00. Tide Page
. Contents
(d) y'(z) = [exp(z® — 2z +4)] - (y(2))*,  y(0) = 15, ¥(0) = g5, p(2) is
nonmonotonic (bathtub-shaped)is unknown. <44 44
(€) y'(x) = [2E55L] (y(@)?,  y(0) =5.828, /(0) = 6.005. The exact ¢ g
solution isy(z) = (3 — Vo + 8)~!, withc = 1, p(z) is decreasing. Go Back
cl
Again, we see mixed results, although the new lower bounds.z 4 do Os_e
well. The new upper boundg andU, sometimes do better than; ;, although Quit
they are not always computable, whereas the Eliason bound always is, although Page 40 of 78
it is harder to compute. Note thdi; is the best lower bound for IVP (c) and
that each of the new lower bounds,( L, L3, L 4) is best or nearly the best P pp—————
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IVP Ly Ly Lpy Lps Lpsa Lo Ly U Uy Ug:r Un

) 0.71 0.73 0.41 NA 0.78 0.30 0.93 2.00 1.61 1.14 NA
) 1.05 1.07 047 NA 1.01 097 1.10 1.75 1.54 1.96 NA
) 050 0.82 0.23 NA 0.60 0.88 0.65 2.59 243 3.57 1.67
) 050 NA 024 NA 098 NA 1.15 NA NA 394 NA
) 097 NA 036 NA 0.79 0.76 0.39 1.03 NC 1.332 1.008

Table 3: NA= not applicable, NG= not computable

in at least one of the IVPs above. This is the reason why we discuss many lower

bounds in this paper. Among the new lower bourddsand L, are the easiest to
compute. However,; can be found in more general situations. When it exists,
Uy is a better bound thab/ ; in most cases. Howevéry ; is more generally
applicable.

We shall next present some examples whgtrg is not nondecreasing in,
to illustrate Theoren2.8, part (b).

Example 2.4. Consider the following IVPs.
@  y'(2) =[(2?-222+131)e ") (y(2))*°,  y(0) =1, y'(0)=1L.

The exact solution ig(z) = =5 Here,c = 1,1 = 6/5, ¢ = 5, p()

is decreasing inc. We obtain:L; = 0.909, L = 0.206, Lp 4 = 0.264,
(Lps is not applicable),L, = 0.907, Ly = 0.482, Lg = 0.439. The
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Eliason upper bound i85 ; = 1.074. Sincen = g is close to 1, the new
bounds are better thahz ,. Note thatl/; andU, are not applicable here.
Also,Uy = 1.0047. SoUy does better thail/z ; here. Howeverl/y ; is
more generally applicable.

(b) The IVP of Thomas-Fermi type (see Hille9], [ 2(] for a discussion of
this equation)
Bounds for Asymptote

y'(x) =2 P (y(@)*?, y(1) =2, y(1)=1
Singularities of Certain

It is easily verified that conditionsH(1)—(H3) of Theorem2.8 hold. We Nonlinear Differential Equations
obtain (Lp 3 is not applicable)L; = 4.761, Lp, = 2.465, Lg = 2.274,
Ly = 4.445, L4 = 3.065, Ly = 4.763, U; = 9.000, Ug, = 6.763,
U, = 8.256, Uy is not applicable here. The exact valuecaé unknown.

Steven G. From

We have:4.763 < ¢ < 6.763 by the foregoing, however. The RK method Title Page
discussed earlier converged to~ 6.164. Extensive curve-fitting of Padé Contents
approximants done by the author found asymptote estimates ranging from
¢ ~ 5.964 to ¢ ~ 6.063. These findings are obviously consistent with all 4« >
the above bounds. Here, the new lower bouhdand L, are best and the < >
Eliason upper bound/y ; is best. (MAPLE would not computg; ».) o Back
O bac
The new lower bounds often considerably improve on the bounds of Bobisud Close
[5] when eitherp(z) is nonincreasing in: or n < 2. Many numerical examples _
considered besides the ones presented in this paper seem to confirm this obser- QU
vation. Forp(z) nondecreasing ang > 2, the Bobisud bound.z3 = Lp 4 Page 42 of 78
seems to be best. The new upper bounds improve on the Eliason upper bounds
especially in the cases with > 0 and B > 0. J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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We shall soon discuss the cage= 0 whenp(z) = (z — x¢)’q(z) has at
least one singularity, first at = z, (whené < 0). We shall obtain bounds
for ¢ for IVPs in which it is not possible to apply the previous lower bounds of
Bobisud [] or Eliason [11], in Section3. Let us consider a few examples with
nonmonotonig(z).

Example 2.5. Consider the IVP

Bounds for Asymptote

3:| [y(x)}g, y(0) =1, y'(0)=0. Singularities of Certain

Nonlinear Differential Equations

/" 4
yile) = {(sz —x+1)

. . 222 —x41 . . Steven G. From
The exact solution ig(z) = ===, with ¢ = 1.00. Herep(z) is not mono-

tonic, is unimodal with maximum valgg0.25) ~ 5.971. Since the methods of
Eliason [11] require B = 0, it should be the case that the Eliason bounds are Title Page
best here. This is in fact the case for upper bounds, but not lower. The following Contents
bounds were obtained:

Ly = 0.579, Ly = 0.598, Lo = 0.438, L is not applicable L, = 0.904, « dd
L3 =0.776, Lp, = 0.776. | >
Only the Eliason upper bounds are applicablé; ; = 1.488. We see that the

Go Back
new modified Bobisud bourd; , = 0.904 is the best lower bound here. 0 =8
Close
Example 2.6. Consider the IVP Quit

Page 43 of 78
— x4+ 622 — A+ 7

y”(x) = 4(22 4+ 1)
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The exact solution ig = /2% with ¢ = 1, andp(x) is unimodal here with

maximump(—0.0840) ~ 1.7928. Only the new bound,; is applicable here
sinceA = y/(—1) < 0, and both the bounds of Bobisud] [and Eliason [11]
require B > 0. We obtain(e = —2.00)

Ly = —0.299.

L, can generally be used (under conditions of Theoke@if y'(z¢) = B < 0,
providedy(x) remains positive. In this case, we modijfyz) of Theoren®.8to
get

(o) = min (A |Bl. Vi) )
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Singularities of Certain
Nonlinear Differential Equations

Steven G. From

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 44 of 78

J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:sfrom@unomaha.edu
http://jipam.vu.edu.au/

In this section, we present methods for finding bounds:fiorthe cased = 0
andB > 0. Not only do we present bounds for the continuous coeffigignt))
case, we also present bounds for the case of a singularity=at, of a certain
form. As remarked by Eliason.[, p. 483], ‘bounds for the casé = 0 are

certainly of interest’. In this section, we will in fact obtain bounds for the case

A = 0 for a more general IVP which allows for a singularityzat x.
We consider the IVP

3.1  ¢'(z)=p@)y@)]", ylw)=A=0,

where

y'(x9) = B > 0,

“g(x), () >0,

p(x) = (x — o)
with vertical asymptote at = c.
If & =0, then we may use the new bouhg , given earlier.
When#d < 0 andd + n > 1, then Theoren8.1 below demonstrates that
a modification (after a transformation of,(z)) of the method of Eliason![/]

provides a lower bound farwhenA = 0.

Theorem 3.1. Supposé@ +7n > 1in IVP (3.1). Suppose(z) > 0 on |z, o0) is
continuously differentiable. Consider the auxiliary IVP:
(3.2) Z"(z) = [(x — 20)""" 'qu(2)] - [Z(2)]", Z(mo) =B, Z'(x)=0.

Then any lower bound for a vertical asymptote &£ is also a lower bound
for c.

Bounds for Asymptote
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Proof. Letu(x) = Yul@) Then IVP @.12 with f(y) = 3" becomes

(3.3) (z — zo)u (z) + 20/ (z) = [(z — 20)%q(2) (z — z0) u(z)"],
u(zg) = B, u'(wp) =0,
where we have applied L'Hospital's Rule to obtain
: (@ = m) Y (x) — Yi(2)
pr— 1 u
u (5170) :cLH:DIO (.’L‘ _ mo)z
= lim Y, (=) — lim —Y“(x>
T—T0 2 T—T0 2(1’ — SL’(])
Yl Vi)
2 T—x0

A solution to 3.3) must be bounded above by a solution to
(3.4) Z"(x) = [(3: — xg)0+’7_1qu(3:)] NZ(@)]", Z(xg) =B, Z'(x9)=0

upon application of comparison techniques to IVBs)(and .4), and using
u'(z) >0, q(z) < qux).

Let L; denote the lower bounfl ; applied to IVP 8.4) instead.

Next, we offer a simple lower bound in the case n > —1, which is more
generally applicable thahg 4 or Ls. O

Theorem 3.2. Consider IVP 8.1) with A = 0, B > 0. Suppose(z) > 0 is
continuous orjxg, co). Supposé + n > —1. Then a lower bound for ¢ is
the unique root of the equation

T Blfn
(3.5) [ = - .
o n— 1

=0.
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Proof. IVP (3.1) will be transformed to obtain an auxiliary IVP for comparison
purposes.

(3.6) Y (2) = (z = 20)"qu(@)[Yu(2)]"

- (o=t | LT

r — g
< (2 — 20)""qu()[Yy(2)]"-
LettingV = Y/, we obtain the auxiliary IVP

Bounds for Asymptote

(3.7) VJ(:B) = [(:B — 330)9+77qu(:17)] ~(V(z)", V(xg)=B. Singularities of Certain

Nonlinear Differential Equations
Clearly, the location of the vertical asymptote 8f{) will be to the right of any
vertical asymptote of3.6), by comparison lemmas given earlier. Integration of
(3.7) produces

Steven G. From

00 x ; Title Page
/ V"dV:/ (t — x0)" g (t)dt
B zo Contents
o B! 44 44
—n €
:/&—mW%ﬁW-
n—1 " Ju < »
The proof is complete. O]
Go Back
For our final method, we present a method which uses a variation of the Close
method used to derivg; in Section2. SinceA = 0, however, we cannot use _
the u(x) = [Y,(x)]° transformation as done there. Instead, we consider the Quit
operator(xz — z¢) 'Y, i.e., Page 47 of 78
Yo () ‘
(38) ’U)(LU) = ( ) . J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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First, we need some lemmas.

Lemma 3.3. Letu(z) = ’;i—fg
differentiable oz, o). Then

"
lim u(z)u(x) _ 1+
z—(x*)~ ['U/(I‘)P 2
Proof. Applying L'Hospital's Rule, we obtairty,, = Y,(x),Y. = Y."(z))
, u(z)u”(z) . (x — 20)?Y,Y) — 2(x — x)Y,Y, + 2Y?
) W@ e | (@ — 20)2(Y))2 — 2(z — 30)Y, Y] + V2
"
e—@)-  [Y!(2)] 2
upon application of Lemmaa 3and2.4with f(y) = y".

[
Lemma 3.4. Supposey(z) > 0 is continuously differentiable ojx(, o). Let
T(x) = (x — o) [u(x)] "’

1—
u'(v), e = 1. Then

(2" = 20)"F /g (@)

limsup T'(x) < 0 du =M.
z—(z*)~ 1—e€

Proof.

/
lim sup ——
o—(z*)~ u

"

. U
< lim sup

z—(z%)— (1 —e)u'ue

) u//
< lim sup

- lim p
a—(z*)~ (1 . E)U_e /% z—(z*)~ U

xog < x < z*. Suppose(z) > 0 is continuously
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By Lemma3.3, the latter limit equals 1. So

\/ (2 — 20)"1qu () - u()”

(x — x0)(1 — €)u(x)l=2’

limsup 7'(z) < lim sup

x—(z*)~ x—(z*)~

usingu” < (z — xo)"'Y”, asz — (z*)~. (In fact, the above argument shows
that all ‘lim sup’s above can be replaced by usual limits.) Thus

]

Lemma 3.5. Let K'(z) be continuously differentiable and strictly at one sign
on [zp,00). Supposéimsup |K(z)| < oo. Then|K(z)| < Ky on [z, x*),

z—(z*)~

WhereKO = maX(Kl,KQ,Kg), K, = |K(l’0)
, Z = {t € [xo,2%) : K'(t) = 0}.

, Ko = sup |K(t)| < oo, K3 =

teZy,

lim sup |K (z)

z—(z*)~

Proof. Let A, = [zg,2* — %], B, = [z* — +,z*),n = 1,2,3,... Clearly, since

A,, is compact, "
. 1
sup |K(z)| < max (Kl,Kg, K (:v - —)D
n

xeAn

and
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Let us showsup |K(x)| < K3 + ¢ for arbitrarily smalld > 0. By definition of
x€B,
limit superior,3 integerN such that

sup |K(x)| < K3+6.

z€BN
Thus,
op |0 < max (sup KL, sup [K(0)])
z€[xzo,x*) €A, xEBp
< max(K;, Ky, K3+ 0),
implying that

sup K(x) < Ko+9.

T€[zo,T*)

Since) > 0 is arbitrary, the result follows. O

Armed with the knowledge of the above lemmas, we are now ready to prove
the following theorem.

Theorem 3.6. Consider IVP 8.1). Suppose(x) > 0 is continuously differen-
tiable on[zq, c0). Let
qu(m)> ,

wheree = 1;—’7 Suppose that eithér-n > 1 or 0+n > 0 andw(x) = (Y—(‘E)y

¢ (x — x0)9+2_1
1—¢

(3.9) Gr(z) =min (%BEJrnlq(:Eo),

T—x0
has a strictly monotonic derivative’(z). Then a lower bound.; for ¢ is the
unique root (value of) satisfying the equation

(3.10) (xg — x)Gr(x) = B°.
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Proof. It is useful to recall the method of proof of Theorén® earlier. We use
a device and method here that is similar, except we use a different operator.
w be the operator given by

w=fe) = (242)

r — 2o

whereu(z) = 242 2 £ 2., andu(z,) = B. Then:

T—x0

w/ — eue_lu’,

w// — 6ue—lu// 4 (u/)2€(€ o 1)ue—2 ,
which equals zero at a value of> z (if any) satisfying

u(z)u"(x)

(3.11) T

u'(z) =
Now the Mean Value Theorem implies

w(z) = w(xg) + w'(d(x)) - (x —x9), x9<d(x) <z, x0<T<2".
Proceeding as in the proof of TheorehB, a direct computation shows that

w'(x), for such values of;, satisfies:

(3.12) Ju'(z)| =

Y

(o) \/u(w) (¢ = 30)qu(x)Ya (x)1 = 20/(x))

1— T — Xg

@)
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assuming the right-hand side radical exists for the moment. Cledry > 0.
From 3.12, we have

r — I

lw'(z)] < —¢ u(x)e—1\/u($) (= 20)?qu(x) - (x — 0)Mu(x))

e - 20) T Vau().

(3.13) <

If the square root in3.12) does not exist, then we can still boupd(z)|. In
either caselw’(z)| will be either maximized at = z,, at a value of: satisfying
(3.11) or asz — (z*)~ (where we shall apply the lemmas given above). Once
we bound|w'(x)| on [zy, x*), this will allow us to get a lower bound far*,
hence forc. From all the foregoing, we have, fop < =z < x*:

(z — o) sup [w'(t)]

< o (o= ) o' (o), < = )5V
<1_i> (x — xo)M*) ;

upon application of Lemma.5, where

M* = lim (u(x)) "/ (z).

z—(z*)~

By direct computation|w’(zg)| < [§B“t"'q(x)|, with equality holding if
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0 +n = 0. By Lemma3.4

—€ 6+n+1

1_ 6(1’* o ;L‘O) 2 qu(m*) _ (—6)(1‘* o wo)M* ‘

Thus
(3.14) (z* —z0) sup |w'(¢t)]

ro<lt<z*
€

< max ((I* — xp) ( 5

) Be—&—n—lq(xo)7

—€ * O+n+1
(" — x0) 3 qu(x*)> )

1—e€
Butw(z¢) = B*. So
(3.15) w(x) = B+ w'(d(x))(x — x0) .
Sincem_l)i(g’})i w(x) =0, lettingz — (2*)~ in (3.15, we obtain
* —B°
T wde)

Since|w'(z)| < —Gr(x), z > xo, we have(z* — zo)(—G7(z*)) > B. But
(L7 — x0)(—G7(L7)) = B¢. Since(x — xy)(—G7(z)) is increasing inr, we
havelL; < z*. Sincex* < ¢, thenL,; < ¢. This completes the proof. O

Remark 15. Whené = 0 (p(z) is continuous), we may also consider the Bo-
bisud bound. s 3 whenp(z) is nondecreasing. In this caskg 3 = L 4. When
p(x) is not nondecreasing, we shall use the new modified béynadsinceL 5

is not applicable in this case.
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Remark 16. The author has also obtained bounds in the casg) = A < 0
and B > 0 for the equationy” = (v — x)%q(x)|y|" sgn(y) using a two stage
procedure. These results will be discussed in a forthcoming paper.

Next, we present some numerical examples to compare the baundd.;,
L¢ and L, in the cased = 0, B > 0. First, we consider an example where
6 = 0. In this case, all four bounds exist.

Example 3.1. Consider the IVP

Bounds for Asymptote
Singularities of Certain

- 2
20 — 30z + 12z ] . (y(x))i)" y(()) =0, y'(O) =1. Nonlinear Differential Equations

V(o) = [ (@ —z+ 1)

Steven G. From

Here,p(x) is unimodal on0, co) with

Title Page
sup v/p(z) = /p(0.526) ~ 45.19. ?
z€[0,1] Contents
Hence, 44 44
pule) = { p(z), 0<z<0.526 < >
45.19, = > 0.526 Go Back
The exact solution ig(z) = =242 withc = 1. Here,§ = 0,7 = 3, ¢ = —1, Close
B = 1. We obtain the lower bounds: Quit
ul
Lps=0815 Ls=0593, Lg=0.614, andL; = 0.462. Page 54 of 78

Here, the modified bounfl 4 is the best. Note that the original bounds; >
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and L 3 of Bobisud p] are not applicable here, nor are the bounds of Eliason
[11]. However, in this paper, two of the four bounds proposed in this paper

are modified versions of these ‘authors’ bourids; 4, L5) and two are derived
totally from scratch ¢ and L~).

Example 3.2. Consider the IVP

(12 —4x? + 23
y”(l’) =7 ° < 62x

Here,0 = —3,n = 3, ¢(x) = 2=42+2" i decreasing. We obtairs = 0.204,
L; = 0.667. The exact solution ig(z) = £ with ¢ = 2. Note thatL 4 is not
applicable here. Neither are the bounds of Eliasan][and Bobisud [].

) (@), y(0)=0, ¢(0)=-=.

Example 3.3. Consider the IVP

y'(x) =42 [y(z)]®, y(0)=0, ¢ (0)=

The exact solution ig(z) = 5% with ¢ = 2. We obtain: Ly = 0.500 and
L, = 2.000. We see that the bourd is exact here. It can be shown that the
(and L;) bounds are sharp bounds, in general.

Example 3.4. Consider the IVP
y'(x) = 272((6 — 2¢” + we” + 3x)e”)[y(x)]*, y(0) =0, ¥(0)=

The exact solution ig(z) = 3= with ¢ = In3 ~ 1.0987. The only lower
bounds applicable are the new bountds= 0.375 and L, = 0.712.
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Next, we apply the methods of this section to the Thomas-Fermi equation
with A =0, 2o = 0.

(3.16) y'(x) = a7 Ply@)P?, ylze) =0, y(x)=B>0.

The bounds of Bobisuds] are not applicable here, sineag = 0. Neither are
the bounds given in Equations (5.2)—(5.3) of Eliasoil [ Incidentally, there is
a small error in (5.2). In his paper, is denoted by:. The termly(a)]'/? should
be replaced byy(a)]'/* throughout in (5.2). Also,X = 0’ should be replaced

. , . - Bounds for Asymptote
by ‘A < 0’ right before Equation (5.10). Singularities of Certain

Nonlinear Differential Equations

Example 3.5. Consider the Thomas-Fermi equation
Steven G. From

y'(@) = Py, y(0)=0, y(0)=B>0.

Title Page
We obtain , Content
s 5.064 2 ontents
L5:Z<2)%—a 6= ——7 -
Bl/4 ~ B4 B1/4 <4 >
Clearly L5 is a better lower bound thans. However, P >
L, = B\t Go Back
max <%Bl/4, ‘{—g) Close
and from Table4 below, we see thak, is only much inferior toLs for B > Quit
100.0. For B < 10.24, Ls = 1.13L;. For B > 10.24, 2—7 > 1.13. Page 56 of 78
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B

Ly

0.001

0.01

0.10 0.33 0.50 1.00 2.00

28.48 16.01 9.01  6.66 6.02 5.06 4.26
25.15 14.14 795 5.89 5.32 4.47 3.76

3.00
3.85
3.40

5.00
3.39
2.99

10.00 100.00 1000.0  10° 108
285 1.60 0901 0.285 0.0506
251 080 0.253 0.0253 0.0008

Table 4: L5 and L values.
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In this section, we turn our attention to some other families of differential equa-
tions. First, consider the IVP:

(4.2) y'(x) =p(2) f(y(x)), ylwe) =A, ¢(w9)=DB>0

or justy” = p(z) f(y).
First, let us consider the cag¢y) = ¥ for somes3 > 0. Consider the IVP

Bounds for Asymptote

. Singularities of Certai
(4-2) y”(x) = p(x)eﬁy( ), y(xo) = A, Z/(SUO) =B>0. Nonlinggrulggé?esn?ial E;ﬁ:arlions
First, we state the following lemma. The proofs are omitted since they are steven G. From
similar to proofs of earlier lemmas.
Lemma 4.1. Consider IVP {.2). Letp(x) be continuously differentiable on Title Page
[z, 00). LetY,(z) andYy(x) be given by%.12) and .13, resp., withd = 0 Contents
(p(x) = q(x)). Letaw = —(3/2. Then <« >
€)) li(m)i —ae®u®) .y = /—ay/pu(z¥). < >
Go Back
(b) lim —ae*r @ = —a\/pr(x
T (Ts) " Close
(c) Letw, (z) = e*¥«(*), Then h(m |wi (z)| = vV—ar/pu(z Quit
Page 58 of 78
(d) Letwy(x) = e*¥2(®), Then hm wy(w)| = V—ay/pr(
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Theorem 4.2. Consider IVP ¢.2). Leta = =2 Let

gs(x) = min (an‘AB, - \/—_a\/m>
hg(x) = max (ozeaAB, - \/—_oz\/pL—(x)> :

Then

a) a lower boundLg for ¢ is the unique root of Bounds for Asymptote

" Singularities of Certain
o ) ' ! )
(4.3) (1;0 - ;p)g8 (I) = %4 Nonlinear Differential Equations

Steven G. From

b) Suppose that conditions (H4)—(H5) below hold. Then an upper-béund
for c is the largest root of

Title Page
(4.4 (w0 = )hs(@) = e sonens
o 44 44
lim inf [(:c — o) - pL(m)] > . 4 }
T—00 \/—_Oz Go Back
or oA Close
hin_)Soljp [(x — Tp) pL(x)} < J—a Quit
(H5) Page 59 of 78

sup (zo — x)hs(z) > 4

T>T0 J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006
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Proof. The proof is similar to the proof of Theoreth8, so we merely sketch
key steps and any new ideas needed. For part (a)(18t= u = ¢*¥«(*), Then

u'(z) = ae® Y + (Y))2a%e™ = 0
when

pu(x)efYu
_a :

(4.5) Y/ =

u

We can obtain the bound, for any valuexo$atisfying @.5),
(4.6) w'(@)] < V=acl T /(@) = V=ay/pu(e).

Lemma4.1, parts (a) and (c) show that.@) holds ast — (z*)~ also. Now
apply the Mean Value Theorem as done in the proof of The&&m

The proof of part (b) is similar to the proof of part (b) of Theor@rs. We
do not need a third condition “(H6)” to parallel conditiod¥) of Theorem2.8,
sinceZ = oo in Lemmaz2.6, so that the condition

o
Z > sup (M> +1
>z \ PL(T)

is automatically satisfied, as can be seen by considering

Y//
lim —L(x) =—a= é

a—(a)~ (Y[ (2))? 2’
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It is noteworthy to mention that the operator= ¢*¥+(*) was also consid-
ered for the generalized Emden-Fowler IVIP1j. However, the bounds by this
operator were found inferior to those given earlier for that IVP.

Next, we consider a few numerical examples to comgdaréo some other
lower bounds discussed earlier. No upper bounds have previously been given in
the literature for IVP 2.2) when A is allowed to be nonpositive. However, we
also present/s when it can be shown to be a valid a priori upper bound in some
examples below.

Bounds for Asymptote
Singularities of Certain
Nonlinear Differential Equations

Example 4.1. Consider the IVP

y'(x) = e’ y(0)=2, y(0)=1.

We obtain the Bobisud bound bf; 5 = 0.705, which is exact sincg(z) = 1 is

Steven G. From

constant. Theorem.2 givesLg = 0.520 andUg = 1.414, both of which are of Title Page
closed form and computed by hand. Cleafly,< ¢ = L3 = 0.705 < Us. Contents
Example 4.2. Consider the IVP <« b
10z — 5
() = {—] O y(m) = A, y(w) = B, ! >
(x + 2) Go Back
where the exact solution is Close
2 . i
y(z) = Ln <§ i ) with ¢ =3.00. Quit
— X

Only the new lower boundy is applicable forA < 0. Only the new bound’s
is available as an upper bound. We obtain the following bounds (*NAot

Page 61 of 78
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applicable) for variouse:

T 0.00 1.50 2.00 250 2.75
A —0.405 0.847 1.386 2.197 2.944
B 0.833 0.952 1.250 2.222 2.988
Lps NA 1901 2295 2.662 2.836
Ly, NA 2808 2943 2984 2.996
Lg 1.200 2.550 2.800 2.950 2.988
Us NA 4217 3.337 3.063 3.114

The new bound4 ;4 and Ls perform best. OnlyLs exists forA < 0. For
xo > 1.50, Lp4 < B < Ug holds. (¢ = 3)

Note thatLs is easier to compute than eithér 3 or Lp 4, and is a better
bound thanL ;.

Example 4.3. Consider the IVP

y'(x) = (@® + 1)e,  y(0) = L y'(0) = 1_10 .

The exact solution is unknown to the author. We obfain = Lz, = 0.689
and Lg = 0.668. Here the Bobisud bound is better. However, didyis avail-
able as an upper bound wittig = 8.165. So we may conclude689 < ¢ <
8.165 holds.

Next, we consider the generalized Emden-Fowler IVP below wigitesent:

(4.7) y'(x) = a(@)y'(z) + p(z) - [y(z)]”
y(rg) = A, o' (xo)=B, A>0, B>0, n>1.
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Supposey(z) has a vertical asymptote at= c. Note that 4.7) generalizes the

IVP of generalized Emden-Fowler type (wheter) = 0 andy’(x) is missing)
considered earlier. Hara, et al.1], [17]) discuss noncontinuability of such
equations. The only type of noncontinuability we consider here is the case
wherey(z) has a vertical asymptote at= c. First, we need the following
lemmas which we state without proofs, the proofs being similar to proofs of
previous lemmas, part (a) following from L'Hospital’s Rule, and (b) following
from (a).

Lemma 4.3. Consider IVP £.7). Leta(z), b(x) be continuously differentiable
on [xg, 00), Witha(z) > 0, b(z) > 0 on [z, 00),

ay(z) = sup a(t), pu(z)= sup p(t).

ro<t<z ro<t<z
LetY, (z) be the solution to the auxiliary IVP
Vi (@) = au(@)Y,(2) + pu(2) - [Yu(2))",

Yu<l’0) =A, YJ(I()) =B, A>0, B>0.

Supposé&’, (=) has a vertical asymptote at= z*. If a,, andb, are continuously
differentiable near:*, then

a) lim 22 —qand

r—(x*)” Tu

L Yu@VYl(2) _ 14n
b) z}({}}), Yi@PF T 2
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Theorem 4.4.Consider IVP 4.7). Under the conditions of the previous lemma,

a lower boundL, for c is the unique root of

(4.8) (ro — x)g9() = B,

where

(4.9) go(x) = min(eAE_lB, R(z)),

e=1"and

(4.20) R(r) = 57— au(0) A+ 5@ @A+ 4T = puf).

Sketch of proofThe proof is very similar to the proofs of Theoreth§ and3.6
given earlier. Letu(z) = u = [Y,(z)]%, as done earlier. Theut'(z) = 0 when

(4.11) Y(z) = \/ Yu(2) - (au(2)Yy(@) + pu(@)(Yu(2))"

“ 1—c¢

At any suchz, we have
(1= &) (¥, (2))? = au(2)Yu(2)Y;(2) = pulz) - Yu(2))" = 0.

Solving forY,/(z), we obtain

z) + /(a, ()

2+ 4(1 = e)pu(a) (Ya(2))H!

Yile) = 2(1 — o) ’

u
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the plus sign being retained sinEg(z) > 0.
For values ofr satisfying ¢.11), we have

[/ ()]

< lel(Ya(2)) az;((fl)}:ué)x) n \/(au(l’>)2Yu<J])22_’(_14£16; e)pu(x)Yu(a;)nH]

L @2 @) + 40 = Opule)

= ay ()Y, (x) +

2(1 — 6) 2v/1 — € Bounds for Asymptote
Singularities of Certain
using(Y,(z))?*"7~1 = 1. So, for values of: satisfying ¢.11), if any, we have NErEen Biife e 23vemns

Steven G. From

(@) < oD, ()4 + — (@) A T A1 = Opa(a).

2(1—e¢) 21 —¢ :
Title Page
The rest of the proof proceeds as in the last part of the proof of TheBrgm PN
using Lemmal.3instead, and is left to the reader.

A theorem could be presented for upper bounds as well, but we omit it <« 44
here. O < S
Example 4.4. Consider the IVP Go Back

. 17 Close
y'(w) = Be )y () +p(@)y(@)]*, y(2) =2, v(2) =
Quit

where Page 65 of 78

(1522 + 110z + 135) + (1823 + 4822 — 174x — 396)e ™"

p(a:): > J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2
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which is unimodal with maximup(2.2) ~ 2.84. This example was constructed
with the exact solution

v+ 2

y(x) = G2 andc = 3.00.

None of the bounds of Eliason1] or Bobisud [5] are applicable here. Among
the new bounds, onl¥, is applicable. We obtaid, = 2.576. Clearly, Ly =
2.576 < ¢ = 3.000 holds.

Finally, we indicate how we might obtain bounds fofor other types of

Bounds for Asymptote
Singularities of Certain

differential equations not previously considered. Theorems could be presented Neninear Differential Equations
here; however, to save space, we merely indicate general strategies and opera- Steven G. From

tors likely to be useful for obtaining bounds. We do this via several examples
to conclude this paper. We also indicate possibilities for further research. The

scope of the applicability of the methods given in this paper appear large indeed.

Example 4.5. Consider the IVP

3y® +y*
4.12 "x) = ——- 0)=1 "0)=1.
(4.12) y'(x) 1+$2,y() , ¥(0)
The exact value of is unknown. We obtaidz, = 0.323, Lg, = 0.712.
The calculation of these two bounds requires numerical integration. We now

demonstrate a slight variation of theg bound which will enable a closed form
hand computation of a lower bound for Clearly, we may rewrite4.12) as:

(v =y(x)) \
vo=[(*5) (=)
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We may treat our ‘coefficient function’ as the expression in brackets which is

clearly bounded above by, (x)'= 4 and bounded below by, (z)'= 1. For
the variation ofL; (similarly for U;), consider the auxiliary (majorant) IVP:

Y'(z) =4[Y(z)]*, Y(0)=1, Y'(0)=1,

we obtainL, = ,/118 = 0.527, which is better tharlz » and not much worse
than L 4. We also obtair/; = 1.054. So we may conclude that712 < ¢ <

1.054. This example demonstrates that we may easily obtain lower bounds for

the IVP
k
y'(z) = sz‘(l“)gz‘(y(x)% y(zo) = A>0, o (z0) =B >0,

wheregy;(-) are given positive functions, ang(z) are given ‘coefficients’.
Example 4.6. Consider the IVP

y”(l’) = 6$y7 y(O) = 57

This is not of any of the forms considered earlier. Only the new lower baynd
below will handle this IVP. We use the operator

u=e" 5 <0,

Thenu”(z) = 0 when

vy"(z) + 2y (z)

(4.13) 2y (v) + y(x) = \/ o
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with a bound on«/(z)|, for anyzx satisfying ¢.13, of

J
[u'(x)] < 9] 2\ /ey + 2y
9] s \/ 2 101 suy | 2
< e’y [ rety 4+ 2xe® + - = e[ 3xey + -
T V=6 3 —0 3
1 2
[/ ()] < V/—delPt2)m <\/3x + gexy> .

Letd = —1. Then
1 2
' (z)| < \/;< 3r + §)

for all x satisfying ¢.13). As done in the proof of Theorefr?, let

g1(z) = min (—e‘émoA, _\/_ (1/3x + 3>> (x9g=0).

ThenL,, a lower bound for, satisfiegzy — x)g,(z) = 1 or

V2 2 0
(E(3)

which givesr = L; ~ 0.805.

Iy
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Example 4.7. Consider the IVP
, 14 2y(x
P (155),

1+ y(z)?

y'(z) y(0) =0, ¢(0)=1.

The exact solution ig(x) = —tan(In(1 — x)), withc = 1 — ¢ ™2 =~ 0.7921

Only the methods of this paper will provide a lower bound for the asymptote
singularity location. Since/(0) = 0, we use the operaton(z) = [v/(x)]f,

e < 0. Note that no comparison results are needed here. Then by direct but
messy computation,’(z) = 0 when

@14) () = | L
where W/ (@)l + 6y(z) + 6y(2)?)
3) :y’x3+yx—|—yx2
) T+ 3@
L’'Hospital’'s Rule establishes
O I R T
AR T@E 25 T

Also, at anyr > 0 satisfying ¢.14), we have

€]
1—c¢

' (z)] <

et |4+ 6y(x) + 6y(z)?
(/' ()" \/ (1+y(z)?)? :
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Lettinge = —1 and using the fact that the maximum value of the radicand

expression occurs when = y(z) ~ 0.4299, we obtain, at any: satisfying

(4.19),
u/(z)| < max (1, \/2(2.34026)) = 1.9108.

A lower boundL for c is therefore given by
L =(1.9108)"" = 0.5233.

Clearly, L < ¢ =0.7921 holds.

Example 4.8. We now consider an example whélien y(x) = —oo with A =
y(xp) > 0. Consider the IVP

" m , m
V(@) = =2y(@) —20y@))’, y (=) =1 v (-F) = -2
The exact solution ig = —tanx with ¢ = § ~ 1.571. The transformation
Y (z) = —y(x) produces the IVP
Y'(@) =2V (0) + 2Y (@), ¥ (-7) = -1 V' (-7) =2.

We may use the same operatdir) = '@, ¢ < 0, used in Theorer.2
earlier. Proceeding as in the proof of Theoreh? (we omit details), a lower
bound forc is the unique root of

(4.15) (x - %) g(x)=e"°,
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where

g(z) = max (—2e¢™, vV—e M(e)) ,
M (e) = sup |2t 4 263"/ %t .
t>—1
Unlike earlier, there is no clearcut choice fer< 0. Let L(¢) denote the lower

bound which is the root of4(15, givene < 0. We thus determined, < 0
satisfying

L(ey) = sup L(e) .

<0 Bounds for Asymptote
. . Singularities of Certain
This founde, = —0.353 with a best lower bound af(ey) = 0.0562. Clearly, Nonlinear Differential Equations

L(ey) < ¢ holds. However, it is probable that other operators can be found
which will produce better lower bounds. The presence of an inflection point in
the solution may contribute to the poor bounds obtained here. Tablgow

Steven G. From

gives the values df(¢) for various values of < 0, includinge = ¢, to see the Title Page
dependence of the lower bouide) on the ‘operator parameter. In a future Contents
¢ —200 —175 —150 —125 —1.00 « dd
L(e) —0.535 —0.500 —0.452 —0.385 —0.286 < >
e —075 -050 -040 -0.36 —0.353 Go Back
L(e) —0.208 —0.085 +0.005 +0.048 +0.056 Close
e —-035 -034 -030 -0.20 —-0.10 Quit
L(e) +0.048 +0.018 —0.101 —0.367 —0.595 Page 71 of 78
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paper, we shall discuss more general formulas for lower boundsin€luding
the cased > 0, lim y(z) = —oo in the Emden-Fowler case.

Many more examples of IVPs which are handled only by the methods of this
paper could be given. Some will be given in forthcoming papers of third and
higher order IVPs and BVPs.
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In this paper, we have presented several methods, including a bounded operator
approach, for finding bounds for the vertical asymptotef a solution to a
given IVP. In some instances, the new bounds are the only bounds available. In

other cases, new bounds improve on bounds of previous authors in some cases.

Although the new bounds are sometimes for a less general IVP than considered
by Bobisud [], they handle some cases where the coefficient fungtioi has

a left endpoint singularity and some cases whgre) = A < 0 (the case

A < 0to be discussed in a forthcoming paper in the generalized Emden-Fowler

case).

(1) Can an upper bound far be found in the casel = 0 andéf < 0 in
Theorems3.1, 3.2and3.6?

(2) The Runge-Kutta (4,4) method does not seem too efficient when numeri-
cally approximating the solution to an IVP near a vertical asymptote. Can
a modification of Runge-Kutta (4,4) (or other RK) be used to improve ef-
ficiency in this case?

(3) Can the interval analysis methods given in Moci€] e used in conjunc-
tion with lower bounds for: to get improved bounds far(both upper and
lower)?

Other operators of use but not discussed in this paper aréy+a(x—x¢))¢,
u=(y+by' +c) u= e, u=(y)" (y)* andu = [y()]v, if y(z) > 1.
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In each case, we try to bound (x)| at a value ofc whereu”(z) = 0, if any, and
examine what happens as— z*, x, or c. Lower bounds can almost always be
found by a judicious choice of the operator ‘parameters’, whicheaégd;, o
above. The parameters are chosen to eliminate, as much as possible, having to
know they(x) value at a certair, so that we may (a priori) bound’(z)|, at
thoser values where”(z) = 0 and atr = zy, =*, x., possibly.

The methods in this paper can be extended to handle:

(1) 3" and higher order generalized Emden-Fowler IVPs, (details to come in Bounds for Asymptote
a forthcomlng paper) Singularities of Certain
Nonlinear Differential Equations
(2) problems with derivative blow-up and other IVPs which have noncontinu- Steven G. From
able solutions
(3) boundary value problems Title Page
(4) IVPs with horizontal asymptotes present in their solutions. Contents
However, there are some extra complications in the above problems. The « dd
author will report on further research on these topics in the future. < >
Go Back
Close
Quit
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