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Abstract

In this paper, we prove some explicit upper bounds for the average order of the
generalized divisor function, and, according to an idea of Lenstra, we use them
to obtain bounds for the class number of number fields.
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1. Introduction
Let K be a number field of degreen, signature(r1, r2) , discriminantd (K) ,

Minkowski boundb (K) := b =
(

n!
nn

) (
4
π

)r2 |d (K)|
1
2 and class numberh (K) .

We denote byOK the ring of algebraic integers ofK. We are interested here in
finding explicit upper bounds forh (K) of the type

h (K) ≤ ε (n) |d (K)|
1
2 (log |d (K)|)n−1 ,

whereε (n) is a positive constant depending onn, andlog is the natural logarithm.
There are several methods to get such bounds forh (K) : Roland Quême in

[8] used the geometry of numbers to prove that ifb > 17,

R (K)h (K) ≤ w (K)

(
2

π

)r2

|d (K)|
1
2 (2 log b)n ,

whereR (K) is the regulator ofK, andw (K) is the number of roots of unity in
K.

In [5], Stéphane Louboutin proved, by using analytic methods, that

R (K)h (K) ≤ w (K)

2

(
2

π

)r2

|d (K)|
1
2

(
e log |d (K)|
4 (n− 1)

)n−1

,

and, ifK is a totally real abelian extension ofQ,

R (K)h (K) ≤ d (K)
1
2

{
log d (K)

4 (n− 1)
+ 0.025

}n−1

.

http://jipam.vu.edu.au/
mailto:borde43@wanadoo.fr
http://jipam.vu.edu.au/


Explicit Upper Bounds for the
Average Order of dn (m) and
Application to Class Number

Olivier Bordellès

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 35

J. Ineq. Pure and Appl. Math. 3(3) Art. 38, 2002

http://jipam.vu.edu.au

The methods used to get these bounds are very deep, but it is necessary to
compute the regulator (which is usually not easy), or use the Zimmert’s lower
bound forR (K) (see [11]):

R (K) ≥ 0.02w (K) e0.46r1+0.1r2 .

We want to prove some inequalities involvingh (K) in an elementary way:
we have

h (K) ≤ |{a : integral ideal ofOK, N (a) ≤ b}| ,

whereN (a) denotes the absolute norm ofa, and, using an idea of H.W. Lenstra
(see [4]), we can see, by considering how prime numbers can split inK, that,
for each positive integerm, the number of integral idealsa of absolute normm
is bounded by the number of solutions of the equation

a1a2 · · · an = m (ai ∈ N∗) .

Lenstra deduced that

(1.1) h (K) ≤ |{(a1, . . . , an) ∈ (N∗)n , a1a2 · · · an ≤ b}| .

Now the idea is to work with the generalized divisor functiondn, since(1.1)
is equivalent to:

Lemma 1.1. Let K be a number field of degreen ≥ 2, andb be the Minkowski
bound ofK. Then:

h (K) ≤
∑
m≤b

dn (m) .
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In an oral communication, J.L. Nicolas and G. Tenenbaum proved that, for
any integern ≥ 1 and any real numberx ≥ 1,

(1.2)
∑
m≤x

dn (m) ≤ x

(n− 1)!
(log x+ n− 1)n−1 .

(one can prove this inequality by induction).
Hence, by Lemma1.1and (1.2), we get Lenstra’s result, namely:

h (K) ≤ b

(n− 1)!
(log b+ n− 1)n−1 .
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2. Notation
We mention here some notation that will be used throughout the paper:

General. m,n, r, s will always denote positive integers,x a real number≥ 1,
and[x] denote the integral part ofx, the unique integer satisfyingx− 1 < [x] ≤
x.

• ψ (x) := x− [x]− 1
2
, ande (x) := e2iπx. ψ is 1-periodic and|ψ (x)| ≤ 1

2
.

• γ ≈ 0.5772156649015328606065120900... is the Euler constant.

• For any finite setE , |E| denotes the number of elements inE .

On number fields. K is a number field of degreen ≥ 2, signature(r1, r2) ,

discriminantd (K) , Minkowski boundb =
(

n!
nn

) (
4
π

)r2 |d (K)|
1
2 , class number

h (K).

On arithmetical functions. By 1, we mean the arithmetical function defined by
1 (m) = 1 for any positive integerm.

The generalized divisor functiondn is defined by

d1 (m) = 1, dn (m) :=
∑

a1a2···an=m

1 (n ≥ 2) ,

and, ifn = 2, we simply denote it byd (m) .
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If f andg are two arithmetical functions, the Dirichlet convolution product
of f andg is defined by

(f ∗ g) (m) :=
∑
δ|m

f (δ) g
(m
δ

)
.
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3. Basic Properties of the Generalized Divisor Func-
tion

The properties of the generalized divisor function can be found in [5], [9] and
[10]. For our purpose, we only need to know thatdn is multiplicative (i.e.
dn (rs) = dn (r) dn (s) whenevergcd (r, s) = 1) and, for any prime numberp
and any non-negative integerl, we have :

dn

(
pl
)

=

(
n+ l − 1

l

)
,

where
(

a
b

)
denotes a binomial coefficient ([9], equality(4)).

It’s important to note that we have

(3.1) dn = 1 ∗ 1 ∗ ... ∗ 1︸ ︷︷ ︸
n times

(n ≥ 1) .

One knows that the average order ofdn (m) is∼ (logm)n−1 / (n− 1)! : to
see this, one can use the following result ([9], equality(18)):∑

m≤x

dn (m) = x (log x)n−1

{
1

(n− 1)!
+O

(
1

log x

)}
(x > 1, n ≥ 2) .

Our aim is to compute several constantsκ (n) depending (or not) onn such that∑
m≤x

dn (m) ≤ κ (n)x (log x)n−1 .

We will need the following lemma:
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Lemma 3.1. Letx ≥ 1. Then:∑
m≤x

1

m
= log x+ γ − ψ (x)

x
+

ε

x2
with |ε| ≤ 1

4
.

This result is well-known, and a proof can be found in [2].
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4. Results
Theorem 4.1.Letn ≥ 1 be an integer andx ≥ 1 a real number. Then:

∑
m≤x

dn (m) ≤ x

(
log x+ γ +

1

x

)n−1

.

Theorem 4.2.Letn ≥ 1 be an integer andx ≥ 6 a real number. Then:∑
m≤x

dn (m) ≤ 2x (log x)n−1 .
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5. Application to Class Number
Theorem 5.1. Let K be a number field of degreen, Minkowski boundb and
class numberh (K) . Then:

h (K) ≤ b
(
log b+ γ + b−1

)n−1
.

Theorem 5.2. Let K be a number field of degreen ≥ 2, Minkowski boundb
and class numberh (K) . Then, ifb ≥ 6,

h (K) ≤ 2b (log b)n−1 .

Theorem 5.3. Let K be a number field of degreen, discriminantd (K) and
class numberh (K) . Then :

h (K) ≤ 2n−1

(n− 1)!
|d (K)|

1
2 (log |d (K)|)n−1 .

More generally, ifa > 0 is satisfyinga ≥ 2 (n− 1) / (log |d (K)|) , then

h (K) ≤
(
a+ 1

2

)n−1 |d (K)|
1
2

(n− 1)!
(log |d (K)|)n−1 .
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6. Proofs of the Theorems
In the following proofs, we set

Sn (x) :=
∑
m≤x

dn (m) .

Proof of Theorem4.1.

Sn (x) =
∑
m≤x

∑
a1....an=m

1 =
∑
a1≤x

∑
a2≤x

...
∑

an≤x/(a1...an−1)

1

≤
∑
a1≤x

...
∑

an−1≤x

x

a1...an−1

= x

(∑
a≤x

1

a

)n−1

,

and we use Lemma3.1to conclude the proof.

Proof of Theorem4.2. 1. We first note that, since

Sn (t) =



1, if 1 ≤ t < 2,

n+ 1, if 2 ≤ t < 3,

2n+ 1, if 3 ≤ t < 4,

(n2+5n+2)
2

, if 4 ≤ t < 5,

(n2+7n+2)
2

, if 5 ≤ t < 6,

(3n2+7n+2)
2

, if 6 ≤ t < 7,

(3n2+9n+2)
2

, if 7 ≤ t < 8,

http://jipam.vu.edu.au/
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then∫ e2

1

t−2Sn (t) dt =

(
7

24
− 3e−2

2

)
n2 +

(
1093

840
− 9e−2

2

)
n+ 1− e−2,

and then, ifn ≥ 2,

(6.1)
∫ e2

1

t−2Sn (t) dt <
2n2

3
.

2. Let x ≥ 6, n ≥ 1. The theorem is true ifn = 1, sinceS1 (x) = [x] ≤ x,
so we prove the result forn ≥ 2.

We first check that the theorem is true when6 ≤ x < e2. Indeed, in this
case, we have

2x (log x)n−1 ≥ 12 (log 6)n−1 > 4n2 ≥ 3n2 + 9n+ 2

2
= Sn

(
e2
)
≥ Sn (x) .

so we can suppose thatx ≥ e2 andn ≥ 2.

We prove the inequality by induction : ifn = 2,

S2 (x) =
∑
r≤x

∑
s≤x/r

1 ≤ x log x+ x ≤ 2x log x.

Assume it is true for somen ≥ 2. By (3.1), we have:

Sn+1 (x) =
∑
m≤x

(dn ∗ 1) (m)

http://jipam.vu.edu.au/
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=
∑
m≤x

∑
δ|m

dn (δ)

=
∑
δ≤x

dn (δ)
[x
δ

]
≤ x

∑
δ≤x

dn (δ)

δ

= x

∫ x

1−

t−1d (Sn (t))

= Sn (x) + x

∫ x

1

t−2Sn (t) dt

= Sn (x) + x

∫ e2

1

t−2Sn (t) dt+ x

∫ x

e2

t−2Sn (t) dt.

Using (6.1) and induction hypothesis, we get

Sn+1 (x) ≤ 2x (log x)n−1 +
2n2x

3
+ 2x

∫ x

e2

t−1 (log t)n−1 dt

=
2x

n
(log x)n + x

{
2 (log x)n−1 +

2n2

3
− 2n+1

n

}
= 2x (log x)n − xfn (x) ,

where

fn (x) :=

(
2− 2

n

)
(log x)n −

{
2 (log x)n−1 +

2n2

3
− 2n+1

n

}
.
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Now we have

fn (x) ≥ fn

(
e2
)

= 2n − 2n2

3
≥ 0,

hence
Sn+1 (x) ≤ 2x (log x)n .

This concludes the proof of Theorem4.2.

Proof of Theorems5.1& 5.2. Direct applications of Theorems4.1and4.2.

Proof of Theorem5.3. Let a > 0, and supposex ≥ e(n−1)/a. Thenn − 1 ≤
a log x, and, using (1.2),

(6.2) Sn (x) ≤ (a+ 1)n−1

(n− 1)!
x (log x)n−1 .

Now, Sinceb < |d (K)|
1
2 , we have, by Lemma1.1,

h (K) ≤
∑

m≤|d(K)|1/2

dn (m) .

We then use the inequality ([6], Lemma 10)

|d (K)| ≥ e2(n−1)/3

and (6.2) with a = 3 to get the first part of Theorem5.3.
The 2nd part comes directly from (6.2). This concludes the proof of Theorem

5.3.
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7. Using the Convolution Relation in a Different
Way

We now want to prove another bound, using the Dirichlet hyperbola principle:

Theorem 7.1. Let K be a number field of degreen, Minkowski boundb and
class numberh (K) . Then, ifb ≥ 36,

(i) n = 2p (p ≥ 1) ,

h (K) ≤ b

2p−2 (p− 1)!
(log b)p (log b+ p− 1)p−1 ,

(ii) n = 2p+ 1 (p ≥ 1) ,

h (K) ≤ b

2p (p− 1)!
(log b)p

{
log b (log b+ p− 1)p−1 +

(
2

p

)
(log b+ p)p

}
.

We first need the following result:

Lemma 7.2. Letx ≥ 6 be a real number andk ≥ 1 an integer. Then:∑
m≤x

dk (m)

m
≤ 2 (log x)k .

Proof. The result is true ifk = 1, so we supposek ≥ 2. Suppose first that

http://jipam.vu.edu.au/
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x ≥ e2. By partial summation, we can write, using Theorem4.2,∑
m≤x

dk (m)

m
= x−1Sk (x) +

∫ x

1

t−2Sk (t) dt

≤ 2 (log x)k−1 +

∫ e2

1

t−2Sk (t) dt + 2

∫ x

e2

t−1 (log t)k−1 dt

<
2

k
(log x)k + 2 (log x)k−1 +

2k2

3
− 2k+1

k
,

and one can check that

2 (log x)k−1 +
2k2

3
− 2k+1

k
≤
(

3

2
− 1

k

)
(log x)k

if x ≥ e2 andk ≥ 2, hence∑
m≤x

dk (m)

m
≤
(

3

2
+

1

k

)
(log x)k ≤ 2 (log x)k .

Now, if 6 ≤ x < e2 andk ≥ 2, we get

2 (log x)k ≥ 2 (log 6)k

>
6k2

5

>
1

840

(
245k2 + 1093k + 840

)
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=
∑
m≤e2

dk (m)

m

≥
∑
m≤x

dk (m)

m
,

which concludes the proof of Lemma7.2.

Proof of Theorem7.1. Let x ≥ 36 be a real number. Ifn = 2p is even, using
(3.1) again, we can write:∑

m≤x

dn (m) =
∑
m≤x

(
dn/2 ∗ dn/2

)
(m) =

∑
m≤x

(dp ∗ dp) (m) ,

and, by the Dirichlet hyperbola principle, we get, for any real numberT satis-
fying 1 ≤ T ≤ x,∑

m≤x

dn (m) ≤
∑
m≤T

dp (m)
∑

r≤x/m

dp (r) +
∑

m≤x/T

dp (m)
∑

r≤x/m

dp (r) ,

and then, using (1.2),

∑
m≤x

dn (m) ≤ x

(p− 1)!

{∑
m≤T

dp (m)

m

(
log

x

m
+ p− 1

)p−1

+
∑

m≤x/T

dp (m)

m

(
log

x

m
+ p− 1

)p−1

 ,
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and, with Lemma7.2, if min
(
T, x

T

)
≥ 6, we get

∑
m≤x

dn (m) ≤ 2x (log x+ p− 1)p−1

(p− 1)!

{
(log T )p +

(
log
( x
T

))p}
,

and we chooseT = x
1
2 (somin

(
T, x

T

)
= x

1
2 ≥ 6) to conclude the proof.

If n = 2p+ 1 is odd, then we write:∑
m≤x

dn (m) =
∑
m≤x

(
d(n−1)/2 ∗ d(n+1)/2

)
(m) =

∑
m≤x

(dp ∗ dp+1) (m) .
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8. Case of Quadratic Fields
We suppose in this section thatK = Q

(√
d
)
, whered ∈ Z\{0, 1} is supposed

to be squarefree. We denote here∆ the discriminant andh (d) the class number.
We recall that:

∆ =


d, if d ≡ 1 (mod 4) ,

4d, if d ≡ 2 or 3 (mod 4) .

The problem of the class number is in this case utterly resolved: for example,
if d < −4, we have (see [1], Corollary 5.3.13)

h (d) =

{
2−

(
d

2

)}−1 ∑
16k<|d|/2

(
d

k

)
,

where
(

d
k

)
represents the Kronecker-Jacobi symbol. Nevertheless, we think it

would be interesting to have upper bounds forh (d).
We also note that, by [3], we can replace, in Lemma1.1, the Minkowski

boundb by the boundβ defined by:

β :=


√

∆/8, if ∆ ≥ 8,√
−∆/3, if ∆ < 0.

We can see that the problem of the class number of a quadratic field is then
connected with that of having good estimations of the error-term

R (x) :=
∑
m≤x

d (m)− x (log x+ 2γ − 1)
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(Dirichlet divisor problem).

One can prove in an elementary way thatR (x) = O
(
x

1
2

)
(see below).

Voronoï proved thatR (x) = O
(
x

1
3 log x

)
. If we use the technique of exponent

pairs (see [2]), we can haveR (x) = O
(
x

27
82

)
. By using very sophisticated

technics, Huxley succeeded in proving thatR (x) = O
(
x

23
73 (log x)

461
146

)
.

The following result is well-known, but, to make our exposition self-contained,
we include the proof:

Lemma 8.1. Letx ≥ 1. Then :

∑
m≤x

d (m) ≤ x (log x+ 2γ − 1) + 2

∣∣∣∣∣∣
∑

m≤x1/2

ψ
( x
m

)∣∣∣∣∣∣+ 3

4
.

Proof. By the Dirichlet hyperbola principle, we have:∑
m≤x

d (m) =
∑
rs≤x

1

=
∑

r≤x1/2

∑
s≤x/r

1 +
∑

s≤x1/2

∑
r≤x/s

1−
∑

r≤x1/2

∑
s≤x1/2

1

= 2
∑

r≤x1/2

∑
s≤x/r

1−
[√
x
]2

= 2
∑

r≤x1/2

[x/r]−
(√

x− ψ
(√

x
)
− 1

2

)2
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= 2
∑

r≤x1/2

(
x/r − ψ (x/r)− 1

2

)
− x− ψ2

(√
x
)

− 1

4
+ 2ψ

(√
x
)√

x+
√
x− ψ

(√
x
)
,

and, by using Lemma3.1, we get∑
m≤x

d (m) = 2x

(
1

2
log x+ γ − x−

1
2ψ
(√

x
)

+ εx−1

)
− 2

∑
r≤x1/2

ψ
(x
r

)
−
√
x+ ψ

(√
x
)

+
1

2
− x− ψ2

(√
x
)

− 1

4
+ 2ψ

(√
x
)√

x+
√
x− ψ

(√
x
)

= x (log x+ 2γ − 1) + 2ε+
1

4
− ψ2

(√
x
)
− 2

∑
r≤x1/2

ψ
(x
r

)
,

and we conclude by noting that|ε| ≤ 1
4

and
∣∣1
4
− ψ2 (

√
x)
∣∣ ≤ 1

4
if x ≥ 1.

Corollary 8.2. Letx ≥ 1. Then:∑
m≤x

d (m) ≤ x (log x+ 2γ − 1) +
√
x+

3

4
.

Proof. Use|ψ (t)| ≤ 1
2

in Lemma8.1.

We get, using Lemma1.1:
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Corollary 8.3. LetK = Q
(√

d
)

be a quadratic field of discriminant∆. Then:

h (d) ≤


√

∆
8

{
1
2
log ∆ + 2γ − 1− 3

2
log 2

}
+
(

∆
8

) 1
4 + 3

4
, if ∆ ≥ 8,√

−∆
3

{
1
2
log (−∆) + 2γ − 1− 1

2
log 3

}
+
(
−∆

3

) 1
4 + 3

4
, if ∆ < 0.

Example 8.1. If d = 13693, then, using PARI system (see [1]), we geth (d) =
15. The bound of Corollary8.3gives

h (d) < 166.

Example 8.2. If d = −300119, then we haveh (d) = 781, and Corollary8.3
gives

h (d) < 1889.

For bigger discriminants, it could be interesting to have a lower exponent on
the error-term. We want to prove this explicit version of Voronoï’s theorem:

Lemma 8.4. Letx ≥ 3. Then:∣∣∣∣∣∣
∑

m≤x1/2

ψ
( x
m

)∣∣∣∣∣∣ < 6x
1
3 log x.

We first need an effective version of Van Der Corput inequality:

Lemma 8.5. Letf ∈ C2 ((N ; 2N ] 7→ R) . If there exist real numbersc ≥ 1 and
λ2 > 0 satisfying

λ2 ≤ f ′′ (x) ≤ cλ2 (N < x ≤ 2N) ,
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then: ∣∣∣∣∣ ∑
N<m≤2N

e (±f (m))

∣∣∣∣∣ ≤ 4π−
1
2

{
cNλ

1
2
2 + 2λ

− 1
2

2

}
.

Proof. We first prove the following result:
Let f ∈ C2 ([N ; 2N ] 7→ R) satisfying

(i) f ′ (x) /∈ Z if N < x < 2N,

(ii) there existsλ2 ∈
(
0; 1

π

]
verifyingf ′′ (x) ≥ λ2 (N ≤ x ≤ 2N) .

Then:

(8.1)

∣∣∣∣∣ ∑
N≤m≤2N

e (±f (m))

∣∣∣∣∣ ≤ 4π−
1
2 λ

− 1
2

2 .

Since ∣∣∣∣∣ ∑
N≤m≤2N

e (−f (m))

∣∣∣∣∣ =

∣∣∣∣∣ ∑
N≤m≤2N

e (f (m))

∣∣∣∣∣ ,
we shall prove (8.1) just for f, and sincef ′′ (x) > 0 for x ∈ [N ; 2N ] , f ′ is a
strictly increasing function.

Let x be a real number satisfying0 < x < 1
2
. By (i) , we can define real

numbersu, v,N1, N2 such thatu := f ′ (N) , v := f ′ (2N) , and f ′ (N1) =
[u] + x, f ′ (N2) = [u] + 1− x. We have :∑
N≤m≤2N

e (f (m)) =
∑

N≤m<N1

e (f (m))+
∑

N1≤m≤N2

e (f (m))+
∑

N2<m≤2N

e (f (m)) ,
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with∣∣∣∣∣ ∑
N≤m<N1

e (f (m))

∣∣∣∣∣ ≤ max {N1 −N, 1} = max

{
f ′ (N1)− f ′ (N)

f ′′ (ξ)
, 1

}
for some real numberξ ∈ (N ;N1) , then, by(ii) ,∣∣∣∣∣ ∑

N≤m<N1

e (f (m))

∣∣∣∣∣ ≤ max

{
[u] + x− u

λ2

, 1

}
≤ max

{
x

λ2

, 1

}
,

and we have the same for∣∣∣∣∣ ∑
N2<m≤2N

e (f (m))

∣∣∣∣∣ ≤ max

{
v + x− [u]− 1

λ2

, 1

}
≤ max

{
x

λ2

, 1

}
,

and we use Kusmin-Landau inequality (see [7]) to get∣∣∣∣∣ ∑
N1≤m≤N2

e (f (m))

∣∣∣∣∣ ≤ cot
(πx

2

)
≤ 2

πx
.

We then have: ∣∣∣∣∣ ∑
N≤m≤2N

e (f (m))

∣∣∣∣∣ ≤ 2 max

{
x

λ2

, 1

}
+

2

πx
.

We then choosex =
(

λ2

π

) 1
2 , so x

λ2
= (πλ2)

− 1
2 ≥ 1 if λ2 ≤ π−1, and we get∣∣∣∣∣ ∑

N≤m≤2N

e (f (m))

∣∣∣∣∣ ≤ 4π−
1
2λ

− 1
2

2 .
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We are now ready to prove Lemma8.5:

If λ2 >
1
π
, then4π−

1
2 cNλ

1
2
2 > 4π−1N > N , so we supposeλ2 ≤ 1

π
.

We takeu, v as above, and we define

[u; v] ∩ Z := {l + 1, ..., l +K}

for some integerl and positive integerK, and define

Jk := {m ∈ Z, l + k − 1 < m ≤ l + k} ∩ [u; v] (1 ≤ k ≤ K + 1) .

We have, by (8.1),∣∣∣∣∣ ∑
N<m≤2N

e (f (m))

∣∣∣∣∣ ≤
K+1∑
k=1

∣∣∣∣∣∑
m∈Jk

e (f (m))

∣∣∣∣∣ ≤ 4π−
1
2 (K + 1)λ

− 1
2

2 ,

and, by the mean value theorem,

K − 1 ≤ v − u = f ′ (2N)− f ′ (N) ≤ cNλ2,

thus ∣∣∣∣∣ ∑
N<m≤2N

e (f (m))

∣∣∣∣∣ ≤ 4π−
1
2 (cNλ2 + 2)λ

− 1
2

2 .

This concludes the proof of Lemma8.5.

Proof of Lemma8.4. We write∣∣∣∣∣∣∣
∑

m≤x
1
2

ψ
( x
m

)∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑

m≤2x1/3

ψ
( x
m

)
+

∑
2x1/3<m≤x

1
2

ψ
( x
m

)∣∣∣∣∣∣∣ ≤ x
1
3 + |Σ| .
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We then split the interval
(
2x

1
3 ;x

1
2

]
into sub-intervals of the form(N ; 2N ] with

2x
1
3 < N ≤ x

1
2 : the numberJ of such intervals satisfies

2J−1N ≤ x
1
2 < 2JN,

and sinceN > 2x
1
3 , we have

J =

 log
(
x

1
2/N

)
log 2

+ 1

 < log x

6 log 2
.

We then have :

|Σ| ≤ max
2x1/3<N≤x1/2

∣∣∣∣∣ ∑
N<m≤2N

ψ
( x
m

)∣∣∣∣∣ log x

6 log 2
.

Moreover, using Erdös-Turán inequality (see AppendixA), we get, for any pos-
itive integerH,∣∣∣∣∣ ∑

N<m≤2N

ψ
( x
m

)∣∣∣∣∣
≤ N

2H
+

1

π

{
H∑

h=1

1

h

∣∣∣∣∣ ∑
N<m≤2N

e

(
hx

m

)∣∣∣∣∣+H
∑
h>H

1

h2

∣∣∣∣∣ ∑
N<m≤2N

e

(
hx

m

)∣∣∣∣∣
}
,
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so, by Lemma8.5, with λ2 = hx/ (4N3) andc = 8, we get∣∣∣∣∣ ∑
N<m≤2N

ψ
( x
m

)∣∣∣∣∣ ≤ N

2H
+ 16π−

3
2

{
H∑

h=1

(
x

1
2 (Nh)−

1
2 +

(
Nh−1

) 3
2 x−

1
2

)
+H

∑
h>H

(
x

1
2

(
Nh3

)− 1
2 +N

3
2x−

1
2h−5/2

)}

≤ N

2H
+ 16π−

3
2

{
2
(
xHN−1

) 1
2 + ζ

(
3

2

)
N

3
2x−

1
2

+ H

∫ ∞

H

(( x
N

) 1
2
t−

3
2 +

(
N3

x

) 1
2

t−5/2

)
dt

}

≤ N

2H
+ 16π−

3
2

{
4
(
xHN−1

) 1
2 +

(
ζ

(
3

2

)
+ 2/3

)
N

3
2x−

1
2

}
,

whereζ
(

3
2

)
:=
∑∞

k=1 k
− 3

2 . The well-known boundζ (σ) ≤ σ/ (σ − 1) (σ > 1)
givesζ

(
3
2

)
+ 2

3
≤ 11

3
< 4, hence∣∣∣∣∣ ∑

N<m≤2N

ψ
( x
m

)∣∣∣∣∣ ≤ N

2H
+ 64π−

3
2

{(
xHN−1

) 1
2 +N

3
2x−

1
2

}
.

We then choose
H =

[
2−1Nx−

1
3

]
.

Considering the inequality1/ [y] ≤ 2/y (y ≥ 1) , we get∣∣∣∣∣ ∑
N<m≤2N

ψ
( x
m

)∣∣∣∣∣ ≤ (64π−
3
2 2−

1
2 + 2

)
x

1
3 + 64π−

3
2N

3
2x−

1
2 ,
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and

|Σ| ≤
{(

64π−
3
2 2−

1
2 + 2

)
x

1
3 + 64π−

3
2x

1
4

} log x

6 log 2
,

and sincex ≥ 3, x
1
4 ≤ 3−1/12x

1
3 , then

|Σ| ≤
{

64π−
3
2

(
2−

1
2 + 3−

1
12

)
+ 2
} x 1

3 log x

6 log 2
< 5x

1
3 log x.

We obtain with Lemma1.1:

Corollary 8.6. LetK = Q
(√

d
)

be a quadratic field of discriminant∆. Then:

h (d) ≤



√
∆/8

{
1
2
log ∆ + 2γ − 1− 3

2
log 2

}
+6 (∆/8)1/6 log (∆/8) + 3

4
, if ∆ ≥ 72,√

−∆/3
{

1
2
log (−∆) + 2γ − 1− 1

2
log 3

}
+6 (−∆/3)1/6 log (−∆/3) + 3

4
, if ∆ < −27.

http://jipam.vu.edu.au/
mailto:borde43@wanadoo.fr
http://jipam.vu.edu.au/


Explicit Upper Bounds for the
Average Order of dn (m) and
Application to Class Number

Olivier Bordellès

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 30 of 35

J. Ineq. Pure and Appl. Math. 3(3) Art. 38, 2002

http://jipam.vu.edu.au

A. Appendix
We want to show here this special form of the Erdös-Turán inequality used in
this paper:

Theorem A.1. LetH,N be positive integers, andf : (N ; 2N ] 7→ R be any
function. Then:∣∣∣∣∣ ∑

N<m≤2N

ψ (f (m))

∣∣∣∣∣
≤ N

2H
+

1

π

{
H∑

h=1

1

h

∣∣∣∣∣ ∑
N<m≤2N

e (hf (m))

∣∣∣∣∣+H
∑
h>H

1

h2

∣∣∣∣∣ ∑
N<m≤2N

e (hf (m))

∣∣∣∣∣
}
.

Proof. For any positive integersh andH, we set

c (h,H) :=
H

2πih

∫ 1/H

0

e (−ht) dt.

1. We first note that

(A.1) |c (h,H)| ≤ 1

2π
min

(
1

h
,
H

h2

)
.

Indeed, ifh ≤ H, then

|c (h,H)| ≤ H

2πh

∫ 1/H

0

|e (−ht)| dt =
1

2πh
,
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and ifh > H, then the first derivative test gives

|c (h,H)| ≤ H

2πh

∣∣∣∣∣
∫ 1/H

0

e (−ht) dt

∣∣∣∣∣ ≤ H

2πh
· 2

πh
=

H

(πh)2 <
H

2πh2
.

2. Let x, t be any real numbers. Sinceψ (x) ≤ ψ (x− t) + t, we get∫ 1/H

0

ψ (x) dt ≤
∫ 1/H

0

(ψ (x− t) + t) dt,

and then

(A.2) ψ (x) ≤ H

∫ 1/H

0

ψ (x− t) dt+
1

2H
.

The partial sums of the series
∑

h≥1 {− sin (2πhx) / (hπ)} are uniformly
bounded, hence∫ 1/H

0

ψ (x− t) dt

= − 1

π

∞∑
h=1

1

h

∫ 1/H

0

sin (2πh (x− t)) dt

= − 1

2πi

∞∑
h=1

1

h

∫ 1/H

0

{e (hx) e (−ht)− e (−hx) e (ht)} dt

= − 1

2πi

∞∑
h=1

e (hx)

h

∫ 1/H

0

e (−ht) dt− 1

2πi

∞∑
h=1

e (−hx)
−h

∫ 1/H

0

e (ht) dt
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= −
∑

h∈Z, h 6=0

e (hx)

2πih

∫ 1/H

0

e (−ht) dt = − 1

H

∑
h∈Z, h 6=0

c (h,H) e (hx) ,

hence, using (A.2),

ψ (x) ≤ 1

2H
−

∑
h∈Z, h 6=0

c (h,H) e (hx) ,

and ∑
N<m≤2N

ψ (f (m)) ≤ N

2H
−

∑
h∈Z, h 6=0

c (h,H)
∑

N<m≤2N

e (hf (m))

≤ N

2H
+ 2

∣∣∣∣∣
∞∑

h=1

c (h,H)
∑

N<m≤2N

e (hf (m))

∣∣∣∣∣ ,
hence

(A.3)
∑

N<m≤2N

ψ (f (m)) ≤ N

2H
+2

∞∑
h=1

|c (h,H)|

∣∣∣∣∣ ∑
N<m≤2N

e (hf (m))

∣∣∣∣∣ .
3. Since we also haveψ (x) ≥ ψ (x+ t)− t, we get in the same way∑

N<m≤2N

ψ (f (m)) ≥ − N

2H
+

∑
h∈Z, h 6=0

c (h,H)
∑

N<m≤2N

e (−hf (m))

≥ − N

2H
− 2

∣∣∣∣∣
∞∑

h=1

c (h,H)
∑

N<m≤2N

e (−hf (m))

∣∣∣∣∣
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≥ − N

2H
− 2

∞∑
h=1

|c (h,H)|

∣∣∣∣∣ ∑
N<m≤2N

e (−hf (m))

∣∣∣∣∣ ,
and sincee (−hf (m)) = e (hf (m)), we obtain

(A.4)
∑

N<m≤2N

ψ (f (m))

≥ − N

2H
− 2

∞∑
h=1

|c (h,H)|

∣∣∣∣∣ ∑
N<m≤2N

e (hf (m))

∣∣∣∣∣ .
The inequalities (A.3) and (A.4) give∣∣∣∣∣ ∑

N<m≤2N

ψ (f (m))

∣∣∣∣∣ ≤ N

2H
+ 2

∞∑
h=1

|c (h,H)|

∣∣∣∣∣ ∑
N<m≤2N

e (hf (m))

∣∣∣∣∣
=

N

2H
+ 2

{
H∑

h=1

|c (h,H)|

∣∣∣∣∣ ∑
N<m≤2N

e (hf (m))

∣∣∣∣∣
+
∑
h>H

|c (h,H)|

∣∣∣∣∣ ∑
N<m≤2N

e (hf (m))

∣∣∣∣∣
}
,

and we use (A.1).

http://jipam.vu.edu.au/
mailto:borde43@wanadoo.fr
http://jipam.vu.edu.au/


Explicit Upper Bounds for the
Average Order of dn (m) and
Application to Class Number

Olivier Bordellès

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 34 of 35

J. Ineq. Pure and Appl. Math. 3(3) Art. 38, 2002

http://jipam.vu.edu.au

References
[1] H. COHEN, A course in computational algebraic number theory (3rd cor-

rected printing),Graduate Texts in Maths, 138, Springer-Velag (1996),
ISBN : 3-540-55640-0.

[2] S.W. GRAHAM AND G. KOLESNIK,Van der Corput’s Method of Expo-
nential Sums, Cambridge University Press (1991).

[3] F. LEMMERMEYER, Gauss bounds for quadratic extensions of imagi-
nary quadratic euclidian number fields,Publ. Math. Debrecen, 50 (1997),
365–368.

[4] H.W. LENSTRA Jr., Algorithms in algebraic number theory,Bull. Amer.
Math. Soc., 2 (1992), 211–244.

[5] S. LOUBOUTIN, Explicit bounds for residues of Dedekind zeta functions,
values ofL-functions ats = 1, and relative class number,J. Number The-
ory, 85 (2000), 263–282.
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