ON THE B-ANGLE AND g-ANGLE IN NORMED SPACES

PAVLE M. MILIČIĆ

Faculty of Mathematics
University of Belgrade SERBIA.
pmilicic@hotmail.com
Received 15 February, 2007; accepted 16 July, 2007
Communicated by S.S. Dragomir

Abstract

It is known that in a strictly convex normed space, the B-orthogonality (Birkhoff orthogonality) has the property, " B-orthogonality is unique to the left". Using this property, we introduce the definition of the so-called B-angle between two vectors, in a smooth and uniformly convex space. Also, we define the so-called g-angle between two vectors. It is demonstrated that the g-angle in a unilateral triangle, in a quasi-inner product space, is $\pi / 3$. The g-angle between a side and a diagonal, in a so-called g-quandrangle, is $\pi / 4$.

Key words and phrases: Smooth normed spaces, quasi-inner product spaces, oriented (non-oriented) B-angle between two vectors, oriented (non-oriented) g-angle between two vectors.
2000 Mathematics Subject Classification. 46B20, 46C15, 51K05.
Let X be a real smooth normed space of dimension greater than 1 . It is well known that the functional

$$
\begin{equation*}
g(x, y):=\|x\| \lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \quad(x, y \in X) \tag{1}
\end{equation*}
$$

always exists (see [5]).
This functional is linear in the second argument and it has the following properties:

$$
\begin{equation*}
g(\alpha x, y)=\alpha g(x, y)(\alpha \in \mathbb{R}), \quad g(x, x)=\|x\|^{2}, \quad|g(x, y)| \leq\|x\|\|y\| \tag{2}
\end{equation*}
$$

Definition 1 ([10]). A normed space X is a quasi-inner product space (q.i.p. space) if the equality

$$
\begin{equation*}
\|x+y\|^{4}-\|x-y\|^{4}=8\left[\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)\right] \tag{3}
\end{equation*}
$$

holds for all $x, y \in X$.
The space of sequences l^{4} is a q.i.p. space, but l^{1} is not a q.i.p. space.
It is proved in [10] and [11] that a q.i.p. space X is very smooth, uniformly smooth, strictly convex and, in the case of Banach spaces, reflexive.

The orthogonality of the vector $x \neq 0$ to the vector $y \neq 0$ in a normed space X may be defined in several ways. We mention some kinds of orthogonality and their notations:

- $x \perp_{B} y \Leftrightarrow(\forall \lambda \in \mathbb{R})\|x\| \leq\|x+\lambda y\|$ (Birkhoff orthogonality),
- $x \perp_{J} y \Leftrightarrow\|x-y\|=\|x+y\|$ (James orthogonality),
- $x \perp_{S} y \Leftrightarrow\left\|\frac{x}{\|x\|}-\frac{y}{\|y\| \|}\right\|=\left\|\frac{x}{\|x\|}+\frac{y}{\|y\|}\right\|$ (Singer orthogonality).

In the papers [8], [6] and [9], by using the functional g, the following orthogonal relations were introduced:

$$
\begin{aligned}
& x \perp_{g} y \Leftrightarrow g(x, y)=0, \\
& x \stackrel{\perp}{\perp} y g(x, y)+g(y, x)=0, \\
& x \stackrel{\perp}{\perp} y \Leftrightarrow\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)=0 .
\end{aligned}
$$

In [6, Theorem 2] the following assertion is proved: If X is smooth, then $x \perp_{g} y \Leftrightarrow x \perp_{B} y$.
In [11] we have proved the following assertion: If X is a q.i.p. space, then

$$
x \perp_{g} y \Leftrightarrow x \perp_{J} y \quad \text { and } \quad x \stackrel{g}{\perp} y \Leftrightarrow x \perp_{S} y .
$$

If there exists an inner product $\langle\cdot, \cdot\rangle$ in $X,(i . p$.$) , then it is easy to see that x \rho y \Leftrightarrow\langle x, y\rangle=0$ holds for every

$$
\rho \in\left\{\perp_{B}, \perp_{J}, \perp_{S}, \perp_{g}, \stackrel{g}{\perp}, \perp_{g}\right\} .
$$

For more on B-orthogonality and g-orthogonality, see the papers [1], [2], [13] and [14]. Some additional properties of this orthogonality are quoted below. Denote by $P_{[x]} y$ the set of the best approximations of y with vectors from $[x]$.

Theorem 1. Let X be a smooth and uniformly convex normed space, and let $x, y \in X-\{0\}$ be fixed linearly independent vectors. The following assertions are valid.
(1) There exists a unique $a \in \mathbb{R}$ such that

$$
\begin{gathered}
P_{[x]} y=a x \Leftrightarrow g(y-a x, x)=0 \Leftrightarrow\|y-a x\|^{2}=g(y-a x, y), \\
\operatorname{sgn} a=\operatorname{sgn} g(y, x) .
\end{gathered}
$$

(2) If $z \in \operatorname{span}\{x, y\}$ and $y \perp_{B} x \wedge z \perp_{B} x$, then there exists $\lambda \in \mathbb{R}$ such that $z=\lambda y$.
(3) If $x \perp_{B} y-\alpha x \wedge x \perp_{B} y-\beta x$ then $\alpha=\beta$.

Proof.

(1) The proof can be found in [14].
(2) Since X is smooth, the equivalence

$$
y \perp_{B} x \wedge z \perp_{B} x \Leftrightarrow g(y, x)=0 \wedge g(z, x)=0
$$

holds.
Hence

$$
x=\alpha y+\beta z \Rightarrow g(y, \alpha x+\beta z)=0 \wedge g(z, \alpha x+\beta z)=0
$$

We get the system of equations

$$
\begin{aligned}
& \alpha\|y\|^{2}+\beta g(y, z)=0 \\
& \alpha g(z, x)+\beta\|z\|^{2}=0 .
\end{aligned}
$$

This system has a non-trivial solution for α and β iff

$$
g(y, z) g(z, y)=\|y\|^{2}\|z\|^{2} \Leftrightarrow|g(y, z)||g(z, y)|=\|y\|^{2}\|z\|^{2} .
$$

The last equation is not correct if $|g(y, z)|<\|y\|\|z\|$. So, $|g(y, z)|=\|y\|\|z\|$.Then by Lemma 5 of [3], there exists $\lambda \in \mathbb{R}$ such that $z=\lambda y$.
(3) In accordance with 1) we have

$$
\begin{aligned}
& g(x, y-\alpha x)=0 \wedge g(x, y-\beta x)=0 \\
& \Leftrightarrow g(x, y)-\alpha\|x\|^{2}=0 \wedge g(x, y)-\beta\|x\|^{2}=0 \Rightarrow \alpha=\beta
\end{aligned}
$$

From now on we assume that points $0, x, y$ are the vertices of the triangle $(0, x, y)$ and points $0, x, y, x+y$ are the vertices of the parallelogram $(0, x, y, x+y)$. The numbers $\|x-y\|,\|x+y\|$ are the lengths of diagonal of this parallelogram. If $\|x\|=\|y\|$, we say that this parallelogram is a rhomb, and if $x \perp_{\rho} y$, we say that this parallelogram is a ρ-rectangle, $\rho \in\left\{\perp_{B}, \perp_{J}, \perp_{S}, \perp_{g}\right\}$.

From the next theorem, we see the similarity of q.i.p. spaces to inner-product spaces (i.p. spaces).

Theorem 2. Let X be a q.i.p. space. The following assertions are valid.
(1) The lengths of the diagonals in parallelogram $(0, x, y, x+y)$ are equal if and only if the parallelogram is a g-rectangle, i.e., $x \perp \frac{\perp}{g} y$.
(2) The diagonals of the rhomb $(0, x, y, x+y)$ are g-orthogonal, i.e., $(x-y) \underset{g}{\perp}(x+y)$.
(3) The parallelogram $(0, x, y, x+y)$ is a g-quadrangle if and only if the lengths of its diagonals are equal and the diagonals are g-orthogonal.

The proof of Theorem 2 can be found in [11].
The angle between two vectors x and y in a real normed space was introduced in [7] as

$$
\angle(x, y):=\arccos \frac{g(x, y)+g(y, x)}{2\|x\|\|y\|} \quad(x, y \in X-\{0\}) .
$$

So, $x \stackrel{g}{\perp} y \Leftrightarrow \cos \angle(x, y)=0$.
In this paper we introduce several definitions of angles in a smooth normed space X.
Let us begin with the following observations. By (2), it is easily seen that we have

$$
\begin{equation*}
-1 \leq \frac{\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)}{\|x\|\|y\|\left(\|x\|^{2}+\|y\|^{2}\right)} \leq 1 \quad(x, y \in X-\{0\}) . \tag{4}
\end{equation*}
$$

Definition 2. The number

$$
\angle_{g}(x, y):=\arccos \frac{\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)}{\|x\|\|y\|\left(\|x\|^{2}+\|y\|^{2}\right)}
$$

is called the g-angle between the vector x and the vector y.
It is very easy to see that :

$$
\angle_{g}(x, y)=\angle_{g}(y, x), \quad \angle_{g}(\lambda x, \lambda y)=\angle_{g}(x, y), \quad x \underset{g}{\perp} y \Leftrightarrow \cos \angle_{g}(x, y)=0 .
$$

Theorem 3. Let X be a q.i.p. space. Then the following assertions hold.
(1) The g-angle over the diameter of a circle is g-right, i.e., if c is the circle in span $\{x, y\}$, centered at $\frac{x+y}{2}$ of radius $\frac{\|x-y\|}{2}$, then $z \in c \Rightarrow(x-z) \underset{g}{\perp}(y-z)$, Figure 1 .
(2) The centre of the circumscribed circumference about the g-right triangle is the centre of the g-hypotenuse.

Proof.

(1) If $z \in c$, then $\left\|z-\frac{x+y}{2}\right\|=\frac{\|x-y\|}{2}$, i.e. $\|2 z-(x+y)\|=\|x-y\|$. Hence

$$
(x-z) \perp_{J}(y-z) \Leftrightarrow(x-z) \perp_{g}(y-z),
$$

because X is a q.i.p. space.
(2) Let c be the circle defined by the equation $\left\|z-\frac{x+y}{2}\right\|=\left\|\frac{x-y}{2}\right\|$, where $x \underset{g}{\perp} y$ i.e. $\|x-y\|=\|x+y\|$. Then $0 \in c$.

Figure 1:

In accordance with B-orthogonality, now we define the oriented B-angle between vectors x and y.
Firstly, we have the following observation. Let $P_{[x]} y=a x, \quad(a=a(x, y))$.If $\|a x\| \leq\|y\|$ for every $x, y \in X-\{0\}$, then X is an i.p. space (see (18.1) in [4]). So, in a normed (non trivial) space, a B-catheti may be greater than the hypotenuse.

Lemma 4. Let X be a smooth and uniformly convex space and $x, y \in X-\{0\}$ linearly independent. Then there exists a unique $\tau=\tau(x, y)$ such that $\|y\|=\|y-\tau x\|$. If X is a q.i.p. space and y is not B-orthogonal to x, then there exist unique $p \in \mathbb{R}$ such that $(y-p x) \underset{g}{\perp} p x$.

Proof. We consider the function

$$
f(t)=\|y-t x\| \quad(x, y \in X-\{0\}, \quad t \in \mathbb{R}) .
$$

Since X is smooth and uniformly convex, there exists a unique $a=a(x, y) \in \mathbb{R}$ such that

$$
\begin{equation*}
\min _{t \in \mathbb{R}} f(t)=f(a)=\|y-a x\|, \quad g(y-a x, x)=0, \quad \operatorname{sgn} a=\operatorname{sgn} g(y, x) \tag{5}
\end{equation*}
$$

(The vector $a x$ is the best approximation of vector y with vectors of $[x]$, i.e., $P_{[x]} y=a x$ (see [14]).
On the other hand, the function f is continuous and convex on \mathbb{R} and therefore there exists a unique $\tau=\tau(x, y) \in \mathbb{R}$ (see Figure 2) such that

$$
f(a)<\|y\|=\|y-\tau x\| .
$$

If X is a q.i.p. space, we get $p=\frac{\tau}{2}$. In this case, we have $\|y\|=\|y-2 p x\|$, hence

$$
\|(y-p x)+p x\|=\|(y-p x)-p x\|,
$$

i.e.

$$
(y-p x) \perp_{J} p x \Leftrightarrow(y-p x) \perp_{g} p x
$$

In this case we shall write $P_{x}^{g} y=p x$. Clearly $\|y\|=\|y-2 p x\| \Rightarrow\|p x\| \leq\|y\|$.
In (5) we have:

$$
0<a<\tau \Leftrightarrow g(y, x)>0, \quad \tau<a<0 \Leftrightarrow g(y, x)<0 \quad \text { (Figure 2). }
$$

Hence, by $\|y\|=\|y-\tau x\|$ we get $\|\tau x\|-\|y\| \leq\|y\|$, i.e.

$$
\begin{equation*}
\frac{\|\tau x\|}{2} \leq\|y\| . \tag{6}
\end{equation*}
$$

Figure 2:

Assume that $g(y, x)>0$. If $a<\frac{\tau}{2}$, then by 5 , we have $\|a x\| \leq \frac{\|\tau x\|}{2} \leq\|y\|$. If $a \geq \frac{\tau}{2}$, then $\tau-a \leq \frac{\tau}{2}$ and we have $\|(\tau-a) x\| \leq \frac{\|\tau x\|}{2} \leq\|y\|$. Hence we get $\min \{a, \tau-a\} \leq \frac{\tau}{2}$.

Of course, if $g(y, x)<0$, we get $\min \{|a|,|\tau-a|\} \leq \frac{|\tau|}{2}$. Thus, we conclude that

$$
\begin{equation*}
-1 \leq \frac{\|k x\|}{\|y\|} \operatorname{sgn} g(y, x) \leq 1 \quad(x, y \in X-\{0\}) \tag{7}
\end{equation*}
$$

where $k=\min \{|a|,|\tau-a|\} \quad(k=k(x, y))$.
Keeping in mind (7) and the characteristics of B - orthogonality, we introduce the following definitions of the oriented B-angle between the vector x and the vector y.
Definition 3. Let X be smooth and uniformly convex. The number

$$
\begin{gather*}
\cos _{B}(\overrightarrow{x, y}):=\frac{\|k x\|}{\|y\|} \operatorname{sgn} g(y, x), \tag{8}\\
k=\min \{|a|,|\tau-a|\}, \quad(x, y \in X-\{0\})
\end{gather*}
$$

is called the B-cosine of the oriented angle between x and y.
The number

$$
\angle_{B}(\overrightarrow{x, y}):=\arccos _{B}(\overrightarrow{x, y})
$$

is the oriented B-angle between the vector x and the vector y.

Definition 4.

$$
\cos _{B}(x, y):=\sqrt{\left|\cos _{B}(\overrightarrow{x, y}) \cos _{B}(\overrightarrow{y, x})\right|} \operatorname{sgn} g(x, y) \operatorname{sgn} g(y, x)
$$

The number $\angle_{B}(x, y):=\operatorname{arcos}_{B}(x, y)$ is called the $B-$ angle between the vector x and the vector y.

If X is an $i . p$. space with $i . p .\langle\cdot, \cdot\rangle$, we have $a=\frac{g(x, y)}{\|x\|^{2}}=\frac{\langle x, y\rangle}{\|x\|^{2}}=\frac{g(y, x)}{\|x\|^{2}}$ (see [14]). So, in this case $\cos _{B}(\overrightarrow{x, y})=\frac{\langle x, y\rangle}{\|x\|\|y\|}$. Observe that $\cos _{B}(\overrightarrow{x, y})$ is not symmetric in x and y, so, in the triangle $(0, x, y)$ we have 6 oriented B-angles.

Since inequalities $-1 \leq \frac{|g(x, y)|}{\|x\|\|y\|} \leq 1$ are valid for every $x, y \in X-\{0\}$ and $y \perp_{B} x \Leftrightarrow$ $g(y, x)=0$ in a smooth space, we may ask whether $\cos _{B}(\overrightarrow{x, y})=\frac{g(y, x)}{\|x\|\|y\|}$ for every $x, y \in X$. The answer is no. Namely, in this case we have $a(x, y)=\frac{g(y, x)}{\|x\|^{2}}$ and hence, for every $x, y \in$ $X-\{0\}$, we get $\|a x\|=\frac{|g(y, x)|}{\|x\|} \leq\|y\|$. It follows from 18.1 of [4] that X is an $i . p$. space.
Theorem 5. Let X be a smooth and strictly convex space. Then,
(1) $\cos _{B}(\underline{\overrightarrow{\lambda x, y}})=\cos _{B}(\overrightarrow{x, y}) \operatorname{sgn} \lambda \quad(\lambda \in \mathbb{R}-\{0\})$,
(2) $\cos _{B}(\overrightarrow{x, \lambda y})=\cos _{B}(\overrightarrow{x, y}) \operatorname{sgn} \lambda \quad(\lambda \in \mathbb{R}-\{0\})$.

Proof.

(1) Assume that $P_{[x]} y=a x, \quad k=\{|a|,|\tau-a|\},\|y\|=\|y-\tau x\|, \quad P_{[\lambda x]} y=b \lambda x$. Then $b \lambda=a$ and $\min \{|b \lambda|,|\tau-b \lambda|\}=\min \{|a|,|\tau-a|\}=k$. Hence, by Definition 3. we have

$$
\begin{aligned}
\cos _{B}(\overrightarrow{\lambda x, y}) & =\frac{\min \{|\lambda b|,|\tau-\lambda b|\}\|x\|}{\|y\|} \operatorname{sgn} g(y, \lambda x) \\
& =\frac{\|k x\|}{\|y\|} \operatorname{sgn} \lambda g(y, x)=\cos _{B}(\overrightarrow{x, y}) \operatorname{sgn} \lambda
\end{aligned}
$$

(2) Let be $P_{[x]} y=a x \quad\|y\|=\|y-\tau x\|$ and $\|\lambda y\|=\left\|\lambda y-\tau_{\lambda} x\right\|$. Then $P_{[x]} \lambda y=\lambda a x$ and by $\|\lambda y\|=\|\lambda y-\lambda \tau x\|$ we get $\tau_{\lambda}=\lambda \tau$ and $k_{\lambda}=\min \{|\lambda a|,|\lambda \tau-\lambda a|\}=|\lambda| k$. Thus

$$
\begin{aligned}
\cos _{B}(\overrightarrow{x, \lambda y}) & =\frac{\left\|k_{\lambda} x\right\|}{\|\lambda y\|} \operatorname{sgn} g(\lambda y, x) \\
& =\frac{\|k x\|}{\|y\|} \operatorname{sgn} \lambda g(y, x) \\
& =\cos _{B}(\overrightarrow{x, y}) \operatorname{sgn} \lambda
\end{aligned}
$$

Theorem 6. Let X be smooth, $x, y \in X-\{0\}$ linearly independent, $\|y-x\|=\|y\|$. Then $\left(\angle_{B} \overline{(x, y)}\right)=\angle_{B} \overline{(-x, y-x)}$, (Figure 3).

Figure 3:

Proof. In a smooth space X (see [12]), for $x, y \in X$, we have

$$
\begin{equation*}
\|x\|(\|x\|-\|x-y\|) \leq g(x, y) \leq\|x\|(\|x+y\|-\|x\|) . \tag{9}
\end{equation*}
$$

Since $\|y-x\|=\|y\|$, we get $g(y, x)>0$ and $g(y-x,-x)>0$. Let $P_{[x]} y=a x$ and $P_{[x]}(y-$ $x)=b$. Then: $a>0, b>0$ (see [14]), $g(y-a x, x)=0$ and

$$
g(y-x-b x, x)=0 \Leftrightarrow g(y-(1+b) x, x)=0
$$

By virtue of 2) in Theorem 1 , we get $1+b=a$ such that $P_{[x]}(y-x)=(a-1) x$. From this and Definition 3, we have

$$
\begin{aligned}
\cos _{B}(\overrightarrow{-x, y-x}) & =\frac{\|k x\|}{\|y-x\|} \operatorname{sgn} g(y-x,-x) \\
& =\frac{\min \{a, 1-a\}\|x\|}{\|y\|} \\
& =\cos _{B}\left(\frac{\overrightarrow{x, y})}{}\right.
\end{aligned}
$$

We now assume that X is a s.i.p. space.
Analogous to Definition 3 and Definition 4 , in a q.i.p. space, we will introduce a new definition of an oriented g-angle and the corresponding non oriented g-angle.
Definition 5. Let $x \neq 0, y \in X$ and $p=\frac{\tau}{2}$ (see Lemma 4). Then

$$
\cos _{g}(\overrightarrow{x, y}):=\frac{\|p x\|}{\|y\|} \operatorname{sgn}\left(\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)\right)
$$

The number $\angle_{g}(\overrightarrow{x, y}):=\arccos _{g}(\overrightarrow{x, y})$ is the oriented g-angle between vector x and vector y.
We observe that, for all $\lambda \neq 0$,

$$
y-p x \underset{g}{\perp} p x \Rightarrow \lambda y-\lambda p x \underset{g}{\perp} \lambda p x,
$$

i.e., $P_{x}^{g} y=a \Rightarrow P_{\lambda x}^{g} \lambda y=a x$. Hence we have

$$
\begin{equation*}
\cos _{g}(\overrightarrow{\lambda x, \lambda y})=\cos _{g}(\overrightarrow{x, y}) \operatorname{sgn} \lambda \quad(\lambda \neq 0) \tag{10}
\end{equation*}
$$

Definition 6.

$$
\cos _{g}(x, y):=\sqrt{\cos _{g}\left(\overrightarrow{x, y)} \cos _{g}(\overrightarrow{y, x})\right.} \operatorname{sgn}\left(\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)\right)
$$

The number $\angle_{g}(x, y):=\arccos _{g}(x, y)$ is the non-oriented $g-$ angle between x and y.
Clearly, in a q.i.p. space we have $\cos _{g}(x, y)=\cos _{g}(y, x)$.
If X is an $i . p$. space with $i . p . \quad\langle\cdot, \cdot\rangle$ we have

$$
\begin{aligned}
(y-p x)_{g}^{\perp} p x & \Leftrightarrow\|y-p x\|^{2} g(y-p x, p x)+\|p x\|^{2} g(p x, y-p x)=0 \\
& \Leftrightarrow\left(\|y-p x\|^{2}+\|p x\|^{2}\right)\langle x, y-p x\rangle=0 \\
& \Leftrightarrow p=\frac{\langle x, y\rangle}{\|x\|^{2}} \\
& \Rightarrow\|p x\|=\frac{|\langle x, y\rangle|}{\|x\|} \\
& \Rightarrow \cos _{g}(\overrightarrow{x, y})=\frac{\|p x\|}{\|y\|^{2}} \operatorname{sgn}\left(\left(\|x\|^{2}+\|y\|^{2}\right)\langle x, y\rangle\right)=\frac{\langle x, y\rangle}{\|x\|\|y\|}
\end{aligned}
$$

Thus, Definition 5 and Definition 6 are correct.

Theorem 7. Let X be a q.i.p. space and $\|x\|=\|y\|=\|x-y\|$, i.e., let triangle $(0, x, y)$ be equilateral. Then

$$
\angle_{g}(\overrightarrow{x, y})=\angle_{g}(x, y)=\angle_{g}(y, x)=\frac{\pi}{3}
$$

Proof. At first, from equations $\|x\|=\|y\|=\|y-x\|$ and inequalities (97) we get inequalities $0<g(x, y)$ and $0<g(y, x)$. By this $\operatorname{sgn}\left(\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)\right)=1$.

Let c be the circle centred at $\frac{x}{2}$ with diameter $\|x\|$, (see Figure 4). Then $\frac{y}{2}, \frac{x+y}{2} \in c$. Ac-

Figure 4:
cording to 1), Theorem 3 , we have $\left(x-\frac{y}{2}\right) \perp_{g} \frac{y}{2}$ and $\frac{x+y}{2} \perp \frac{x-y}{2}$. That is, we have $P_{x}^{g} y=\frac{x}{2}$ and $P_{y}^{g} x=\frac{y}{2}$. By Definition 5 we get $\cos _{g}(\overrightarrow{x, y})=\cos _{g}(y, x)=\frac{1}{2}$. Hence, by Definition 6 , we have $\angle_{g}(x, y)=\frac{\pi}{3}$.
Theorem 8. Let $(0, x, y, x+y)$ be a g-quadrangle, i.e. let $\|x\|=\|y\| \wedge x \underset{g}{\perp} y$. Then $\angle_{g}(x, x+$ $y)=\frac{\pi}{4}$, i.e., the non-oriented g-angle between a diagonal and a side is $\frac{\pi}{4}$.

Figure 5:

Proof. We observe that in a q.i.p. space

$$
\operatorname{sgn}\left(\|x\|^{2} g(x, y)+\|y\|^{2} g(y, x)\right)=\operatorname{sgn}(\|x+y\|-\|x-y\|)
$$

and that

$$
\|2 x+y\|-\|x\| \geq\|2 x\|-\|y\|-\|y\|=0
$$

Now consider Figure 5. Since $P_{x}^{g}(x+y)=x$, we have

$$
\cos _{g}(\overrightarrow{x, x+y})=\frac{\|x\|}{\|x+y\|} \operatorname{sgn}(\|2 x+y\|-\|y\|)=\frac{\|x\|}{\|x+y\|}
$$

Let s be the crossing point of the diagonal $[0, x+y]$ and the diagonal $[x, y]$. Then, by Theorem 3. $P_{x+y}^{g} x=s$. It follows, by Definition5, that

$$
\begin{aligned}
\cos _{g}(\overrightarrow{x+y, x}) & =\frac{\|s\|}{\|x\|} \operatorname{sgn}(\|s+x\|-\|s-x\|) \\
& =\frac{\|x+y\|}{2\|x\|} \operatorname{sgn}(\|2 x\|-\|x\|) \\
& =\frac{\|x+y\|}{2\|x\|}
\end{aligned}
$$

So, by Definition6, we have

$$
\begin{aligned}
\cos _{g}(x, x+y) & =\sqrt{\cos _{g}(\overrightarrow{x, x+y}) \cos _{g}(\overrightarrow{x+y, x})} \operatorname{sgn}(\|2 x+y\|-\|y\|) \\
& =\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

Hence $\angle_{g}(x, x+y)=\frac{\pi}{4}$.

References

[1] J. ALONSO and C. BENITEZ, Orthogonality in normed linear spaces, Part I, Extracta Mathematicae, 3(1) (1988), 1-15.
[2] J. ALONSO and C. BENITEZ, Orthogonality in normed linear spaces, Part II, Extracta Mathematicae, 4(3) (1989), 121-131.
[3] J.R. GILES, Classes of semi-inner product space, Trans. Amer. Math. Soc., 129 (1967), 436-446.
[4] D. AMIR, Characterizations of Inner Product Spaces, Birkhauser, 1986.
[5] P.M. MILIČIĆ, Sur le produit scalaire generalise, Mat.Vesnik (25)10 (1973), 325-329
[6] P.M. MILIČIĆ, Sur la g-orthogonalte dans un espace norme, Mat. Vesnik, 39 (1987), 325-334.
[7] P.M. MILIČIĆ, Sur la g-angle dans un espace norme?, Mat. Vesnik, 45 (1993), 43-48.
[8] P.M. MILIČIĆ, On orthogonalities in normed spaces, Mathematica Montisnigri, III (1994), 69-77.
[9] P.M. MILIČIĆ, Resolvability of g-orthogonality in normed spaces, Mat. Balkanica, New Series, 12 (1998).
[10] P.M. MILIČIĆ, A generalization of the parallelogram equality in normed spaces, Jour. Math. Kyoto Univ. (JMKYAZ), 38(1) (1998), 71-75.
[11] P.M. MILIČIĆ, On the quasi-inner product spaces, Matematički Bilten, 22(XLVIII) (1998), 19-30.
[12] P.M. MILIČIĆ, The angle modulus of the of the deformation of the normed space, Riv. Mat. Univ. Parma, 3(6) (2000), 101-111.
[13] P.M. MILIČIĆ, On the g-orthogonal projection and the best approximation of vector in quasi-inner product space, Scientiae Mathematicae Japonicae, 4(3) (2000).
[14] P.M. MILIČIĆ, On the best approximation in smooth and uniformly convex Banach space, Facta Universitatis (Niš), Ser.Math. Inform., 20 (2005), 57-64.

