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ABSTRACT. It is known that in a strictly convex normed space, theB−orthogonality (Birkhoff
orthogonality) has the property, “B−orthogonality is unique to the left“. Using this property,
we introduce the definition of the so-calledB−angle between two vectors, in a smooth and
uniformly convex space. Also, we define the so-calledg−angle between two vectors. It is
demonstrated that theg−angle in a unilateral triangle, in a quasi-inner product space, isπ/3.
Theg−angle between a side and a diagonal, in a so-calledg−quandrangle, isπ/4.
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Let X be a real smooth normed space of dimension greater than 1. It is well known that the
functional

(1) g(x, y) := ‖x‖ lim
t→0

‖x + ty‖ − ‖x‖
t

(x, y ∈ X)

always exists (see [5]).
This functional is linear in the second argument and it has the following properties:

(2) g(αx, y) = αg(x, y) (α ∈ R), g(x, x) = ‖x‖2 , |g(x, y)| ≤ ‖x‖ ‖y‖ .

Definition 1 ([10]). A normed spaceX is a quasi-inner product space (q.i.p. space) if the
equality

(3) ‖x + y‖4 − ‖x− y‖4 = 8
[
‖x‖2 g(x, y) + ‖y‖2 g(y, x)

]
holds for allx, y ∈ X.

The space of sequencesl4 is aq.i.p. space, butl1 is not aq.i.p. space.
It is proved in [10] and [11] that aq.i.p. spaceX is very smooth, uniformly smooth, strictly

convex and, in the case of Banach spaces, reflexive.
The orthogonality of the vectorx 6= 0 to the vectory 6= 0 in a normed spaceX may be

defined in several ways. We mention some kinds of orthogonality and their notations:
• x⊥By ⇔ (∀λ ∈ R) ‖x‖ ≤ ‖x + λy‖ (Birkhoff orthogonality),
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2 PAVLE M. M ILI ČIĆ

• x⊥Jy ⇔ ‖x− y‖ = ‖x + y‖ (James orthogonality),

• x⊥Sy ⇔
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥ =
∥∥∥ x
‖x‖ + y

‖y‖

∥∥∥ (Singer orthogonality).

In the papers [8], [6] and [9], by using the functionalg, the following orthogonal relations
were introduced:

x⊥gy ⇔ g(x, y) = 0,

x
g

⊥ y ⇔ g(x, y) + g(y, x) = 0,

x⊥
g

y ⇔ ‖x‖2 g(x, y) + ‖y‖2 g(y, x) = 0.

In [6, Theorem 2] the following assertion is proved: IfX is smooth, thenx⊥gy ⇔ x⊥By.
In [11] we have proved the following assertion: IfX is aq.i.p. space, then

x⊥
g

y ⇔ x⊥Jy and x
g

⊥ y ⇔ x⊥Sy.

If there exists an inner product〈·, ·〉 in X, (i.p.), then it is easy to see thatxρy ⇔ 〈x, y〉 = 0
holds for every

ρ ∈
{
⊥B,⊥J ,⊥S,⊥g,

g

⊥, ⊥
g

}
.

For more onB−orthogonality andg−orthogonality, see the papers [1], [2], [13] and [14].
Some additional properties of this orthogonality are quoted below. Denote byP[x]y the set of
the best approximations ofy with vectors from[x].

Theorem 1. Let X be a smooth and uniformly convex normed space, and letx, y ∈ X − {0}
be fixed linearly independent vectors. The following assertions are valid.

(1) There exists a uniquea ∈ R such that

P[x]y = ax ⇔ g(y − ax, x) = 0 ⇔ ‖y − ax‖2 = g(y − ax, y),

sgn a = sgn g(y, x).

(2) If z ∈ span {x, y} andy⊥Bx ∧ z⊥Bx, then there existsλ ∈ R such thatz = λy.
(3) If x⊥By − αx ∧ x⊥By − βx thenα = β.

Proof.

(1) The proof can be found in [14].
(2) SinceX is smooth, the equivalence

y⊥Bx ∧ z⊥Bx ⇔ g(y, x) = 0 ∧ g(z, x) = 0

holds.
Hence

x = αy + βz ⇒ g(y, αx + βz) = 0 ∧ g(z, αx + βz) = 0.

We get the system of equations

α ‖y‖2 + βg(y, z) = 0

αg(z, x) + β ‖z‖2 = 0.

This system has a non-trivial solution forα andβ iff

g(y, z)g(z, y) = ‖y‖2 ‖z‖2 ⇔ |g(y, z)| |g (z, y)| = ‖y‖2 ‖z‖2 .

The last equation is not correct if|g(y, z)| < ‖y‖ ‖z‖ . So,|g(y, z)| = ‖y‖ ‖z‖.Then by
Lemma 5 of [3], there existsλ ∈ R such thatz = λy.
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(3) In accordance with 1) we have

g(x, y − αx) = 0 ∧ g(x, y − βx) = 0

⇔ g(x, y)− α ‖x‖2 = 0 ∧ g(x, y)− β ‖x‖2 = 0 ⇒ α = β.

�

From now on we assume that points0, x, y are the vertices of the triangle(0, x, y) and points
0, x, y, x+y are the vertices of the parallelogram(0, x, y, x+y). The numbers‖x− y‖ , ‖x + y‖
are the lengths of diagonal of this parallelogram. If‖x‖ = ‖y‖, we say that this parallelogram

is a rhomb, and ifx⊥ρy, we say that this parallelogram is aρ-rectangle,ρ ∈
{
⊥B,⊥J ,⊥S,⊥

g

}
.

From the next theorem, we see the similarity ofq.i.p. spaces to inner-product spaces (i.p.
spaces).

Theorem 2. LetX be aq.i.p. space. The following assertions are valid.

(1) The lengths of the diagonals in parallelogram(0, x, y, x+y) are equal if and only if the
parallelogram is ag−rectangle, i.e.,x⊥

g
y.

(2) The diagonals of the rhomb(0, x, y, x + y) areg−orthogonal, i.e.,(x− y)⊥
g
(x + y).

(3) The parallelogram(0, x, y, x + y) is a g−quadrangle if and only if the lengths of its
diagonals are equal and the diagonals areg−orthogonal.

The proof of Theorem 2 can be found in [11].
The angle between two vectorsx andy in a real normed space was introduced in [7] as

∠(x, y) := arccos
g(x, y) + g(y, x)

2 ‖x‖ ‖y‖
(x, y ∈ X − {0}).

So,x
g

⊥ y ⇔ cos ∠(x, y) = 0.
In this paper we introduce several definitions of angles in a smooth normed spaceX.
Let us begin with the following observations. By (2), it is easily seen that we have

(4) −1 ≤ ‖x‖2 g(x, y) + ‖y‖2 g(y, x)

‖x‖ ‖y‖ (‖x‖2 + ‖y‖2)
≤ 1 (x, y ∈ X − {0}).

Hence we define new angle between the vectorsx andy ,denoted as∠
g
(x, y).

Definition 2. The number

∠
g
(x, y) := arccos

‖x‖2 g(x, y) + ‖y‖2 g(y, x)

‖x‖ ‖y‖ (‖x‖2 + ‖y‖2)

is called theg−angle between the vectorx and the vectory.

It is very easy to see that :

∠
g
(x, y) = ∠

g
(y, x), ∠

g
(λx, λy) = ∠

g
(x, y), x⊥

g
y ⇔ cos ∠

g
(x, y) = 0.

Theorem 3. LetX be aq.i.p. space. Then the following assertions hold.

(1) Theg−angle over the diameter of a circle isg−right, i.e., ifc is the circle inspan {x, y},
centered atx+y

2
of radius ‖x−y‖

2
, thenz ∈ c ⇒ (x− z)⊥

g
(y − z), Figure 1.

(2) The centre of the circumscribed circumference about theg−right triangle is the centre
of theg−hypotenuse.
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Proof.

(1) If z ∈ c, then
∥∥z − x+y

2

∥∥ = ‖x−y‖
2

, i.e. ‖2z − (x + y)‖ = ‖x− y‖. Hence

(x− z)⊥J(y − z) ⇔ (x− z)⊥
g
(y − z),

becauseX is aq.i.p. space.
(2) Let c be the circle defined by the equation

∥∥z − x+y
2

∥∥ =
∥∥x−y

2

∥∥ , wherex⊥
g

y i.e.

‖x− y‖ = ‖x + y‖. Then0 ∈ c.

�

o

x
y

z
c

Figure 1:

In accordance withB−orthogonality, now we define the orientedB−angle between vectors
x andy.

Firstly, we have the following observation. LetP[x]y = ax, (a = a(x, y)).If ‖ax‖ ≤ ‖y‖
for everyx, y ∈ X − {0}, thenX is ani.p. space (see (18.1) in [4]). So, in a normed (non
trivial) space, aB−catheti may be greater than the hypotenuse.

Lemma 4. Let X be a smooth and uniformly convex space andx, y ∈ X − {0} linearly
independent. Then there exists a uniqueτ = τ(x, y) such that‖y‖ = ‖y − τx‖. If X is a q.i.p.
space andy is notB−orthogonal tox, then there exist uniquep ∈ R such that(y − px)⊥

g
px.

Proof. We consider the function

f(t) = ‖y − tx‖ (x, y ∈ X − {0} , t ∈ R).

SinceX is smooth and uniformly convex, there exists a uniquea = a(x, y) ∈ R such that

(5) min
t∈R

f(t) = f(a) = ‖y − ax‖ , g(y − ax, x) = 0, sgn a = sgn g(y, x).

(The vectorax is the best approximation of vectory with vectors of[x], i.e.,P[x]y = ax (see
[14]).

On the other hand, the functionf is continuous and convex onR and therefore there exists a
uniqueτ = τ(x, y) ∈ R (see Figure 2) such that

f(a) < ‖y‖ = ‖y − τx‖ .

If X is aq.i.p. space, we getp = τ
2
. In this case, we have‖y‖ = ‖y − 2px‖, hence

‖(y − px) + px‖ = ‖(y − px)− px‖ ,

J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 99, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON THE B-ANGLE AND g-ANGLE IN NORMED SPACES 5

i.e.
(y − px)⊥Jpx ⇔ (y − px)⊥

g
px.

In this case we shall writeP g
x y = px. Clearly‖y‖ = ‖y − 2px‖ ⇒ ‖px‖ ≤ ‖y‖ .

In (5) we have:

0 < a < τ ⇔ g(y, x) > 0, τ < a < 0 ⇔ g(y, x) < 0 (Figure 2).

Hence, by‖y‖ = ‖y − τx‖ we get‖τx‖ − ‖y‖ ≤ ‖y‖, i.e.

(6)
‖τx‖

2
≤ ‖y‖ .

0

a �

y

t

f

Figure 2:

Assume thatg(y, x) > 0. If a < τ
2
, then by (5) we have‖ax‖ ≤ ‖τx‖

2
≤ ‖y‖ . If a ≥ τ

2
, then

τ − a ≤ τ
2

and we have‖(τ − a)x‖ ≤ ‖τx‖
2

≤ ‖y‖. Hence we getmin {a, τ − a} ≤ τ
2
.

Of course, ifg(y, x) < 0, we getmin {|a| , |τ − a|} ≤ |τ |
2

. Thus, we conclude that

(7) −1 ≤ ‖kx‖
‖y‖

sgn g(y, x) ≤ 1 (x, y ∈ X − {0}),

wherek = min {|a| , |τ − a|} (k = k(x, y)). �

Keeping in mind (7) and the characteristics ofB− orthogonality, we introduce the following
definitions of the orientedB−angle between the vectorx and the vectory.

Definition 3. Let X be smooth and uniformly convex. The number

cosB(
→

x, y) :=
‖kx‖
‖y‖

sgn g(y, x),(8)

k = min {|a| , |τ − a|} , (x, y ∈ X − {0})
is called theB−cosine of the oriented angle betweenx andy.

The number
∠B(−→x, y) := arccosB(−→x, y)

is the orientedB−angle between the vectorx and the vectory.

Definition 4.

cosB(x, y) :=
√
|cosB(−→x, y) cosB(−→y, x)| sgn g(x, y) sgn g(y, x).

The number∠B(x, y) := arccosB(x, y) is called theB−angle between the vectorx and the
vectory.
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If X is ani.p. space withi.p. 〈·, ·〉 , we havea = g(x,y)

‖x‖2 = 〈x,y〉
‖x‖2 = g(y,x)

‖x‖2 (see [14]). So, in

this casecosB(
→

x, y) = 〈x,y〉
‖x‖‖y‖ . Observe thatcosB(

→
x, y) is not symmetric inx andy, so, in the

triangle(0, x, y) we have 6 orientedB−angles.
Since inequalities−1 ≤ |g(x,y)|

‖x‖ ‖y‖ ≤ 1 are valid for everyx, y ∈ X − {0} and y⊥Bx ⇔
g(y, x) = 0 in a smooth space, we may ask whethercosB(−→x, y) = g(y,x)

‖x‖ ‖y‖ for everyx, y ∈ X.

The answer is no. Namely, in this case we havea(x, y) = g(y,x)

‖x‖2 and hence, for everyx, y ∈
X − {0}, we get‖ax‖ = |g(y,x)|

‖x‖ ≤ ‖y‖. It follows from 18.1 of [4] thatX is ani.p. space.

Theorem 5. LetX be a smooth and strictly convex space. Then,

(1) cosB(
−−→
λx, y) = cosB(−→x, y) sgn λ (λ ∈ R− {0}),

(2) cosB(
−−→
x, λy) = cosB(−→x, y) sgn λ (λ ∈ R− {0}).

Proof.

(1) Assume thatP[x]y = ax, k = {|a| , |τ − a|} , ‖y‖ = ‖y − τx‖ , P[λx]y = bλx.
Thenbλ = a andmin {|bλ| , |τ − bλ|} = min {|a| , |τ − a|} = k. Hence, by Definition
3, we have

cosB(
−−→
λx, y) =

min {|λb| , |τ − λb|} ‖x‖
‖y‖

sgn g(y, λx)

=
‖kx‖
‖y‖

sgn λg(y, x) = cosB(−→x, y) sgn λ.

(2) Let beP[x]y = ax ‖y‖ = ‖y − τx‖ and‖λy‖ = ‖λy − τλx‖. ThenP[x]λy = λax
and by‖λy‖ = ‖λy − λτx‖ we getτλ = λτ andkλ = min {|λa| , |λτ − λa|} = |λ| k.
Thus

cosB(
−−→
x, λy) =

‖kλx‖
‖λy‖

sgn g(λy, x)

=
‖kx‖
‖y‖

sgn λg(y, x)

= cosB(−→x, y) sgn λ.

�

Theorem 6. Let X be smooth,x, y ∈ X − {0} linearly independent,‖y − x‖ = ‖y‖. Then(
∠B(x, y)

)
= ∠B(−x, y − x), (Figure 3).

o x

y

� �

Figure 3:
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Proof. In a smooth spaceX (see [12]), forx, y ∈ X, we have

(9) ‖x‖ (‖x‖ − ‖x− y‖) ≤ g(x, y) ≤ ‖x‖ (‖x + y‖ − ‖x‖).
Since‖y − x‖ = ‖y‖ , we getg(y, x) > 0 andg(y − x,−x) > 0. Let P[x]y = ax andP[x](y −
x) = b. Then:a > 0, b > 0 (see [14]),g(y − ax, x) = 0 and

g(y − x− bx, x) = 0 ⇔ g(y − (1 + b)x, x) = 0.

By virtue of 2) in Theorem 1, we get1 + b = a such thatP[x](y− x) = (a− 1)x. From this and
Definition 3, we have

cosB(
−−−−−−→−x, y − x) =

‖kx‖
‖y − x‖

sgn g(y − x,−x)

=
min {a, 1− a} ‖x‖

‖y‖
= cosB(−→x, y).

�

We now assume thatX is as.i.p. space.
Analogous to Definition 3 and Definition 4, in aq.i.p. space, we will introduce a new defini-

tion of an orientedg−angle and the corresponding non orientedg−angle.

Definition 5. Let x 6= 0, y ∈ X andp = τ
2

(see Lemma 4). Then

cosg(
−→x, y) :=

‖px‖
‖y‖

sgn(‖x‖2 g(x, y) + ‖y‖2 g(y, x)).

The number∠g(
−→x, y) := arccosg(

−→x, y) is the orientedg−angle between vectorx and vectory.

We observe that, for allλ 6= 0,

y − px⊥
g

px ⇒ λy − λpx⊥
g

λpx,

i.e.,P g
x y = a ⇒ P g

λxλy = ax. Hence we have

(10) cosg(
−−−→
λx, λy) = cosg(

−→x, y) sgn λ (λ 6= 0).

Definition 6.

cosg(x, y) :=

√
cosg(

−−→
x, y) cosg(

−→y, x) sgn(‖x‖2 g(x, y) + ‖y‖2 g(y, x)).

The number∠g(x, y) := arccosg(x, y) is the non-orientedg−angle betweenx andy.

Clearly, in aq.i.p. space we havecosg(x, y) = cosg(y, x).
If X is ani.p. space withi.p. 〈·, ·〉 we have

(y − px)⊥
g

px ⇔ ‖y − px‖2 g(y − px, px) + ‖px‖2 g(px, y − px) = 0

⇔ (‖y − px‖2 + ‖px‖2) 〈x, y − px〉 = 0

⇔ p =
〈x, y〉
‖x‖2

⇒ ‖px‖ =
|〈x, y〉|
‖x‖

⇒ cosg(
−→x, y) =

‖px‖
‖y‖2 sgn((‖x‖2 + ‖y‖2) 〈x, y〉) =

〈x, y〉
‖x‖ ‖y‖

.

Thus, Definition 5 and Definition 6 are correct.
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Theorem 7. Let X be aq.i.p. space and‖x‖ = ‖y‖ = ‖x− y‖, i.e., let triangle(0, x, y) be
equilateral. Then

∠g(
−→x, y) = ∠g(x, y) = ∠g(y, x) =

π

3
.

Proof. At first, from equations‖x‖ = ‖y‖ = ‖y − x‖ and inequalities (9) we get inequalities
0 < g(x, y) and0 < g(y, x). By thissgn(‖x‖2 g(x, y) + ‖y‖2 g(y, x)) = 1.

Let c be the circle centred atx
2

with diameter‖x‖, (see Figure 4). Theny
2
, x+y

2
∈ c. Ac-

Figure 4:

cording to 1), Theorem 3, we have(x − y
2
)⊥

g

y
2

and x+y
2 ⊥

g

x−y
2

. That is, we haveP g
x y = x

2
and

P g
y x = y

2
. By Definition 5 we getcosg(

−→x, y) = cosg(y, x) = 1
2
. Hence, by Definition 6, we have

∠g(x, y) = π
3
. �

Theorem 8. Let (0, x, y, x+y) be ag−quadrangle, i.e. let‖x‖ = ‖y‖∧x⊥
g

y. Then∠g(x, x+

y) = π
4
, i.e., the non-orientedg−angle between a diagonal and a side isπ

4
.

Figure 5:

Proof. We observe that in aq.i.p. space

sgn(‖x‖2 g(x, y) + ‖y‖2 g(y, x)) = sgn(‖x + y‖ − ‖x− y‖)

and that
‖2x + y‖ − ‖x‖ ≥ ‖2x‖ − ‖y‖ − ‖y‖ = 0.

Now consider Figure 5. SinceP g
x (x + y) = x, we have

cosg(
−−−−−→
x, x + y) =

‖x‖
‖x + y‖

sgn(‖2x + y‖ − ‖y‖) =
‖x‖

‖x + y‖
.
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Let s be the crossing point of the diagonal[0, x + y] and the diagonal[x, y]. Then, by Theorem
3, P g

x+yx = s. It follows, by Definition 5, that

cosg(
−−−−−→
x + y, x) =

‖s‖
‖x‖

sgn(‖s + x‖ − ‖s− x‖)

=
‖x + y‖
2 ‖x‖

sgn(‖2x‖ − ‖x‖)

=
‖x + y‖
2 ‖x‖

.

So, by Definition 6, we have

cosg(x, x + y) =

√
cosg(

−−−−−→
x, x + y) cosg(

−−−−−→
x + y, x) sgn(‖2x + y‖ − ‖y‖)

=

√
1

2
=

√
2

2
.

Hence∠g(x, x + y) = π
4
. �
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[14] P.M. MILIČIĆ, On the best approximation in smooth and uniformly convex Banach space,Facta
Universitatis (Niš), Ser.Math. Inform., 20 (2005), 57–64.

J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 99, 9 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	References

