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Abstract

In this paper, bounds are obtained for the location of vertical asymptotes and
other types of singularities of solutions to certain nonlinear differential equa-
tions. We consider several different families of nonlinear differential equations,
but the main focus is on the second order initial value problem (IVP) of gener-
alized superlinear Emden-Fowler type

y′′(x) = p(x)[y(x)]η, y(x0) = A, y′(x0) = B, η > 1

A general method using bounded operators is developed to obtain some of the
bounds derived in this paper. This method allows one to obtain lower bounds
for the cases A = 0 and A < 0 under certain conditions, which are not han-
dled by previously discussed bounds in the literature. We also make several
small corrections to equations appearing in previous works. Enough numerical
examples are given to compare the bounds, since no bound is uniformly better
than the other bounds. In these comparisons, we also consider the bounds
of Eliason [11] and Bobisud [5]. In addition, we indicate how to improve and
generalize the bounds of these two authors.

2000 Mathematics Subject Classification: 26D15.
Key words: Bounded operator, Comparison methods, Generalized Emden-Fowler

equations, Nonlinear differential equations, Vertical asymptote.
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1. Introduction
Many papers have been written on oscillatory and/or nonoscillatory behavior of
differential equations. The literature for this topic will not be cited here since it
is too vast. However, most nonlinear differential equations do not have closed
form solutions, so a numerical method must often be used, such as Runge-Kutta
type methods. If a singularity is present in the solution, then such methods may
give meaningless results. Hence, it would be useful to have easily computable
(preferably closed form) bounds for the location of such singularities, since the
interval of existence of the solutions must contain the interval on which the nu-
merical method is applied. In this way, we can ‘move forward’ to the singularity
starting at the initial valuex0. Hence, lower bounds for singularities to the right
of x0 are of especially important interest. It is the aim of this paper to supply
a number of easily computable lower bounds. In some cases, we shall also ob-
tain some upper bounds for the singularity. We focus on asymptote (vertical)
singularities, but the methods used can work for other types of singularities as
well.

In this paper, we shall present bounds for the location of certain types of
singularities of certain nonlinear differential equations of order two or higher.
We shall focus on those differential equations which have vertical asymptotes.

The common theme of this paper is maximization or minimization of cer-
tain operators combined with comparison techniques, in addition to standard
integration techniques.

Definition 1.1. A solutiony = y(x) has a vertical asymptote atx = c if c > x0,

lim
x→c−

y(x) = +∞, and lim
x→c−

y′(x) = +∞ .
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Throughout this paper, we assume the existence of a singularity to the right
of x0. We shall be interested in the location of the first vertical asymptote to
the right ofx0 in this paper. Conditions guaranteeing the existence of vertical
asymptotes and other types of singularities/noncontinuation can be found in the
works of Eliason ([9], [10], [11]), Bobisud [5], Hara et al. ([16], [17]), Burton
[7], Burton and Grimmer [6], Petty and Johnson [27], Saito [28], Kwong [29],
and Tsukamoto et al. [31]. Throughout this paper, we assume the existence of
a singularity to the right ofx0 of some type. We mainly focus on the case of
a vertical asymptote. For singularities to the left ofx0, the obvious modifica-
tions can be made. The emphasis is on obtaining easily computable bounds.
Many of these bounds are obtained merely by finding the unique root of certain
equations and are sometimes of closed form and computable by hand. We shall
present enough numerical examples to compare the bounds discussed in this
paper, since no single bound is always the best. A very general method is dis-
cussed to obtain lower bounds for the location of vertical asymptotes, which can
be generalized to certain other kinds of singularities (such as a derivative blow-
up). This general method handles some cases which are not handled by the
bounds given in Eliason [11] and Bobisud [5]. It can also be extended to handle
many families ofnth order nonlinear equations. Let us first consider methods
for obtaining bounds forc for the generalized superlinear Emden-Fowler IVP:

(1.1) y′′(x) = p(x)[y(x)]η, y(x0) = A, y′(x0) = B, η > 1.

Several authors have discussed existence and uniqueness of solutions to (1.1).
None of these results will be presented here. The interested reader should see
the good survey paper by Erbe and Rao [12]. See also Taliaferro [29]. For
results on oscillation and nonoscillation see Wong ([32], [33]). See also Biles

http://jipam.vu.edu.au/
mailto:sfrom@unomaha.edu
http://jipam.vu.edu.au/


Bounds for Asymptote
Singularities of Certain

Nonlinear Differential Equations

Steven G. From

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 6 of 78

J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006

http://jipam.vu.edu.au

[3], Dang et al. [8], Fowler [13], Habets [15], and Harris [18]. Only a few
authors discuss locations of vertical asymptotes. Since this is the main point
of interest of this paper, we briefly present the most germaine results of these
authors here for the convenience of the reader.

First we present some results given in Eliason [11].

Theorem 1.1 (Eliason [11]). Supposep(x) is continuous on[x0, c] and positive
on [x0, c). Lety(x) be a solution to (1.1). SupposeA > 0 andB = 0. If y(x) is
continuous on[x0, c), then upper and lower bounds forc satisfy

(1.2) A
η−1
2

∫ c

x0

√
pL(t)dt ≤ z(η) ≤ A

η−1
2

∫ c

x0

√
pu(t)dt ,

where

(1.3) pL(t) = inf
0≤x≤t

p(x), pu(t) = sup
0≤x≤t

p(x)

and

(1.4) z(η) = [2(η + 1)]−
1
2

Γ
(

1
2

)
Γ
(

η−1
2η+2

)
Γ
(

1
2

+ η−1
2η+2

) ,

Γ(·) denotes the gamma function. LetLE,1 and UE,1 denote the Eliason [11]
lower and upper bounds forc, obtained from (1.2) above.

Theorem 1.2 (Eliason [11]). Supposep(x) is continuous on[x0, c) and positive
on (x0, c). SupposeA > 0 andB = 0. If y(x) is continuous on[x0, x

∗), then
the following hold:
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a) If p(x) is nondecreasing on[x0, c], then an upper bound forc is defined by

(1.5) A
η−1
2

∫ c

x0

√
pA(t)dt ≤ z(η) ,

wherepA(x) is given by (1.7).

b) If p(x) is nonincreasing on[x0, c], then a lower bound forc satisfies

(1.6) A
η−1
2

∫ c

x0

√
pA(t)dt ≥ z(η) ,

wherepA(x) is the average value ofp(x) on [x0, x], i.e.,

(1.7) pA(x) =

{
(x− x0)

−1
∫ x

x0
p(t)dt, if x > x0,

p(x0), if x = x0.

LetLE,2 andUE,2 denote the lower and upper bounds of Eliason [11] ob-
tained from (1.5) and (1.7) above. Note that the upper bounds of Theorems
1.1and1.2are valid forB > 0 also. However, the lower bounds are not
valid unlessy′(x0) = B = 0. We shall obtain later several new lower
bounds for the caseB > 0.

Next, we present some results of Bobisud [5]. The lower bounds of Bobisud
[5] are valid under more general conditions than the lower bounds of Eliason
[11]. However, Bobisud [5] does not present any upper bounds forc. It should
be mentioned that the lower bounds of Bobisud [5] are for the more general
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differential equationy′′ = p(x)f(y). However, they are the only lower bounds
given in the literature for the caseB > 0. (We shall also discuss the above more
general differential equation later and discuss the caseA < 0 for some choices
of f(y), a case not considered by Bobisud and Eliason.) We shall also discuss
the caseA = 0 whenp(x) may have a singularity atx = x0.

Theorem 1.3 (Theorem 2 of Bobisud [5]). Supposep(x) is continuous on
[x0, c] and positive on[x0, c). Supposey(x) ≥ M > 0 for x0 ≤ x < c; is
the solution to

(1.8) y′′(x) = p(x), f(y(x)), y(x0) = A, y′(x0) = B.

SupposeA ≥ 0, B ≥ 0 andA + B > 0. If f(y) > 0 andf ′(y) ≥ 0, M ≤ y <
∞, and ify(x) has a vertical asymptote atx = c, then an implicit lower bound
for c satisfies

(1.9)
∫ ∞

y0

du

f(u)
≤
∫ c

x0

(c− w)p(w)dw +
B

f(A)
(c− x0).

LetLB,2 denote the lower bound of Bobisud [5] obtained from (1.9).

As a consequence of Theorem1.3, we obtain the following corollary, which
is a small correction of Theorem 2.2.8 of Erbe and Rao [12].

Corollary 1.4. Supposep(x) is continuous on[x0, c]. Supposey(x) ≥ M > 0
for x0 ≤ x < c. Then a lower bound forc in IVP (1.1) is implicitly given by

(1.10)
A1−η

η − 1
≤
∫ c

x0

(c− w)p(w)dw +
B

Aη
(c− x0).
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Equivalently,

1

η − 1
≤ Aη−1

∫ c

x0

(c− w)p(w)dw +
B

A
(c− x0) ,

providedA > 0.

Theorem 1.5 (Theorem 3 of Bobisud [5]). Let y(x) be a solution to (1.8).
Supposef(y) is continuous fory ≥ A, with f(y) > 0 for y ≥ A if A > 0, and
f(y) > 0 for y > 0 if A = 0. Supposep(x) > 0 has a nonnegative derivative
on [A,∞). If A ≥ 0 andB ≥ 0, thenc satisfies

(1.11)
∫ ∞

A

dx√
B2

p(x0)
+ 2

∫ x

x0
f(u)du

≤
∫ c

x0

√
p(t)dt.

LetLB,3 denote the lower bound ofc obtained from (1.11).

The results of Bobisud [5] and Eliason [11] require continuity ofp(x) atx =
x0. This limits the applicability of these results to (1.8) whenA = y(x0) = 0
since the initial conditionA = 0 often will necessitate a singularity atx = x0 in
the functionp(x). One of the main contributions of this paper is to handle this
singular case. In Eliason [11], the author remarks, in reference to (1.1), that ‘due
to the methods of our proof, we are not able to draw many conclusions for the
casey′(x0) = B < 0, nor for the boundary conditionsy(x0) = A = 0, y′(x0) =
B > 0.’ In this paper, we shall present lower bounds forc even in some cases
wherep(x) has a singularity atx0. Moreover, we will show that the methods
used can be extended to other differential equations of much more general form
than Emden-Fowler type. The methods used are based on maximization and
minimization of certain operators as well as classical integration techniques.
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2. New Bounds forA > 0

Throughout this section, it is always assumed thatA > 0. Consider the follow-
ing IVP of Emden-Fowler type:

(2.1) y′′(x) = p(x)[y(x)]η, y(x0) = A, y′(x0) = B, η > 1.

To obtain bounds for the vertical asymptotec of (2.1), we first need a few lem-
mas. It will be helpful to consider the more general differential equation

(2.2) y′′(x) = (x− x0)
θq(x) · f(y(x)), y(x0) = A, y′(x0) = B,

whereq(x) > 0 is continuous on[x0,∞), η > 1, andθ is real. Thus, (2.2)
allows for a singularity in the coefficient function atx0 if θ < 0. We will
sometimes write (2.1) and (2.2) in the more respective compact formsy′′ = pyn

andy′′ = (x − x0)
θq(x)f(y). To prove some new results, we will first need

some lemmas. Lemma2.1is a generalization and slight variation of Lemma 0.2
of Taliaferro [29].

Lemma 2.1 (Comparison lemma).Supposeφ1(x) andφ2(x) have the form

φ1(x) = (x− x0)
θq1(x)(2.3)

and φ2(x) = (x− x0)
θq2(x),(2.4)

whereθ is a real number, and whereq1(x) and q2(x) are continuous positive
functions on[x0,∞). Let Y1(x) and Y2(x) be respective solutions on some

http://jipam.vu.edu.au/
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interval I = [x0, x0 + ∆), ∆ > 0, of the equations

Y ′′
1 (x) = (x− x0)

θq1(x)f(Y1(x))

and(2.5)

Y ′′
2 (x) = (x− x0)

θq2(x)f(Y2(x))

wheref(y) ≥ 0 is continuous and nondecreasing. Suppose

(2.6) Y1(x0) ≤ Y2(x0) and Y ′
1(x0) ≤ Y ′

2(x0) .

If q1(x) ≤ q2(x) on [x0,∞), thenY1(x) ≤ Y2(x), for x in I.

Proof. Since the proof is similar to that of Lemma 0.2 of Taliaferro [29], we
merely sketch a few key steps that are different from the proof given in Talia-
ferro [29]. Proceeding as in Taliaferro [29] with some modifications, we obtain,
for x0 ≤ x < x0 + ∆:

(2.7) Yi(x) = Yi(x0) + (x− x0)Y
′
i (x0)

+

∫ x

x0

(x− t) · (t− x0)
θqi(t)f(Yi(t))dt, i = 1, 2.

The above integral will exist (neart = x0) since it is essentially an integrated
form of the second derivative ofYi, i = 1, 2. This is an important point espe-
cially for θ < 0. Subtraction gives

Y1(t)− Y2(t) ≤
∫ x

x0

(x− t)(t− x0)
θ[q1(t)f(Y1(t))− q2(t)f(Y2(t))]dt,
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which is nonpositive since the integrand is nonpositive. The lemma may also
be proven by considering the difference functionD(t) = Y1(t) − Y2(t). Forx
in (x0, c), there existsd = d(x) in (x0, x) such thatD(x) = φ1(d)f(Y1(d)) −
φ2(d)f(Y2(d)), which is nonpositive. However, equation (2.7) will be useful
later.

Remark 1. The famous Thomas-Fermi equation

(2.8) y′′ = x−1/2y3/2

has many applications in atomic physics and has the form (2.2) discussed in
Lemma2.1as well as the Emden-Fowler equation

y′′ = ±xθy1−θ.

See Hille ([19], [ 20]) for a discussion of (2.8). We shall consider differential
equation (2.8) later in Sections2 and3. Before presenting the next few lemmas,
we need to define some upper and lower coefficient functions. For IVP (2.2),
define

(2.9) qL(x) = inf
x0≤t≤x

q(t), qu(x) = sup
x0≤t≤x

q(t).

Thenqu(x) andqL(x) are nondecreasing and nonincreasing, respectively.

Lemma 2.2. Consider IVP (2.2). Supposeq(x) > 0 is continuous on[x0,∞)
and q(x) is differentiable on[x0,∞). Let Zq denote the zero setZq = {x ∈
[x0,∞) : q′(x) = 0}. Suppose thatZq has no accumulation points. Then

(a) qL(x) andqu(x) are continuous on[x0,∞).
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(b) Let q′L(x) = d
dx

(qL(x)), q′u(x) = d
dx

(qu(x)). Thenq′L(x) and q′u(x) are
continuous on[x0,∞) \ Zq, the complement ofZq in [x0,∞).

(c) q′L(x) and q′u(x) have finite left-handed limits at each pointx ≥ x0 (but
may not be continuous atx in Zq), that is, forx ≥ x0

lim
t→x−

q′L(t) and lim
t→x−

q′u(t)

exist as real numbers.

Proof. We merely sketch a few key steps, since the result is intuitively clear.
The conditions on the zero setZq guarantees that only a finite number of zeros
can exist in[x0,∞), by the Bolzano-Weierstrass Theorem. SoqL andqu are
piecewise continuous offZq in [x0, c). The same is true forq′L andq′u. Since
there are only a finite number of continuous ‘pieces’, the results (a)–(c) now
follow easily.

Lemma2.2above will be needed in subsequent lemmas and theorems which
use L’Hospital’s Rule in a deleted left half neighborhood ofx∗. From Lemma
2.2, it would follow that

(2.10) lim
x→(x∗)−

q′L(x) and lim
x→(x∗)−

q′u(x)

exist, wherex∗ andx∗ are any asymptotes of solutions to (2.2) with q(x) re-
placed byqL(x) andqu(x), respectively. Throughout this paper, when we write
q′L(x∗) andq′u(x

∗), we shall mean the respective limits given in (c) above. Also,
we assume throughout thatZq has no accumulation points.
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Remark 2. From Lemma2.2, we can conclude that there exists anx00 in
(x0, x∗) or (x0, x

∗) such that on the respective interval, we have:

(a) Y
(3)
u (x) and Y

(3)
L (x) are continuous on the respective intervals(x00, x∗)

and(x00, x
∗), and

(b) q′L andq′u are continuous there.

Now let us give a major idea for comparison purposes throughout the rest of
the paper. Many methods are based upon comparing the following three IVPs:

(1)

(2.11) y(x) = (x− x0)
θq(x)f(y(x)), y(x0) = A, y′(x0) = B.

Vertical asymptote atx = c (actual IVP of interest in this paper)

(2)

(2.12) Yu(x) = (x− x0)
θqu(x)f(Yu(x)), Yu(x0) = A, Y ′

u(x0) = B.

Vertical asymptote atx = x∗.

(3)

(2.13) YL(x) = (x− x0)
θqL(x)f(YL(x)), YL(x0) = A, Y ′

L(x0) = B.

Vertical asymptote atx = x∗.
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By comparison, we have:x∗ ≤ c ≤ x∗ and

YL(x) ≤ y(x) ≤ Yu(x), x0 ≤ x < x∗ ,

andYL(x) ≤ y(x), x∗ ≤ x < c. In some cases, it may be that only the solutions
of (1) and (2) have asymptotes, in which case only a lower bound forc can be
found. However, if (1) has an asymptote, then so does (2).

Lemma 2.3. Let Yu(x) be a solution of (2.12) with q(x) ≥ 0 continuously
differentiable on[x0,∞). Suppose

Z = lim
w→∞

w · f ′(w)

f(w)
> 1 , possibly infinite.

Then

lim
x→(x∗)−

Yu(x)

Yu
′(x)

= 0 .

Proof. Let

R = lim sup
x→(x∗)−

Yu(x)

Yu
′(x)

≥ 0.

First, we establish thatR is real. Forx > x0, there is ad = d(x) in (x0, x) such
that

Yu(x)

Yu
′(x)

=
A + Yu

′(d)(x− x0)

Yu
′(x)

,

from which it follows that0 ≤ R ≤ x∗ − x0 < ∞. Also,

(2.14)
Yu

′(x)

Yu(x)
=

B +
∫ x

x0
(t− x0)

θqu(t)f(Yu(t))dt

Yu(x)
.

Let us consider two cases.
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Case 1.θ ≥ 0. From (2.14), several consecutive applications of L’Hospital’s
Rule and Lemma2.2gives

lim
x→(x∗)−

Y ′
u(x)

Yu(x)
= lim

x→(x∗)−

Y
(3)
u (x)

Y ′′
u (x)

= lim
x→(x∗)−

[
f ′(Yu(x)) · Yu

′(x)

f(Yu(x))
+

q′u(x)

qu(x)
+

θ

x− x0

]
≥ lim

x→(x∗)−

[
Z

(
Yu

′(x)

Yu(x)

)
+

(
q′u(x)

qu(x)
+

θ

x− x0

)]
≥ Z lim

x→(x∗)−

(
Yu

′(x)

Yu(x)

)
,

since the expression in parenthesis is nonnegative. SinceZ > 1, this necessi-

tates lim
x→(x∗)−

(
Yu

′(x)
Yu(x)

)
= +∞, since0 ≤ R < ∞. Thus, lim

x→(x∗)−

Yu(x)
Yu

′(x)
= 0.

Case 2.θ < 0. From (2.14), we have

Y ′
u(x)

Yu(x)
≥

B + (x∗ − x0)
θ
∫ x

x0
qu(t) · f(Yu(t))dt

Yu(x)
.

Applying L’Hospital’s Rule several times in succession in conjunction with
Lemma2.2 again and proceeding in much the same manner as done in Case
1 above, we obtain (we omit details)

lim
x→(x∗)−

Y ′
u(x)

Yu(x)
≥ lim

x→(x∗)−

(
Z · Y ′

u(x)

Yu(x)
+

q′u(x)

qu(x)

)
≥ Z · lim

x→(x∗)−

Y ′
u(x)

Yu(x)
,

http://jipam.vu.edu.au/
mailto:sfrom@unomaha.edu
http://jipam.vu.edu.au/


Bounds for Asymptote
Singularities of Certain

Nonlinear Differential Equations

Steven G. From

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 17 of 78

J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006

http://jipam.vu.edu.au

from which it follows again thatlimx→(x∗)−
Y ′

u(x)
Yu(x)

= +∞.

Lemma 2.4. LetYu(t) be a solution of (2.12). Suppose

lim
x→(x∗)−

Yu(t)

Y ′
u(x)

= 0 and Z = lim
w→∞

w · f ′(w)

f(w)
> 1 , possibly infinite.

Supposeq′(x) ≥ 0 is continuous on[x0,∞). Then

lim
x→(x∗)−

Yu(t)Y
′′
u (t)

[Y ′
u(t)]

2
=

1 + Z

2
.

Proof. We apply L’Hospital’s Rule and Lemma2.2. After much cancellation
and simplification, we finally obtain

lim
x→(x∗)−

Yu(t)Y
′′
u (t)

[Y ′
u(t)]

2

=
1

2
+ lim

x→(x∗)−

Yu(x)Y
(3)
u (x)

Y ′
u(x)Y ′′

u (x)

=
1

2
+ lim

x→(x∗)−

[
Yu(x) · f ′(Yu(x))

2f(Yu(x))
+

Yu(x)

2Y ′
u(x)

(
q′u(x) +

θqu(x)

x− x0

)]
=

1

2
+ lim

x→(x∗)−

[
Yu(x)f ′(Yu(x))

2f(Yu(x))

]
=

1 + Z

2
,

upon application of Lemmas2.2and2.3.
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Remark 3. The above lemmas remain true ifq(x) is merely differentiable on
some left deleted neighborhood ofx∗ or x∗ that is, on an interval(x∗ − δ, x∗)
or (x∗ − δ, x∗) for someδ > 0. This will be an important observation needed
later.

Remark 4. Lemma2.4 holds in particular for the generalized Emden-Fowler
choicef(y) = yn, n > 1, corresponding to IVP (1.1) with Z = η.

For comparison purposes, letYL(x) andYu(x) be solutions to

Y ′′
L (x) = pL(x)[YL(x)]η, YL(x0) = A, Y ′

L(x0) = B(2.15)

Y ′′
u (x) = pu(x)[Yu(x)]η, Yu(x0) = A, Y ′

u(x0) = B(2.16)

where
pL(x) = inf

x0≤t≤x
p(x) and pu(x) = sup

x0≤t≤x
p(x) .

Let y(x) denote a solution to

(2.17) y′′(x) = p(x)[y(x)]η, y(x0) = A, y′(x0) = B .

Lemma 2.5. Consider IVP (2.12). Let ε = 1−η
2

. Supposep(x) ≥ 0 is continu-
ously differentiable[x0,∞) and thatA > 0 andB > 0. Then

lim
x→(x∗)−

ε[Yu(x)]ε−1Y ′
u(x) =

ε√
1− ε

√
pu(x∗).

Proof. From Lemma2.2, we have

lim
x→(x∗)−

(1− ε)[Y ′
u(x)]2

pu(x) · [Yu(x)]η+1
= 1 ,
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which implies that

lim
x→(x∗)−

√
1− εY ′

u(x)√
pu(x)[Yu(x)]1−ε

= 1 .

Rearranging terms, we finally conclude

lim
x→(x∗)−

[Yu(x)]ε−1Y ′
u(x) =

√
pu(x∗)

1− ε
,

thereby proving the lemma.

Lemma 2.6. Let YL(x) be a solution of (2.13) with q(x) > 0 continuously dif-
ferentiable on[x0,∞). SupposeqL(x) is continuously differentiable on[x0,∞),

Z = lim
w→∞

w · f ′(w)

f(w)
> 1 ,

possibly infinite, that (2.11) has a vertical asymptote atx = x∗, and θ ≤ 0.
Then:

a) lim
x→(x∗)−

YL(x)

Y ′
L(x)

= 0, provided

(2.18) Z > 1− θ + sup
x≥x0

[
(x− x0) ·

(
−q′L(x)

qL(x)

)]
.

b) lim
x→(x∗)−

YL(t)Y ′′
L (t)

[Y ′
L(t)]2

=
1 + Z

2
.
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Proof. We prove part (a) only since the proof of (b) follows in a very similar
way to the proof of Lemma2.4. Proceeding as in the proof of Lemma2.3, we
obtain

R = lim sup
x→(x∗)−

YL(x)

Y ′
L(x)

≤ lim sup
x→(x∗)−

Y ′′
L (x)

Y
(3)
L (x)

= lim sup
x→(x∗)−

YL(x)

ZY ′
L(x) + YL(x) ·

[
θ

x−x0
+

q′L(x)

qL(x)

] ,

upon application of results in Taylor [30] on L’Hospital’s Rule. Clearly0 ≤
R < ∞. We shall rule outR > 0, using (2.18). We have

R ≤ R

Z + RL
, where

L =
θ

x∗ − x0

+
q′L(x∗)

qL(x∗)
.

Suppose on the contrary thatR > 0. ThenZ + RL ≤ 1. By condition (2.18),
we have

Z > 1 + (x0 − x∗)

(
θ

x∗ − x0

+
q′L(x∗)

qL(x∗)

)
,

which givesZ + RL > 1, a contradiction. SoR = 0 andlimx→(x∗)−
YL(x)
Y ′

L(x)
= 0,

as claimed.

Part (a) can also be proven more easily by considering the divergence of the
integral

∫ x∗
t

y′L(x)

yL(x)
dx ast → x−∗ , but the L’Hospital’s Rule argument used here

will be needed in later sections.
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Remark 5. For the generalized Emden-Fowler IVP (1.1), condition (2.18) re-
duces to(θ = 0 andZ = η)

η > sup
x≥x0

(
−p′L(x)

pL(x)
· (x− x0)

)
+ 1

which holds automatically ifp(x) is nondecreasing inx, in particular. It will
also hold for certain choices of nonincreasingp(x) provided thatp(x) does not
decrease ‘too fast’.

Lemma 2.7. Consider IVP(2.13). Supposep(x) > 0 is continuously differ-
entiable on[x0,∞), pL(x) is continuously differentiable,A > 0 and B > 0.
Suppose IVP(2.13) has a vertical asymptote atx = x∗. Then, ifθ ≤ 0, we have

lim
x→(x∗)−

ε(YL(x))ε−1Y ′
L(x) =

ε√
1− ε

√
qL(x∗) ,

provided

(2.19) η > sup
x≥x0

(
−q′L(x)

qL(x)
· (x− x0)

)
+ 1− θ.

Proof. Follow the proof of Lemma2.5, using Lemma2.6, part (b), instead of
Lemma2.2.

Note that Lemmas2.6and2.7remain true ifsupx≥x0
is replaced bysupx≥L,

whereL is any lower bound forc.

Remark 6. In Lemmas2.6, 2.7, the sets of conditions under whichq′L(x) and
p′L(x) will be continuously differentiable include (but are not exhausted by) the
cases below:
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(1) qL(x), pL(x) are nonincreasing or nondecreasing on[x0,∞).

(2) qL(x), pL(x) are ‘bath-tub’ shaped, that is, there is anx′ > x0 with:

qL(x) =

{
q1(x), if x0 ≤ x ≤ x′,

q2(x), if x > x′,

whereq1(·), q2(·) continuously differentiable functions are such thatq′1(x
′) =

q′2(x
′), q1(x) is nonincreasing on[x0, x

′) and q2(x) is nondecreasing on
[x′,∞).

(3) qL(x) andpL(x) are unimodal.

Lemmas of type2.3and2.4will be indispensable throughout this paper.
We are now in a position to state and prove several main results. Throughout

Sections2–4 below, we assume the existence of a vertical asymptote atx = c >
x0.

Theorem 2.8. Let y(x) be a solution to IVP (1.1). SupposeA > 0. Suppose
p(x) ≥ 0 is continuously differentiable on[x0, c]. Let ε = 1−η

2
and letZp =

{x ≥ x0 : p′(x) = 0}. SupposeZp has no accumulation points. Then:

a) Letpu(x) = supx0≤t≤x p(t) and

(2.20) g1(x) = min

(
εAε−1B,

ε√
1− ε

√
pu(x)

)
, x > x0.

Then a lower boundL1 for c is the unique root (value ofx) satisfying

(2.21) (x0 − x)g1(x) = Aε.
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b) LetpL(x) = infx0≤t≤x p(t). Supposep(x) > 0 on [x0,∞). Supposep′L(x)
is continuous on[x0,∞). Let

(2.22) h1(x) = max

(
εAε−1B,

ε√
1− ε

√
pL(x)

)
, x > x0.

Suppose

lim inf
x→∞

(
(x− x0) ·

√
pL(x)

)
>

Aε
√

1− ε

(−ε)
, possibly infinite,(H1)

or lim sup
x→∞

(
(x− x0)

√
pL(x)

)
<

Aε
√

1− ε

(−ε)
.

sup
x≥x0

(x0 − x)h1(x) > Aε, and(H2)

1 + sup
x≥x0

(x− x0)

(
−p′L(x)

pL(x)

)
< η all hold .(H3)

Then an upper boundU1 for c is the largest root of

(2.23) (x0 − x)h1(x) = Aε .

Proof. Of (a): Letu = u(x) = [Yu(x)]ε. By the Mean Value Theorem, there
existsd = d(x) in (x0, x) such that

(2.24) u(x) = u(x0) + u′(d) · (x− x0) .

Differentiation ofu(x) produces

(2.25) u′ = ε(Yu)
ε−1Y ′

u
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and

(2.26) u′′ = ε(Yu)
ε−1Y ′′

u + ε(ε− 1)Y ε−2
u (Y ′

u)
2 .

To boundu′(d) in (2.24), we obtain from (2.26) thatu′′(x) = 0 for values ofx
(if any) satisfying

(2.27) Y ′
u(x) =

√
pu(x)[Yu(x)]η

1− ε
.

Substitution of this into (2.25) results in

|u′(x)| = |ε|√
1− ε

[Yu(x)]ε−1+ η
2

√
pu(x) .

By choice ofε, for anyx satisfying (2.27), we have

(2.28) |u′(x)| = |ε|√
1− ε

√
pu(x) .

By Lemma2.5, (2.28) holds also asx → (x∗)−. From all this, we may infer
that

|u′(d(x))| ≤ −g1(x
∗) andu′(d(x)) ≥ g1(x

∗), x0 < x < x∗ ,

which implies that

x ≥ x0 −
Aε

g1(x∗)
, x0 < x < x∗ .
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Sinceu(x0) = Aε andu′(x0) = εAε−1B, we obtain from (2.24) that

u′(d(x∗)) =
Aε

x0 − x∗

and

x0 −
Aε

g1(x∗)
≤ x∗ ,

upon lettingx → (x∗)−. Thus,(x0 − x∗)g1(x
∗) ≥ Aε holds. But we also have

(x0 −L1)g1(L1) = Aε. Since(x0 − x)g1(x) is strictly increasing inx, we must
havex∗ ≥ L1. Sincec ≥ x∗, we havec ≥ L1. This completes the proof of part
(a).

The proof of part (b) is analogous except we useh1 instead ofg1 andpL

instead ofpu in the above arguments, along with Lemma2.6. For this reason,
we only give the details for the parts of the proof that are different from the
proof of part (a).

To prove (b), we proceed as in the proof of (a). Hypothesis (H1) guarantees
that the zero set of the equation(x0− x)h1(x) = Aε is bounded above by a real
numberx̃ > x0. Hypothesis (H2) guarantees that this zero set is nonempty. Hy-
pothesis (H3) allows us to apply Lemma2.7to obtain|u′(d(x))| ≥ |ε|√

1−ε

√
pL(x)

and
u′(d(x)) < h1(x), x0 ≤ x < x∗ .

Thus,(x0 − x∗)h1(x∗) ≤ Aε holds. Now suppose on the contrary thatx∗ > U1.
By the Intermediate Value Theorem, there would exist a rootx′ in [x∗, x̃) of the
equation(x0 − x)h1(x) = Aε. Sox′ > U1 and(x0 − x′)h1(x

′) = Aε. Sox′ is
a root of(x0 − x)h1(x) = Aε, a contradiction toU1 being the largest such root.

http://jipam.vu.edu.au/
mailto:sfrom@unomaha.edu
http://jipam.vu.edu.au/


Bounds for Asymptote
Singularities of Certain

Nonlinear Differential Equations

Steven G. From

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 26 of 78

J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006

http://jipam.vu.edu.au

We can conclude thatx∗ ≤ U1. Sincec ≤ x∗, we must havec ≤ U1 andU1 is
an upper bound ofc. This completes the proof.

Remark 7. If any upper bound forc is available (call itU ), then it should be
computed first. Then a search for a lower bound ofc can be confined to a search
on the compact interval[x0, U ], sincex0 ≤ L ≤ U must hold. However, if (H3)
does not hold, it may be the case that condition (H3’) holds:

(H3’) η > 1 + sup
x≥L

(x− x0)

(
−p′L(x)

pL(x)

)
,

whereL is any lower bound ofc. In this situation, we would want to compute
L = L1 first instead. In any case, (H3) can also be replaced by the requirement
limx→(x∗)−

YL(x)
Y ′

L(x)
= 0.

Remark 8. The above theorem makes use of the operatoru = Y ε
u . In this

paper, we shall also consider operators of the form:u = eαYu , α < 0, u =
(x − x0)

−1Yu. The author has also considered the operatorsu = Y ε1
u (Y ′

u)
ε2 ,

ε1 < 0, ε2 < 0, andu = (Yu + aY ′
u + b)ε, but these did not consistently provide

better lower bounds.

Remark 9. Note that the existence of a lower boundL1 does not depend on the
initial valuesA > 0 and B > 0. However, the existence of an upper bound
U1 may depend on the values ofA and B, if pL(x) is not constant (p(x) is
nondecreasing), for example. In fact, we shall see that more stringent conditions
guaranteeing the existence of an upper bound ofx∗ are usually more necessary
than those guaranteeing the existence of a lower bound ofx∗, for the remaining
problems considered in this paper.

http://jipam.vu.edu.au/
mailto:sfrom@unomaha.edu
http://jipam.vu.edu.au/


Bounds for Asymptote
Singularities of Certain

Nonlinear Differential Equations

Steven G. From

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 27 of 78

J. Ineq. Pure and Appl. Math. 7(1) Art. 1, 2006

http://jipam.vu.edu.au

Remark 10. In his concluding comments section, Eliason [11] mentions that
the methods used in his paper cannot be used for the following cases:

(1) B < 0 (2) A = 0 and B > 0 .

He also mentions that these cases certainly are of interest. A check of the liter-
ature revealed no subsequent work providing bounds for these two cases. When
θ < 0. Bobisud [5] provides lower bounds whenθ = 0 for a more generalf(y),
however. Theorem2.8clearly provides bounds in Case1. In Section3, we shall
offer bounds for Case2. Moreover, the methods of this paper can also provide
bounds for the following cases:

(3) A < 0 and B > 0 (4) A = 0, B = 0, y′′(x0) > 0 .

We elect to discuss (3) and (4) in a future work. However, for an example of
Case (3), see Example 4.8.

Remark 11. We can relax the requirement thatp(x) > 0. We merely needp(x)
to be eventually positive, at least in the case of providing lower bounds forc.
We would usep+

u (x) instead ofpu(x) in part (a) of Theorem2.8above, where

p+
u (x) = max(0, pu(x)) .

The conditionp(x) > 0 on [x0,∞) is necessary to have any chance to obtain
upper bounds forc, however.

Next, we consider a few other bounds forc in the case ofA > 0. One is
a modification of a bound given in Eliason [11]. The others are based upon a
numerical integration, after a transformation, of the differential equation (2.17).
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The following theorem is a generalization of a theorem given in Hille [20]
and Eliason [11].

Theorem 2.9. Consider IVP (1.1). Supposep′(x) ≤ 0, x ≥ x0. Suppose∫ x

x0

√
p(t)dt →∞ asx →∞. Then:

a) there existsc with x0 < c < ∞ and lim
x→c−

y(x) = +∞

b) If, in addition,B2 ≥ 2p(x0)
η+1

Aη+1, then

(2.29)

√
2

1 + η

∫ c

x0

√
p(t)dt ≤ 2

η − 1
Aε,

whereε = 1−η
2

. LetUH denote the upper bound forc given by (2.29).

c) If B2 ≥ 2p(x0)
η+1

Aη+1, then there exists a constantM > 0 independent ofx
such that

y(x) ≤ M(c− x)
2

1−η , x0 ≤ x < c .

Proof. The proof is similar to that given in Hille [20], exceptp(t) = t−3/2 there.
Multiplication of (2.17) by 2y′ gives

2y′(t)y′′(t) = 2y′(t)p(t)y(t)η.

Integration by parts fromx0 to x and usingp′(t) ≤ 0 gives

y′(x)2 ≥ 2p(x)

η + 1
y(x)η+1 +

[
B2 − 2p(x0)

η + 1
Aη+1

]
(2.30)

=
2p(x)

η + 1
y(x)η+1 + c0, say.(2.31)
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Let UH denote the upper bound ofc defined by (2.29). Multiplying by
y(x)−1−η and taking square roots, we get

(2.32) y′(x) · y(x)
−1−η

2 ≥
√

2

1 + η
p(x) + c0y(x)−1−η,

where (2.32) is valid onx0 ≤ d < c for somed ≥ x0. Integration of (2.32)
from x = d to x = w gives

(2.33)
2

1− η

[
y(w)

1−η
2 − y(d)

1−η
2

]
>

∫ w

d

√
2

1 + η
p(x) + c0y(x)−1−ηdx .

The left-hand side of (2.33) remains bounded asw →∞. The integral in (2.33)
diverges to∞ asw → ∞, since

∫ x

x0

√
p(t)dt → ∞ asx → ∞. Thus, there

existsc with x0 < c < ∞ such that lim
x→c−

y(x) = +∞. This proves part (a).

To prove part (b), we proceed in an analogous manner, starting with (2.29)
above. Sincec0 ≥ 0 by assumption, from (2.33), we obtain

2

η − 1
y(x)

1−η
2 >

√
2

1 + η

∫ c

x

√
p(t)dt .

Lettingx = x0 proves part (b). By the Mean Value Theorem, for integrals, there
is anx′ in (x, c) with√

2

1 + η

∫ c

x

√
p(t)dt =

√
2

1 + η

√
p(x′)(c− x) .

Sincep′(t) ≤ 0, we deduce

2

η − 1
y(x)

1−η
2 ≥

√
2

1 + η

√
p(c) · (c− x) .
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Consequently, we obtain

(2.34) y(x) ≤
[(

η − 1

2

)√
2

1 + η

] 2
1−η

[p(c)]
1

1−η (c− x)
2

1−η .

This proves part (c).

Example 2.1.Consider the IVP

y′′ =
1

(x + 1)2
y3, y(0) = 1, y′(0) = 1 .

Then a vertical asymptote exists to the solutiony(x), by Theorem2.9 above.
Theorem 1 of Bobisud [5] is not applicable here, since|p

′(x)|
[p(x)]3/2 ≡ 2 does not

satisfy lim
x→∞

|p′(x)|
[p(x)]3/2 = 0.

Remark 12. Theorem2.9 requiresp′(x) ≤ 0. It is interesting to note that if
p′(x) ≥ 0 andp(x) is absolutely monotone on[x0,∞) (as defined by Boas [4]),
then certain derivative inequalities found in Boas [4] and Pečarič [26], together
with Bernstein’s Theorem, can be used to prove existence of vertical asymptotes
using Lemmas2.3 and 2.4 above. We omit details here, since the emphasis is
on bounds forc.

Remark 13. In Theorem2.9, the conditionB2 ≥ 2p(x0)
η+1

Aη+1 is a generalization
of a condition given by Hille ([19], [ 20]) and Eliason which guarantees the
existence of a vertical asymptote for the Thomas-Fermi equation

y′′ = x−1/2y3/2

y(x0) = A, y′(x0) = B, (x0 > 0) .
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Application of Theorem2.9 in this case leads to the following upper bound on
c:

c <

(
x

3/4
0 +

3

2

√
5A−1/4

) 4
3

which is Equation (1.9) of Eliason [11] and Equation (4.4) of Hille [20]. We
shall have a little more to say about the Thomas-Fermi equation in Section3
later.

Theorem 2.10.Consider the IVP (1.1). Supposep(x) > 0 is continuous on
[x0,∞).

a) Letu∗ denote any initial upper bound forc. Let

w1 = B2 and w2 =
2pu(u

∗)Aη+1

η + 1
.

Let D1 = w1 − w2 andD2 = 2η+2
η−1

and supposeD1 ≤ 0. Then a lower
boundL2 for c is given by

(2.35) L2 = x0 +
2A

η − 1

[
w2 + D1

(
1

2

)D2
]− 1

2

,

provided the expression in brackets is positive.

b) Suppose that eitheru∗ exists or that

D3 = inf
x0≤x<∞

p(x) ≥ 0 .
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DefineD4 as follows:

D4 =

{
D3, if D3 > 0

u∗, if D3 = 0 .

Let w3 = 2pL(D4)Aη+1

η+1
. If w1 ≤ w3, then an upper boundU2 for c is given

by

(2.36) U2 = x0 +
A

η − 1

(
w
−1/2
1 + w

−1/2
3

)
.

Proof. Starting with

(2.37) y′′y′ = p(x)yηy′

and integration of both sides of (2.37) eventually results in

c− x0 =

∫ ∞

A

(
B2 − 2p(t′)

η + 1
Aη+1 +

2p(t′)

η + 1
y(t)η+1

)− 1
2

dt ,

for somet′ ∈ (x0, c), by the Generalized Mean Value Theorem for integrals. By

the change of variablez = 1−
(

A
y(t)

) η−1
2

, we obtain

(2.38) c− x0 =
2A

η − 1

∫ 1

0

[
w2 +

(
w1 −

2p(t′)

η + 1
Aη+1

)
zD2

]− 1
2

dz .
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Sincep(t′) ≤ pu(U1), the result now follows by the convexity of the integrand
of (2.38) and the Midpoint Rule approximation to the integral of (2.38). This
completes the proof of part (a).

The proof of (b) is very similar except the Trapezoidal Rule approximation
is used at the end of the proof instead. Hence, the proof of (b) is omitted.

Remark 14. We may takeu∗ = U1, whereU1 is given in Theorem2.8 above.
Also, the lower boundL would exist, in particular, ifp(x) is nonincreasing in
x, and the upper boundU would exist, in particular, ifp(x) is nondecreasing in
x, provided thaty(x0) = A andy′(x0) = B satisfied the other conditions of the
theorem. The bounds of this theorem are of closed form and are offered as more
easily computable alternatives to other bounds already discussed. We shall
numerically compare many of the bounds discussed in this paper in subsequent
examples. We may replacepu(u

∗) in part (a) by any constantP , if there exists
P > 0 such that0 < p(x) ≤ P , for x ≥ x0. Similarly, we may replacePL(D4)
by any constantQ such thatQ > 0 andQ ≤ P (x), for x ≥ x0. For example, if
x0 = 0, andp(x) = 2x+2

x+2
, we may useP = 1 andQ = 2.

Next, we show that the methods of Eliason [11] can be modified to produce
a lower bound forc in the caseA > 0 andB > 0, after applying comparison
results discussed earlier.

Theorem 2.11.SupposeA > 0 andB > 0 in IVP (1.1). Under the conditions
stated in Theorem B, a lower boundL3 for c is the unique root (value ofx) of:

(2.39) A
η−1
2

∫ x

x0

√
PM(t)dt = z(η) ,
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wherez(η) is given by (1.4) and

(2.40) PM(x) = sup
x0≤t≤x

[
p(t) ·

(
1 +

B(t− x0)

A

)η]
.

Proof. Let w be the operator given byw = w(x) = Yu(x)−B(x− x0). Then

w′ = Y ′
u − A, w′′ = Y ′′

u , w(x0) = A, w′(x0) = 0 .

IVP (1.1) becomes

w′′(x) =

(
p(x) ·

[
w(x) + B(x− x0)

w(x)

]η)
· [w(x)]η,(2.41)

w(x0) = A, w′(x0) = 0 .

By comparison with the IVP

(2.42) W ′′(x) = (pM(x)) · [W (x)]η, W (x0) = A, W ′(x0) = 0 ,

applying Lemma2.1, we see that if IVP (1.1) has an asymptote atx = c and
IVP (2.42) has asymptote atx = x∗, thenc ≥ x∗. But x∗ is at least as large as
the unique root of (2.39) above, by Theorem1.1. This completes the proof.

Next, we state that Theorem1.5(Theorem 3 of Bobisud [5]) can be extended
to p(x) that are not nondecreasing after applying Lemma2.1. We omit the
straightforward proof.
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Theorem 2.12.Consider IVP (1.1). Under the conditions of Theorem1.5, omit-
ting the nonnegative derivative ofp(x) requirement, a lower boundLB,4 for c is
the unique root of the equation

(2.43)
∫ ∞

A

dx√
B2

p(x0)
+ 2

∫ x

x0
f(u)du

=

∫ x

x0

√
Pu(t)dt .

Next, we state a famous inequality which will be used to obtain one more
lower bound forc, whenp(x) is nonincreasing inx. Since there are many
versions of this inequality, we state a form most convenient for our use here.
It is the Grüss inequality, a special case of Chebyshev-type inequalities. For a
discussion on these inequalities, see Barza and Persson [1], Beesack and Pec̆aríc
[2], and Mitrinović, Pĕcaríc and Fink [22].

Grüss Inequality. Let F (x) andG(x) be continuous on[a, b]. SupposeF is
nonincreasing andG is nondecreasing on[a, b]. Then

(2.44) (b− a)

∫ b

a

F (x)G(x)dx ≤
∫ b

a

F (x)dx ·
∫ b

a

G(x)dx .

Theorem 2.13.Consider IVP (1.1) with A > 0, B ≥ 0. Supposep(x) ≥ 0 is
continuous on[A,∞). If p(x) is nonincreasing on[A,∞), then a lower bound
LG for c is the unique root of the equation

(2.45)
1

η − 1
A1−η = (x− x0)

−1A1(x)A2(x) ,
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where

A1(x) =

∫ x

x0

I(t)dt,

A2(x) =

∫ x

x0

1

η + 1

[(
1 +

B(t− x0)

A

)η+1
A

B
− 1

]
dt,

I(t) = (t− x0)
−1

∫ t

x0

p(u)du .(2.46)

Proof. As done in the proof of Theorem2.11, the substitutionw = w(x) =
Yu(x)−B(x− x0) into (1.1) leads to the equivalent IVP

w′′(x) =

(
p(x) ·

[
w(x) + B(x− x0)

w(x)

]η)
· (w(x))η ,

w(x0) = A, w′(x0) = 0 .(2.47)

So

(2.48) w′′(t) ≤
(

p(t) ·
[
1 +

B(t− x0)

A

]η)
· (w(t))η .

Integration of (2.48) from x0 to x, using Grüss’ Inequality, gives

(2.49) w′(x) ≤ I(x)

(∫ x

x0

[
1 +

B(t− x0)

A

]η

dt

)
· [w(x)]η ,

using the obvious inequality
∫ x

x0
w(t)ηdt ≤ (x − x0)(w(x))η. Integration of

(2.49) one more time yields, after division byw(x)η,

1

η − 1
A1−η ≤ (x− x0)

−1A1(x)A2(x).
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The result follows upon lettingx → (x∗) and usingLG ≤ x∗ ≤ c.
Next, we shall numerically compare the new bounds given in this paper to

those of Eliason [11] and Bobisud [5]. The bounds of Bobisud [5] are more gen-
eral from the standpoint of being valid for the more general differential equation
y′′ = p(x)f(y). However,p(x) is not allowed to have a singularity in his The-
orems 2 and 3 (Theorems1.3 and1.5 above), whereas we shall, in Section3,
allow for the possibility of a singularity inp(x) at x = x0. Thus, the new
bounds complement, and in some cases, improve on the bounds of the above
two authors as we shall see in subsequent examples.

Next, we present a few numerical examples to compare the lower bounds
and upper bounds (if they exist) ofc.

Example 2.2. Table1 below gives a numerical comparison of various lower
and upper bounds forc for the IVP

y′′(x) = (3ex + e2x)[y(x)]3, y(x0) = A > 0, y′(x0) = B > 0

wherey = (3 − ex)−1 for various choices ofx0. The actual value ofc is
c = Ln3 ≈ 1.0986123. Here,p(x) = 3ex + e2x, η = 3, ε = −1.

This example illustrates many points which seem to hold in many other ex-
amples considered by the author, but not presented here. These are:

1) If p(x) is nondecreasing inx andη > 2 the Theorem 3 lower bound of Bo-
bisud [5], LB,3 = LB,4 is the best bound, unlessx0 is near the asymptote,
in which case the new bound,L1, is best. The Theorem 2 bound of Bobisud
[5], LB,3, is more generally applicable, but not as good asL1, in this case.
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x0 L1 L2 LB,2 LB,3 L3 U1 U2 UE,1 UE,2

−2.0 0.011 −1.990 0.317 0.882 0.864 19.17 11.69 6.16 1.80
−1.0 0.419 −0.992 0.373 0.954 0.887 6.15 4.25 3.38 1.63

0.0 0.819 0.333 0.573 1.034 0.942 2.00 1.71 1.86 1.41
0.5 0.989 0.890 0.769 1.067 0.996 1.32 1.26 1.41 1.28
1.0 1.094 1.093 1.038 1.087 1.078 1.10 1.17 1.13 1.13

Table 1:LB,3 = LB,4 sincep(x) is nondecreasing.

2) No bound is the best in all cases (all choices ofx0). This has been ob-
served in many other IVPs for a wide range ofp(x) behavior and value
of η > 1. It does not seem possible to easily compare all bounds in this
paper analytically for this reason. Hence, we shall give enough numerical
examples to compare the various asymptote bounds and also to illustrate
the application of theorems obtained in this paper.

3) Among the upper bounds, the upper bound of Eliason [11], UE,2 andUH

are usually the best. However, there were many IVPs for which the com-
puter algebra package MAPLE would not computePA(x) given by (1.7),
which is needed to computeUE,2 mainly becausePA(x) is often not of
closed form. The above example was chosen so thatPA(x) would be of
closed form. Note that the upper boundU1 is of closed form and is easily
hand computable. These two new upper bounds are also more accurate
thanUE,2, if x0 is not too far fromc.
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4) An iterative version of the Runge-Kutta (4,4) (RK) numerical method was
applied to this problem to obtain a sequence of ‘pseudo’-lower and upper
bounds. The current lower bound value ofL1 was taken as the new value
of x0 at each iteration. Thus, the RK method was successively applied on
intervals of the formIK = [L

(K)
1 , L

(K+1)
1 ], whereL(K) = iterationK value

of theL1 lower bound. Thus,L(K+1)
1 is theL1 lower bound for the IVP

y′′ = (3ex + e2x)y3 ,

y(L
(K)
1 ) = ŷ(L

(K)
1 ), y′(L

(K)
1 ) = ŷ′(L

(K)
1 ) ,

whereŷ(·) and ŷ′(·) are the RK approximations ofy andy′, respectively.
The RK method was applied to eachIK interval, moving forward from
below to a final lower bound approximation tox∗. Table2 below gives
the values ofL(K)

1 and U
(K)
1 , the Kth iteration value (approximation of

U1(L
(K)
1 ). After 20 iterations, however, these values start deteriorating,

K L
(K)
1 U

(K)
1

1 0.818507 2.000000
2 1.068355 1.141719
3 1.098107 1.09909
4 1.098545 1.098545
5 1.098545 1.098545
6 1.098545 1.098545

Table 2:
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because of truncation and round-off error. Also, the ‘pseudo’-upper bounds
are no longer real upper bounds forK ≥ 4. Here, the ‘final’ value of
L1 = 1.098545 is in error by only6.73×10−5, using 5000 equally-spaced
values in intervalIK at each iteration.

Example 2.3. Consider the IVPs below. The Runge-Kutta method was used to
approximatec in IVPs (a) and (b), since the exact solution was unknown. (UE,2

not applicable or computable not considered). The results are given in Table3

(a) y′′(x) = (x + 1)−1[y(x)]3, y(0) = 2, y′(0) = 1 (c ≈ 0.960).

(b) y′′(x) = (x + 1)−1[y(x)]4, y(0) = 1, y′(0) = 1
2

(c ≈ 1.33).

(c) y′′(x) =
[

12x+4
9(x+1)4

]
[y(x)]7, y(0) = 1, y′(0) = 2

3
. The exact solution is

y(x) =
(

x+1
1−x

)1/3
, with c = 1.00.

(d) y′′(x) = [exp(x2 − 2x + 4)] · (y(x))3, y(0) = 1
10

, y′(0) = 1
100

, p(x) is
nonmonotonic (bathtub-shaped),c is unknown.

(e) y′′(x) =
[

3
√

x+8−1
4(x+8)3/2

]
(y(x))3, y(0) = 5.828, y′(0) = 6.005 . The exact

solution isy(x) = (3−
√

x + 8)−1, with c = 1, p(x) is decreasing.

Again, we see mixed results, although the new lower boundsL1, LB,4 do
well. The new upper boundsU1 andU2 sometimes do better thanUE,1, although
they are not always computable, whereas the Eliason bound always is, although
it is harder to compute. Note thatLG is the best lower bound for IVP (c) and
that each of the new lower bounds (L1, L2, L3, LB,4) is best or nearly the best
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IV P L1 L2 LB,2 LB,3 LB,4 LG L3 U1 U2 UE,1 UH

(a) 0.71 0.73 0.41 NA 0.78 0.30 0.93 2.00 1.61 1.14 NA
(b) 1.05 1.07 0.47 NA 1.01 0.97 1.10 1.75 1.54 1.96 NA
(c) 0.50 0.82 0.23 NA 0.60 0.88 0.65 2.59 2.43 3.57 1.67
(d) 0.50 NA 0.24 NA 0.98 NA 1.15 NA NA 3.94 NA
(e) 0.97 NA 0.36 NA 0.79 0.76 0.39 1.03 NC 1.332 1.008

Table 3: NA= not applicable, NC= not computable

in at least one of the IVPs above. This is the reason why we discuss many lower
bounds in this paper. Among the new lower bounds,L1 andL2 are the easiest to
compute. However,L1 can be found in more general situations. When it exists,
UH is a better bound thanUE,1 in most cases. However,UE,1 is more generally
applicable.

We shall next present some examples wherep(x) is not nondecreasing inx,
to illustrate Theorem2.8, part (b).

Example 2.4.Consider the following IVPs.

(a) y′′(x) = [(x2−22x+131)e−x/5]·(y(x))6/5, y(0) = 1, y′(0) = 11.

The exact solution isy(x) = ex

(1−x)10
. Here,c = 1, η = 6/5, ε = −1

10
, p(x)

is decreasing inx. We obtain:L1 = 0.909, LB,2 = 0.206, LB,4 = 0.264,
(LB,3 is not applicable),L2 = 0.907, L3 = 0.482, LG = 0.439. The
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Eliason upper bound isUE,1 = 1.074. Sinceη = 6
5

is close to 1, the new
bounds are better thanLB,2. Note thatU1 andU2 are not applicable here.
Also,UH = 1.0047. SoUH does better thanUE,1 here. However,UE,1 is
more generally applicable.

(b) The IVP of Thomas-Fermi type (see Hille [19], [ 20] for a discussion of
this equation)

y′′(x) = x−1/2(y(x))3/2, y(1) = 2, y′(1) = 1.

It is easily verified that conditions (H1)–(H3) of Theorem2.8 hold. We
obtain (LB,3 is not applicable)L1 = 4.761, LB,2 = 2.465, LG = 2.274,
L3 = 4.445, LB,4 = 3.065, L2 = 4.763, U1 = 9.000, UE,1 = 6.763,
U2 = 8.256, UH is not applicable here. The exact value ofc is unknown.
We have:4.763 < c < 6.763 by the foregoing, however. The RK method
discussed earlier converged toc ≈ 6.164. Extensive curve-fitting of Padé
approximants done by the author found asymptote estimates ranging from
c ≈ 5.964 to c ≈ 6.063. These findings are obviously consistent with all
the above bounds. Here, the new lower boundsL1 andL2 are best and the
Eliason upper boundUE,1 is best. (MAPLE would not computeUE,2.)

The new lower bounds often considerably improve on the bounds of Bobisud
[5] when eitherp(x) is nonincreasing inx or η ≤ 2. Many numerical examples
considered besides the ones presented in this paper seem to confirm this obser-
vation. Forp(x) nondecreasing andη > 2, the Bobisud boundLB,3 = LB,4

seems to be best. The new upper bounds improve on the Eliason upper bounds
especially in the cases withA � 0 andB � 0.
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We shall soon discuss the caseA = 0 whenp(x) = (x − x0)
θq(x) has at

least one singularity, first atx = x0 (whenθ < 0). We shall obtain bounds
for c for IVPs in which it is not possible to apply the previous lower bounds of
Bobisud [5] or Eliason [11], in Section3. Let us consider a few examples with
nonmonotonicp(x).

Example 2.5.Consider the IVP

y′′(x) =

[
4

(2x2 − x + 1)3

]
[y(x)]3, y(0) = 1, y′(0) = 0 .

The exact solution isy(x) = 2x2−x+1
1−x

, with c = 1.00. Herep(x) is not mono-
tonic, is unimodal with maximum valuep(0.25) ≈ 5.971. Since the methods of
Eliason [11] require B = 0, it should be the case that the Eliason bounds are
best here. This is in fact the case for upper bounds, but not lower. The following
bounds were obtained:
L1 = 0.579, L2 = 0.598, LB,2 = 0.438, LB,3 is not applicable,LB,4 = 0.904,
L3 = 0.776, LE,1 = 0.776.
Only the Eliason upper bounds are applicable:UE,1 = 1.488. We see that the
new modified Bobisud boundLB,4 = 0.904 is the best lower bound here.

Example 2.6.Consider the IVP

y′′(x) =

[
−x4 + 4x3 + 6x2 − 4x + 7

4(x2 + 1)4

]
[y(x)]5, y(−1) = +1, y′(−1) = −1

4
.
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The exact solution isy =
√

x2+1
1−x

with c = 1, andp(x) is unimodal here with

maximump(−0.0840) ≈ 1.7928. Only the new boundL1 is applicable here
sinceA = y′(−1) < 0, and both the bounds of Bobisud [5] and Eliason [11]
requireB ≥ 0. We obtain(ε = −2.00)

L1 = −0.299.

L1 can generally be used (under conditions of Theorem2.8) if y′(x0) = B < 0,
providedy(x) remains positive. In this case, we modifyg1(x) of Theorem2.8to
get

g1(x) = min

(
εAε−1|B|, ε√

1− ε

√
pL(x)

)
.
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3. The caseA = 0 and B > 0

In this section, we present methods for finding bounds forc in the caseA = 0
andB > 0. Not only do we present bounds for the continuous coefficient(p(x))
case, we also present bounds for the case of a singularity atx = x0 of a certain
form. As remarked by Eliason [11, p. 483], ‘bounds for the caseA = 0 are
certainly of interest’. In this section, we will in fact obtain bounds for the case
A = 0 for a more general IVP which allows for a singularity atx = x0.

We consider the IVP

(3.1) y′′(x) = p(x)[y(x)]η, y(x0) = A = 0, y′(x0) = B > 0,

where
p(x) = (x− x0)

θq(x), q(x) > 0, θ ≤ 0 ,

with vertical asymptote atx = c.
If θ = 0, then we may use the new boundLB,4 given earlier.
Whenθ ≤ 0 andθ + η ≥ 1, then Theorem3.1 below demonstrates that

a modification (after a transformation ofYu(x)) of the method of Eliason [11]
provides a lower bound forc whenA = 0.

Theorem 3.1.Supposeθ + η ≥ 1 in IVP (3.1). Supposeq(x) > 0 on [x0,∞) is
continuously differentiable. Consider the auxiliary IVP:

(3.2) Z ′′(x) =
[
(x− x0)

θ+η−1qu(x)
]
· [Z(x)]η, Z(x0) = B, Z ′(x0) = 0 .

Then any lower bound for a vertical asymptote of (3.2) is also a lower bound
for c.
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Proof. Let u(x) = Yu(x)
x−x0

. Then IVP (2.12) with f(y) = yη becomes

(x− x0)u
′′(x) + 2u′(x) = [(x− x0)

θq(x)(x− x0)
ηu(x)η],(3.3)

u(x0) = B, u′(x0) = 0,

where we have applied L’Hospital’s Rule to obtain

u′(x0) = lim
x→x0

(x− x0)Y
′
u(x)− Yu(x)

(x− x0)2

= lim
x→x0

Y ′′
u (x)

2
− lim

x→x0

Y ′
u(x)

2(x− x0)

=
Y ′′

u (x0)

2
− lim

x→x0

Y ′′
u (x)

2
= 0 .

A solution to (3.3) must be bounded above by a solution to

(3.4) Z ′′(x) =
[
(x− x0)

θ+η−1qu(x)
]
· [Z(x)]η, Z(x0) = B, Z ′(x0) = 0

upon application of comparison techniques to IVPs (3.3) and (3.4), and using
u′(x) ≥ 0, q(x) ≤ qu(x).

Let L5 denote the lower boundLE,1 applied to IVP (3.4) instead.
Next, we offer a simple lower bound in the caseθ + η > −1, which is more

generally applicable thanLB,4 or L5.

Theorem 3.2. Consider IVP (3.1) with A = 0, B > 0. Supposeq(x) > 0 is
continuous on[x0,∞). Supposeθ + η > −1. Then a lower boundL6 for c is
the unique root of the equation

(3.5)
∫ x

x0

(t− x0)
θ+ηqu(t)dt =

B1−η

η − 1
.
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Proof. IVP (3.1) will be transformed to obtain an auxiliary IVP for comparison
purposes.

Y ′′
u (x) = (x− x0)

θqu(x)[Yu(x)]η(3.6)

= (x− x0)
θ+ηqu(x)

[
Yu(x)

x− x0

]η

≤ (x− x0)
θ+ηqu(x)[Y ′

u(x)]η.

LettingV = Y ′
u, we obtain the auxiliary IVP

(3.7) V ′
u(x) =

[
(x− x0)

θ+ηqu(x)
]
· (V (x))η, V (x0) = B .

Clearly, the location of the vertical asymptote of (3.7) will be to the right of any
vertical asymptote of (3.6), by comparison lemmas given earlier. Integration of
(3.7) produces ∫ ∞

B

V −ηdV =

∫ x

x0

(t− x0)
θ+ηqu(t)dt

or
B1−η

η − 1
=

∫ x

x0

(t− x0)
θ+ηqu(t)dt .

The proof is complete.

For our final method, we present a method which uses a variation of the
method used to deriveL1 in Section2. SinceA = 0, however, we cannot use
the u(x) = [Yu(x)]ε transformation as done there. Instead, we consider the
operator(x− x0)

−1Yu, i.e.,

(3.8) w(x) =

(
Yu(x)

x− x0

)ε

.
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First, we need some lemmas.

Lemma 3.3. Letu(x) = Yu(x)
x−x0

, x0 < x < x∗. Supposeq(x) > 0 is continuously
differentiable on[x0,∞). Then

lim
x→(x∗)−

u(x)u′′(x)

[u′(x)]2
=

1 + η

2
.

Proof. Applying L’Hospital’s Rule, we obtain(Yu = Yu(x), Y ′′
u = Y ′′

u (x))

lim
x→(x∗)−

u(x)u′′(x)

[u′(x)]2
= lim

x→(x∗)−

[
(x− x0)

2YuY
′′
u − 2(x− x0)YuY

′
u + 2Y 2

u

(x− x0)2(Y ′
u)

2 − 2(x− x0)YuY ′
u + Y 2

u

]
= lim

x→(x∗)−

Yu(x)Y ′′
u (x)

[Y ′
u(x)]2

=
1 + η

2
,

upon application of Lemmas2.3and2.4with f(y) = yη.

Lemma 3.4. Supposeq(x) > 0 is continuously differentiable on[x0,∞). Let
T (x) = (x− x0)[u(x)]ε−1u′(x), ε = 1−η

2
. Then

lim sup
x→(x∗)−

T (x) ≤
(x∗ − x0)

θ+η+1
2

√
qu(x∗)√

1− ε
= M .

Proof.

lim sup
x→(x∗)−

u′

u1−ε
≤ lim sup

x→(x∗)−

u′′

(1− ε)u′u−ε

≤ lim sup
x→(x∗)−

 u′′

(1− ε)u−ε

√
uu′′

1−ε

 · lim
x→(x∗)−


√

uu′′

1−ε

u′

 .
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By Lemma3.3, the latter limit equals 1. So

lim sup
x→(x∗)−

T (x) ≤ lim sup
x→(x∗)−

√
(x− x0)θ+ηqu(x) · u(x)η

(x− x0)(1− ε)u(x)1−2ε
,

usingu′′ ≤ (x − x0)
−1Y ′′

u , asx → (x∗)−. (In fact, the above argument shows
that all ‘lim sup’s above can be replaced by usual limits.) Thus

lim
x→(x∗)−

T (x) ≤
(x∗ − x0)

θ+η+1
2

√
qu(x∗)√

1− ε
= M .

Lemma 3.5. Let K(x) be continuously differentiable and strictly at one sign
on [x0,∞). Supposelim sup

x→(x∗)−
|K(x)| < ∞. Then|K(x)| ≤ K0 on [x0, x

∗),

whereK0 = max(K1, K2, K3), K1 = |K(x0)|, K2 = sup
t∈Zk

|K(t)| < ∞, K3 =

lim sup
x→(x∗)−

|K(x)|, Zk = {t ∈ [x0, x
∗) : K ′(t) = 0}.

Proof. Let An = [x0, x
∗ − 1

n
], Bn = [x∗ − 1

n
, x∗), n = 1, 2, 3, . . . Clearly, since

An is compact,

sup
x∈An

|K(x)| ≤ max

(
K1, K2,

∣∣∣∣K (x∗ − 1

n

)∣∣∣∣)
and ∣∣∣∣K (x∗ − 1

n

)∣∣∣∣ ≤ sup
x∈Bn

|K(x)| .
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Let us showsup
x∈Bn

|K(x)| ≤ K3 + δ for arbitrarily smallδ > 0. By definition of

limit superior,∃ integerN such that

sup
x∈BN

|K(x)| ≤ K3 + δ .

Thus,

sup
x∈[x0,x∗)

|K(x)| ≤ max

(
sup
x∈An

|K(x)|, sup
x∈Bn

|K(x)|
)

≤ max(K1, K2, K3 + δ),

implying that
sup

x∈[x0,x∗)

K(x) ≤ K0 + δ .

Sinceδ > 0 is arbitrary, the result follows.

Armed with the knowledge of the above lemmas, we are now ready to prove
the following theorem.

Theorem 3.6. Consider IVP (3.1). Supposeq(x) > 0 is continuously differen-
tiable on[x0,∞). Let

(3.9) G7(x) = min

(
ε

2
Bε+η−1q(x0),

ε√
1− ε

(x− x0)
θ+η−1

2

√
qu(x)

)
,

whereε = 1−η
2

. Suppose that eitherθ+η ≥ 1 or θ+η ≥ 0 andw(x) =
(

Yu(x)
x−x0

)ε

has a strictly monotonic derivativew′(x). Then a lower boundL7 for c is the
unique root (value ofx) satisfying the equation

(3.10) (x0 − x)G7(x) = Bε.
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Proof. It is useful to recall the method of proof of Theorem2.8earlier. We use
a device and method here that is similar, except we use a different operator. Let
w be the operator given by

w = w(x) =

(
Yu(x)

x− x0

)ε

= u(x)ε ,

whereu(x) = Yu(x)
x−x0

, x 6= x0, andu(x0) = B. Then:

w′ = εuε−1u′ ,

w′′ = εuε−1u′′ + (u′)2ε(ε− 1)uε−2 ,

which equals zero at a value ofx > x0 (if any) satisfying

(3.11) u′(x) =

√
u(x)u′′(x)

1− ε
.

Now the Mean Value Theorem implies

w(x) = w(x0) + w′(d(x)) · (x− x0), x0 < d(x) < x, x0 < x < x∗ .

Proceeding as in the proof of Theorem2.8, a direct computation shows that
w′(x), for such values ofx, satisfies:

(3.12) |w′(x)| = −ε√
1− ε

u(x)ε−1

√
u(x) · (x− x0)θqu(x)Yu(x)η − 2u′(x))

x− x0

,
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assuming the right-hand side radical exists for the moment. Clearlyu′(x) ≥ 0.
From (3.12), we have

|w′(x)| ≤ −ε√
1− ε

u(x)ε−1

√
u(x) · ((x− x0)θqu(x) · (x− x0)ηu(x)η)

x− x0

≤ −ε√
1− ε

u(x)ε+ η
2
− 1

2 (x− x0)
θ+η−1

2

√
qu(x) .(3.13)

If the square root in (3.12) does not exist, then we can still bound|u′(x)|. In
either case,|w′(x)|will be either maximized atx = x0, at a value ofx satisfying
(3.11) or asx → (x∗)− (where we shall apply the lemmas given above). Once
we bound|w′(x)| on [x0, x

∗), this will allow us to get a lower bound forx∗,
hence forc. From all the foregoing, we have, forx0 ≤ x < x∗:

(x− x0) sup
x0≤t≤x

|w′(t)|

≤ max

(
(x− x0) · |w′(x0)|,

−ε√
1− ε

(x− x0)
θ+η+1

2

√
qu(x),

(−ε)√
1− ε

(x− x0)M
∗
)

,

upon application of Lemma3.5, where

M∗ = lim
x→(x∗)−

(u(x))ε−1u′(x) .

By direct computation,|w′(x0)| ≤ | ε
2
Bε+η−1q(x0)|, with equality holding if
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θ + η = 0. By Lemma3.4,

−ε√
1− ε

(x∗ − x0)
θ+η+1

2

√
qu(x∗) = (−ε)(x∗ − x0)M

∗ .

Thus

(3.14) (x∗ − x0) sup
x0≤t<x∗

|w′(t)|

≤ max
(
(x∗ − x0)

(
− ε

2

)
Bε+η−1q(x0),

−ε√
1− ε

(x∗ − x0)
θ+η+1

2

√
qu(x∗)

)
.

But w(x0) = Bε. So

(3.15) w(x) = Bε + w′(d(x))(x− x0) .

Since lim
x→(x∗)−

w(x) = 0, lettingx → (x∗)− in (3.15), we obtain

x∗ − x0 =
−Bε

w′(d(x∗))
.

Since|w′(x)| ≤ −G7(x), x > x0, we have(x∗ − x0)(−G7(x
∗)) ≥ Bε. But

(L7 − x0)(−G7(L7)) = Bε. Since(x − x0)(−G7(x)) is increasing inx, we
haveL7 ≤ x∗. Sincex∗ ≤ c, thenL7 ≤ c. This completes the proof.

Remark 15. Whenθ = 0 (p(x) is continuous), we may also consider the Bo-
bisud boundLB,3 whenp(x) is nondecreasing. In this case,LB,3 = LB,4. When
p(x) is not nondecreasing, we shall use the new modified boundLB,4 sinceLB,3

is not applicable in this case.
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Remark 16. The author has also obtained bounds in the casey(x0) = A < 0
andB > 0 for the equationy′′ = (x − x0)

θq(x)|y|η sgn(y) using a two stage
procedure. These results will be discussed in a forthcoming paper.

Next, we present some numerical examples to compare the boundsLB,4, L5,
L6 andL7 in the caseA = 0, B > 0. First, we consider an example where
θ = 0. In this case, all four bounds exist.

Example 3.1.Consider the IVP

y′′(x) =

[
20− 30x + 12x2

(x4 − x + 1)3

]
· (y(x))3, y(0) = 0, y′(0) = 1 .

Here,p(x) is unimodal on[0,∞) with

sup
x∈[0,1]

√
p(x) =

√
p(0.526) ≈ 45.19 .

Hence,

pu(x) =

{
p(x), 0 ≤ x ≤ 0.526

45.19, x > 0.526

The exact solution isy(x) = x5−x2+x
1−x

, with c = 1. Here,θ = 0, η = 3, ε = −1,
B = 1. We obtain the lower bounds:

LB,4 = 0.815, L5 = 0.593, L6 = 0.614, andL7 = 0.462 .

Here, the modified boundLB,4 is the best. Note that the original bounds,LB,2
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andLB,3 of Bobisud [5] are not applicable here, nor are the bounds of Eliason
[11]. However, in this paper, two of the four bounds proposed in this paper
are modified versions of these ‘authors’ bounds(LB,4, L5) and two are derived
totally from scratch (L6 andL7).

Example 3.2.Consider the IVP

y′′(x) = x−3

(
12− 4x2 + x3

e2x

)
[y(x)]3, y(0) = 0, y′(0) =

1

2
.

Here,θ = −3, η = 3, q(x) = 12−4x2+x3

e2x is decreasing. We obtain:L6 = 0.204,
L7 = 0.667. The exact solution isy(x) = xex

2−x
with c = 2. Note thatLB,4 is not

applicable here. Neither are the bounds of Eliason [11] and Bobisud [5].

Example 3.3.Consider the IVP

y′′(x) = 4x−3[y(x)]3, y(0) = 0, y′(0) =
1

2
.

The exact solution isy(x) = x
2−x

with c = 2. We obtain:L6 = 0.500 and
L7 = 2.000. We see that the boundL7 is exact here. It can be shown that theL7

(andL1) bounds are sharp bounds, in general.

Example 3.4.Consider the IVP

y′′(x) = x−3((6− 2ex + xex + 3x)ex)[y(x)]3, y(0) = 0, y′(0) =
1

2
.

The exact solution isy(x) = x
3−ex with c = ln 3 ≈ 1.0987. The only lower

bounds applicable are the new boundsL6 = 0.375 andL7 = 0.712.
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Next, we apply the methods of this section to the Thomas-Fermi equation
with A = 0, x0 = 0.

(3.16) y′′(x) = x−1/2[y(x)]3/2, y(x0) = 0, y′(x0) = B > 0 .

The bounds of Bobisud [5] are not applicable here, sincex0 = 0. Neither are
the bounds given in Equations (5.2)–(5.3) of Eliason [11]. Incidentally, there is
a small error in (5.2). In his paper,x0 is denoted bya. The term[y(a)]1/2 should
be replaced by[y(a)]1/4 throughout in (5.2). Also, ‘λ = 0’ should be replaced
by ‘λ < 0’ right before Equation (5.10).

Example 3.5.Consider the Thomas-Fermi equation

y′′(x) = x−1/2(y(x))3/2, y(0) = 0, y′(0) = B > 0 .

We obtain

L5 =
z
(

3
2

)
B1/4

≈ 5.064

B1/4
, L6 =

2

B1/4
.

ClearlyL5 is a better lower bound thanL6. However,

L7 =
B−1/4

max
(

1
8
B1/4,

√
5

10

)
and from Table4 below, we see thatL7 is only much inferior toL5 for B ≥
100.0. For B ≤ 10.24, L5 = 1.13L7. For B > 10.24, L5

L7
> 1.13.
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B 0.001 0.01 0.10 0.33 0.50 1.00 2.00

L5 28.48 16.01 9.01 6.66 6.02 5.06 4.26

L7 25.15 14.14 7.95 5.89 5.32 4.47 3.76

B 3.00 5.00 10.00 100.00 1000.0 105 108

L5 3.85 3.39 2.85 1.60 0.901 0.285 0.0506

L7 3.40 2.99 2.51 0.80 0.253 0.0253 0.0008

Table 4:L5 andL7 values.
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4. Some Other Families
In this section, we turn our attention to some other families of differential equa-
tions. First, consider the IVP:

(4.1) y′′(x) = p(x)f(y(x)), y(x0) = A, y′(x0) = B > 0

or justy′′ = p(x)f(y).
First, let us consider the casef(y) = eβy for someβ > 0. Consider the IVP

(4.2) y′′(x) = p(x)eβy(x), y(x0) = A, y′(x0) = B > 0 .

First, we state the following lemma. The proofs are omitted since they are
similar to proofs of earlier lemmas.

Lemma 4.1. Consider IVP (4.2). Let p(x) be continuously differentiable on
[x0,∞). LetYu(x) andYL(x) be given by (2.12) and (2.13), resp., withθ = 0
(p(x) ≡ q(x)). Letα = −β/2. Then

(a) lim
x→(x∗)−

−αeαYu(x) · Y ′
u(x) =

√
−α
√

pu(x∗).

(b) lim
x→(x∗)−

−αeαYL(x) · Y ′
L(x) =

√
−α
√

pL(x∗).

(c) Letw1(x) = eαYu(x). Then lim
x→(x∗)−

|w′
1(x)| =

√
−α
√

pu(x∗).

(d) Letw2(x) = eαYL(x). Then lim
x→(x∗)−

|w′
2(x)| =

√
−α
√

pL(x∗).
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Theorem 4.2.Consider IVP (4.2). Letα = −β
2

. Let

g8(x) = min
(
αeαAB, −

√
−α
√

pu(x)
)

h8(x) = max
(
αeαAB, −

√
−α
√

pL(x)
)

.

Then

a) a lower boundL8 for c is the unique root of

(4.3) (x0 − x)g8(x) = eαA .

b) Suppose that conditions (H4)–(H5) below hold. Then an upper-boundU8

for c is the largest root of

(4.4) (x0 − x)h8(x) = eαA

(H4)

lim inf
x→∞

[
(x− x0) ·

√
pL(x)

]
>

eαA

√
−α

or

lim sup
x→∞

[
(x− x0)

√
pL(x)

]
<

eαA

√
−α

.

(H5)
sup
x≥x0

(x0 − x)h8(x) > eαA
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Proof. The proof is similar to the proof of Theorem2.8, so we merely sketch
key steps and any new ideas needed. For part (a), letu(x) = u = eαYu(x). Then

u′′(x) = αeαYuY ′′
u + (Y ′

u)
2α2eαy = 0

when

(4.5) Y ′
u =

√
pu(x)eβYu

−α
.

We can obtain the bound, for any value ofx satisfying (4.5),

(4.6) |w′(x)| ≤
√
−αe(α+β

2 )Yu
√

pu(x) =
√
−α
√

pu(x) .

Lemma4.1, parts (a) and (c) show that (4.6) holds asx → (x∗)− also. Now
apply the Mean Value Theorem as done in the proof of Theorem2.8.

The proof of part (b) is similar to the proof of part (b) of Theorem2.8. We
do not need a third condition “(H6)” to parallel condition (H3) of Theorem2.8,
sinceZ = ∞ in Lemma2.6, so that the condition

Z > sup
x≥x0

(
−p′L(x)

pL(x)

)
+ 1

is automatically satisfied, as can be seen by considering

lim
x→(x∗)−

Y ′′
L (x)

(Y ′
L(x))2

= −α =
β

2
.
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It is noteworthy to mention that the operatoru = eαYu(x) was also consid-
ered for the generalized Emden-Fowler IVP (1.1). However, the bounds by this
operator were found inferior to those given earlier for that IVP.

Next, we consider a few numerical examples to compareL8 to some other
lower bounds discussed earlier. No upper bounds have previously been given in
the literature for IVP (2.2) whenA is allowed to be nonpositive. However, we
also presentU8 when it can be shown to be a valid a priori upper bound in some
examples below.

Example 4.1.Consider the IVP

y′′(x) = ey(x), y(0) = 2, y′(0) = 1 .

We obtain the Bobisud bound ofLB,3 = 0.705, which is exact sincep(x) ≡ 1 is
constant. Theorem4.2givesL8 = 0.520 andU8 = 1.414, both of which are of
closed form and computed by hand. Clearly,L8 < c = LB,3 = 0.705 < U8.

Example 4.2.Consider the IVP

y′′(x) =

[
10x− 5

(x + 2)4

]
e2y(x), y(x0) = A, y′(x0) = B,

where the exact solution is

y(x) = Ln

(
x + 2

3− x

)
with c = 3.00 .

Only the new lower boundL8 is applicable forA < 0. Only the new boundU8

is available as an upper bound. We obtain the following bounds (‘NA’= not
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applicable) for variousx0:

x0 0.00 1.50 2.00 2.50 2.75
A −0.405 0.847 1.386 2.197 2.944
B 0.833 0.952 1.250 2.222 2.988

LB,3 NA 1.901 2.295 2.662 2.836
LB,4 NA 2.808 2.943 2.984 2.996
L8 1.200 2.550 2.800 2.950 2.988
U8 NA 4.217 3.337 3.063 3.114

The new boundsLB,4 and L8 perform best. OnlyL8 exists forA < 0. For
x0 ≥ 1.50, LB,4 < B < U8 holds.(c = 3)

Note thatL8 is easier to compute than eitherLB,3 or LB,4, and is a better
bound thanLB,3.

Example 4.3.Consider the IVP

y′′(x) = (x2 + 1)e3y, y(0) =
1

100
, y′(0) =

1

10
.

The exact solution is unknown to the author. We obtainLB,3 = LB,4 = 0.689
andL8 = 0.668. Here the Bobisud bound is better. However, onlyU8 is avail-
able as an upper bound withU8 = 8.165. So we may conclude0.689 < c <
8.165 holds.

Next, we consider the generalized Emden-Fowler IVP below withy′ present:

y′′(x) = a(x)y′(x) + p(x) · [y(x)]η(4.7)

y(x0) = A, y′(x0) = B, A > 0, B > 0, η > 1 .
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Supposey(x) has a vertical asymptote atx = c. Note that (4.7) generalizes the
IVP of generalized Emden-Fowler type (wherea(x) ≡ 0 andy′(x) is missing)
considered earlier. Hara, et al. ([16], [17]) discuss noncontinuability of such
equations. The only type of noncontinuability we consider here is the case
wherey(x) has a vertical asymptote atx = c. First, we need the following
lemmas which we state without proofs, the proofs being similar to proofs of
previous lemmas, part (a) following from L’Hospital’s Rule, and (b) following
from (a).

Lemma 4.3. Consider IVP (4.7). Leta(x), b(x) be continuously differentiable
on [x0,∞), with a(x) ≥ 0, b(x) ≥ 0 on [x0,∞),

au(x) = sup
x0≤t≤x

a(t), pu(x) = sup
x0≤t≤x

p(t) .

LetYu(x) be the solution to the auxiliary IVP

Y ′′
u (x) = au(x)Y ′

u(x) + pu(x) · [Yu(x)]η,

Yu(x0) = A, Y ′
u(x0) = B, A > 0, B > 0.

SupposeYu(x) has a vertical asymptote atx = x∗. If au andbu are continuously
differentiable nearx∗, then

a) lim
x→(x∗)−

Yu(x)
Y ′

u(x)
= 0 and

b) lim
x→(x∗)−

Yu(x)Y ′′
u (x)

[Y ′
u(x)]2

= 1+η
2

.
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Theorem 4.4.Consider IVP (4.7). Under the conditions of the previous lemma,
a lower boundL9 for c is the unique root of

(4.8) (x0 − x)g9(x) = Bε ,

where

(4.9) g9(x) = min(εAε−1B, R(x)) ,

ε = 1−n
2

and

(4.10) R(x) =
ε

2(1− ε)
au(x)Aε +

ε

2
√

1− ε

√
(au(x))2A2ε + 4(1− ε)pu(x) .

Sketch of proof. The proof is very similar to the proofs of Theorems2.8and3.6
given earlier. Letu(x) = u = [Yu(x)]ε, as done earlier. Thenu′′(x) = 0 when

(4.11) Y ′
u(x) =

√
Yu(x) · (au(x)Y ′

u(x) + pu(x)(Yu(x))η

1− ε
.

At any suchx, we have

(1− ε)(Y ′
u(x))2 − au(x)Yu(x)Y ′

u(x)− pu(x) · Yu(x))η+1 = 0 .

Solving forY ′
u(x), we obtain

Y ′
u(x) =

au(x)Yu(x) +
√

(au(x))2Yu(x)2 + 4(1− ε)pu(x)(Yu(x))η+1

2(1− ε)
,
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the plus sign being retained sinceY ′
u(x) ≥ 0.

For values ofx satisfying (4.11), we have

|u′(x)|

≤ |ε|(Yu(x))ε−1

[
au(x)Yu(x)

2(1− ε)
+

√
(au(x))2Yu(x)2 + 4(1− ε)pu(x)Yu(x)η+1

2(1− ε)

]

=
|ε|

2(1− ε)
au(x)Yu(x)ε +

|ε|
2
√

1− ε

√
(au(x))2(Yu(x))2ε + 4(1− ε)pu(x) ,

using(Yu(x))2ε+η−1 ≡ 1. So, for values ofx satisfying (4.11), if any, we have

|u′(x)| ≤ |ε|
2(1− ε)

au(x)Aε +
ε

2
√

1− ε

√
(au(x))2A2ε + 4(1− ε)pu(x) .

The rest of the proof proceeds as in the last part of the proof of Theorem2.8,
using Lemma4.3 instead, and is left to the reader.

A theorem could be presented for upper bounds as well, but we omit it
here. �

Example 4.4.Consider the IVP

y′′(x) = (3e−x)y′(x) + p(x)[y(x)]2, y(2) = 2, y′(2) =
17

4
.

where

p(x) =
(15x2 + 110x + 135) + (18x3 + 48x2 − 174x− 396)e−x

4(x + 2)5/2
,
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which is unimodal with maximump(2.2) ≈ 2.84. This example was constructed
with the exact solution

y(x) =

√
x + 2

(3− x)2
, andc = 3.00 .

None of the bounds of Eliason [11] or Bobisud [5] are applicable here. Among
the new bounds, onlyL9 is applicable. We obtainL9 = 2.576. Clearly,L9 =
2.576 < c = 3.000 holds.

Finally, we indicate how we might obtain bounds forc for other types of
differential equations not previously considered. Theorems could be presented
here; however, to save space, we merely indicate general strategies and opera-
tors likely to be useful for obtaining bounds. We do this via several examples
to conclude this paper. We also indicate possibilities for further research. The
scope of the applicability of the methods given in this paper appear large indeed.

Example 4.5.Consider the IVP

(4.12) y′′(x) =
3y2 + y4

1 + x2
, y(0) = 1, y′(0) = 1 .

The exact value ofc is unknown. We obtainLB,2 = 0.323, LB,4 = 0.712.
The calculation of these two bounds requires numerical integration. We now
demonstrate a slight variation of theL1 bound which will enable a closed form
hand computation of a lower bound forc. Clearly, we may rewrite (4.12) as:
(y = y(x))

y′′(x) =

[(
3y2 + y4

y4

)(
1

1 + x2

)]
y4.
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We may treat our ‘coefficient function’ as the expression in brackets which is
clearly bounded above by ‘Pu(x)’≡ 4 and bounded below by ‘PL(x)’≡ 1. For
the variation ofL1 (similarly for U1), consider the auxiliary (majorant) IVP:

Y ′′(x) = 4[Y (x)]4, Y (0) = 1, Y ′(0) = 1 ,

we obtainL1 =
√

5
18

= 0.527, which is better thanLB,2 and not much worse

thanLB,4. We also obtainU1 = 1.054. So we may conclude that0.712 < c <
1.054. This example demonstrates that we may easily obtain lower bounds for
the IVP

y′′(x) =
k∑

i=1

pi(x)gi(y(x)), y(x0) = A > 0, y′(x0) = B > 0,

wheregi(·) are given positive functions, andpi(x) are given ‘coefficients’.

Example 4.6.Consider the IVP

y′′(x) = exy, y(0) =
1

2
, y′(0) =

1

3
.

This is not of any of the forms considered earlier. Only the new lower boundL1

below will handle this IVP. We use the operator

u = eδxy(x) δ < 0 .

Thenu′′(x) = 0 when

(4.13) xy′(x) + y(x) =

√
xy′′(x) + 2y′(x)

−δ
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with a bound on|u′(x)|, for anyx satisfying (4.13), of

|u′(x)| ≤ |δ|√
−δ

eδxy
√

xexy + 2y′

≤ |δ|√
−δ

eδxy

√
xexy + 2xexy +

2

3
=

|δ|√
−δ

eδxy

√
3xexy +

2

3
,

|u′(x)| ≤
√
−δe(δ+ 1

2
)xy

(√
3x +

2

3
e−xy

)
.

Let δ = −1
2
. Then

|u′(x)| ≤
√

1

2

(√
3x +

2

3

)
for all x satisfying (4.13). As done in the proof of Theorem4.2, let

g1(x) = min

(
−e−

1
2
x0A,

−
√

2

2

(√
3x +

2

3

))
(x0 = 0) .

ThenL1, a lower bound forc, satisfies(x0 − x)g1(x) = 1 or

x

(√
2

2

(√
3x +

2

3

))
= e−0 = 1 ,

which givesx = L1 ≈ 0.805.
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Example 4.7.Consider the IVP

y′′(x) = (y′(x))2 ·
(

1 + 2y(x)

1 + y(x)2

)
, y(0) = 0, y′(0) = 1 .

The exact solution isy(x) = − tan(ln(1 − x)), with c = 1 − ε−π/2 ≈ 0.7921
Only the methods of this paper will provide a lower bound for the asymptote
singularity location. Sincey(0) = 0, we use the operatoru(x) = [y′(x)]ε,
ε < 0. Note that no comparison results are needed here. Then by direct but
messy computation,u′′(x) = 0 when

(4.14) y′′(x) =

√
y′(x)y(3)(x)

1− ε
,

where

y(3)(x) =
[y′(x)]3[4 + 6y(x) + 6y(x)2]

[1 + y(x)2]2
.

L’Hospital’s Rule establishes

lim
x→c−

y′(x)y(3)(x)

(y′′(x))2
=

3

2
<

√
1− ε

|ε|
= 2 .

Also, at anyx ≥ 0 satisfying (4.14), we have

|u′(x)| ≤ |ε|√
1− ε

(y′(x))ε+1

√
4 + 6y(x) + 6y(x)2

(1 + y(x)2)2
.
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Letting ε = −1 and using the fact that the maximum value of the radicand
expression occurs wheny = y(x) ≈ 0.4299, we obtain, at anyx satisfying
(4.14),

|u′(x)| ≤ max

(
1,

√
2

3
(2.34026)

)
= 1.9108 .

A lower boundL for c is therefore given by

L = (1.9108)−1 = 0.5233 .

Clearly,L ≤ c = 0.7921 holds.

Example 4.8. We now consider an example wherelim
x→c−

y(x) = −∞ with A =

y(x0) > 0. Consider the IVP

y′′(x) = −2y(x)− 2(y(x))3, y
(
−π

4

)
= 1, y′

(
−π

4

)
= −2 .

The exact solution isy = − tan x with c = π
2
≈ 1.571. The transformation

Y (x) = −y(x) produces the IVP

Y ′′(x) = 2Y (x) + 2(Y (x))3, Y
(
−π

4

)
= −1, Y ′

(
−π

4

)
= 2 .

We may use the same operatoru(x) = eεY (x), ε < 0, used in Theorem4.2
earlier. Proceeding as in the proof of Theorem4.2 (we omit details), a lower
bound forc is the unique root of

(4.15)
(
x +

π

4

)
g(x) = e−ε ,
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where
g(x) = max

(
−2εe−ε,

√
−ε M(ε)

)
,

M(ε) = sup
t≥−1

|2t + 2t3|1/2eεt .

Unlike earlier, there is no clearcut choice forε < 0. LetL(ε) denote the lower
bound which is the root of (4.15), givenε < 0. We thus determinedε0 < 0
satisfying

L(ε0) = sup
ε<0

L(ε) .

This foundε0 = −0.353 with a best lower bound ofL(ε0) = 0.0562. Clearly,
L(ε0) ≤ c holds. However, it is probable that other operators can be found
which will produce better lower bounds. The presence of an inflection point in
the solution may contribute to the poor bounds obtained here. Table5 below
gives the values ofL(ε) for various values ofε < 0, includingε = ε0, to see the
dependence of the lower boundL(ε) on the ‘operator parameter’ε. In a future

ε −2.00 −1.75 −1.50 −1.25 −1.00
L(ε) −0.535 −0.500 −0.452 −0.385 −0.286

ε −0.75 −0.50 −0.40 −0.36 −0.353
L(ε) −0.208 −0.085 +0.005 +0.048 +0.056

ε −0.35 −0.34 −0.30 −0.20 −0.10
L(ε) +0.048 +0.018 −0.101 −0.367 −0.595

Table 5:
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paper, we shall discuss more general formulas for lower bounds ofc, including
the caseA > 0, lim

x→c
y(x) = −∞ in the Emden-Fowler case.

Many more examples of IVPs which are handled only by the methods of this
paper could be given. Some will be given in forthcoming papers of third and
higher order IVPs and BVPs.
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5. Concluding Remarks
In this paper, we have presented several methods, including a bounded operator
approach, for finding bounds for the vertical asymptotec of a solution to a
given IVP. In some instances, the new bounds are the only bounds available. In
other cases, new bounds improve on bounds of previous authors in some cases.
Although the new bounds are sometimes for a less general IVP than considered
by Bobisud [5], they handle some cases where the coefficient functionp(x) has
a left endpoint singularity and some cases wherey(x0) = A ≤ 0 (the case
A < 0 to be discussed in a forthcoming paper in the generalized Emden-Fowler
case).

5.1. Possibilities for Future Research

(1) Can an upper bound forc be found in the caseA = 0 and θ < 0 in
Theorems3.1, 3.2and3.6?

(2) The Runge-Kutta (4,4) method does not seem too efficient when numeri-
cally approximating the solution to an IVP near a vertical asymptote. Can
a modification of Runge-Kutta (4,4) (or other RK) be used to improve ef-
ficiency in this case?

(3) Can the interval analysis methods given in Moore [24] be used in conjunc-
tion with lower bounds forc to get improved bounds forc (both upper and
lower)?

Other operators of use but not discussed in this paper areu = (y+a(x−x0))
ε,

u = (y+ by′+ c)ε, u = eδy+y′, u = (y′)δ1(y)δ2 , andu = [y(x)]εy(x), if y(x) ≥ 1.
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In each case, we try to bound|u′(x)| at a value ofx whereu′′(x) = 0, if any, and
examine what happens asx → x∗, x∗ or c. Lower bounds can almost always be
found by a judicious choice of the operator ‘parameters’, which areε, δ, δ1, δ2

above. The parameters are chosen to eliminate, as much as possible, having to
know they(x) value at a certainx, so that we may (a priori) bound|u′(x)|, at
thosex values whereu′′(x) = 0 and atx = x0, x∗, x∗, possibly.

The methods in this paper can be extended to handle:

(1) 3rd and higher order generalized Emden-Fowler IVPs, (details to come in
a forthcoming paper)

(2) problems with derivative blow-up and other IVPs which have noncontinu-
able solutions

(3) boundary value problems

(4) IVPs with horizontal asymptotes present in their solutions.

However, there are some extra complications in the above problems. The
author will report on further research on these topics in the future.
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