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ABSTRACT. This paper derives inequalities for general linear recurrences. Optimal bounds for
solutions to the recurrence are obtained when the coefficients of the recursion lie in intervals that
include zero. An important aspect of the derived bounds is that they are easily computable. The
results bound solutions of triangular matrix equations and coefficients of ratios of power series.
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1. I NTRODUCTION

This paper derives bounds for solutions to the linear recurrence

(1.1) bn =
n−1∑
k=1

αn,kbk, n ≥ 2.

Throughout, we assume thatb1 6= 0 as b1 = 0 implies thatbn = 0 for all n ≥ 2. Our
results bound{bn}∞n=1 in a term-by-term manner with a second order time-homogeneous linear
recursion that is readily analyzable.

Our motivation for studying (1.1) lies in applied probability. There it is useful to have a bound
for coefficients of a ratio of power series when limited information is available on the constituent
series (cf. Kijima [14], Kendall [13], Heathcote [11], Feller [6]). The series comprising the ratio
are often probability generating functions. Linear algebra is another setting where (1.1) arises.
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2 KENNETH S. BERENHAUT AND ROBERT LUND

Example 1.1. What is the largest|b5| possible in (1.1) whenb1 = −1 andαn,k ∈ [−3, 0] for
all n andk? In Section 2, we show that|b5| ≤ 99 for such situations, and that this value is
produced byαn,k having the alternating form

(1.2)

αn,1 αn,2 αn,3 αn,4

n = 2 −3
n = 3 0 −3
n = 4 −3 0 −3
n = 5 0 −3 0 −3

.

Specifically, theseαn,k giveb2 = 3, b3 = −9, b4 = 30, andb5 = −99. We return to this example
in Section 2.
Example 1.2.For a fixedI ⊂ <, letFI be the set ofI-power series defined by

(1.3) FI = {f : f(z) = 1 +
∞∑

k=1

akz
k andak ∈ I for eachk ≥ 1}.

Flatto, Lagarias, and Poonen [7] and Solomyak [22] proved independently that ifz is a root of
a series inF[0,1], then|z| ≥ 2/(1+

√
5). As z = −2/(1+

√
5) is a root of1+ z + z3 + z5 + · · · ,

this bound is tight overF[0,1]. The coefficients of the multiplicative inverse of a series inF[0,1]

cannot increase at a rate larger than the golden ratio.
We will show later that the coefficients of the multiplicative inverse of a power series in

F[0,1] are bounded by the ubiquitous Fibonacci numbers. This gives a “first constant” for the
aforementioned rate. Observe that

(1.4)

(
1 +

∞∑
n=1

z2n−1

)−1

= 1− z + z2 − 2z3 + 3z4 − 5z4 + · · · ,

the coefficients on the right hand side of (1.4) having the magnitude of the Fibonacci numbers.
Hence, the first constant is also good. We return to this setting in Section 4.

Example 1.3.Consider the lower triangular linear systemL~x = ~b whereL is the10×10 matrix
with (i, j)th entry

(1.5) Li,j =


1, if i = j

10, if i > j

0, if i < j

,

and theith component of~b is bi = i2 for 1 ≤ i ≤ 10. The exact solution is

(1.6) ~x =



1

−6

59

−524

4725

−42514

382639

−3443736

30993641

−278942750



= L−1~b.
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BOUNDS FORL INEAR RECURRENCES WITHRESTRICTEDCOEFFICIENTS 3

The condition number ofL is 26633841560.0; this essentially drives the rate of growth ofxi

in i (cf. Trefethen and Bau [23] for general discussion). Our results will imply that all matrix
equationsL~x = ~b, with L ann× n unit lower triangular matrix withLi,j ∈ [0, 10] for 1 ≤ i <
j ≤ n and|bi| ≤ i2, have solutions whoseith componentxi is bounded by (coefficients rounded
to three decimal places)

(1.7) |xi| ≤ (0.142) 10.099i + 3.538 (−0.099)i − 0.400 i + 0.320, 1 ≤ i ≤ n.

The first four values of the right hand side of (1.7) are1, 14, 145, and1472. These show essen-
tially the same order of magnitude as thexi’s; hence the bound is performing reasonably. We
return to this example in Section 3.

Recurrences with varying or random coefficients have been studied by many previous au-
thors. A partial survey of such literature contains Viswanath [24] and [25], Viswanath and
Trefethen [26], Embree and Trefethen [5], Wright and Trefethen [28], Mallik [16], Popenda
[20], Kittapa [15], and Odlyzko [19].

Our methods of proof are based on a careful analysis of sign changes in solutions to (1.1).
This differs considerably from past authors, who typically take a more analytic approach. An
advantage of our discourse is that it is entirely elementary, discrete, and self-contained. A
disadvantage of our arguments lie with laborious bookkeeping.

Study of (1.1) could alternatively be based on linear algebraic or analytic techniques. Some
of the applications considered here, namely solutions of linear matrix equations and coefficients
of ratios of power series, are indeed classical problems. However, linear algebraic and analytic
techniques have yielded disappointing explicit bounds to date. Hence, this paper explores alter-
native methods.

The rest of this paper proceeds as follows. Section 2 presents the main theorem, some vari-
ants of this result, and discussion of the hypotheses and optimality. Sections 3 and 4 consider
application of the results to lower triangular linear systems and coefficients of ratios of power
series, respectively. Proofs are deferred to Section 5. There, a simple case of our main result is
first proven to convey the logic of our sign change analyses.

2. RESULTS

The general form of our main result is the following.

Theorem 2.1. Suppose thatA ≥ 1 and 0 ≤ B ≤ A are constants and that{Dn}∞n=2 is a
nondecreasing sequence of nonnegative real numbers. Suppose that the coefficients in (1.1)
are restricted to intervals:αn,1 ∈ [−Dn, Dn] for n ≥ 2 andαn,k ∈ [−A, B] for n ≥ 2 and
2 ≤ k ≤ n− 1. Then solutions to (1.1) satisfy|bn|/|b1| ≤ Un for all n ≥ 1, where

(2.1) Un =



1, if n = 1

D2, if n = 2

AD2 + D3, if n = 3

AUn−1 + (1 + B)Un−2 + Dn −Dn−2, if n > 3

.

Neglecting the bookkeeping complications induced by a general{Dn}, the difference equa-
tion in (2.1) is second-order, time-homogeneous, and linear. In many cases, one can solve (2.1)
explicitly for Un. As such, we viewUn as being “easy to compute”. The generality added by a
non-decreasing{Dn} is relevant in probabilistic settings where generalized renewal equations
are common (cf. Feller [6] and Heathcote [11]).

For cases where asymmetric bounds onαn,1 are available, we offer the following.
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4 KENNETH S. BERENHAUT AND ROBERT LUND

Theorem 2.2. Suppose thatA ≥ 1 and thatC ≥ 0 and D ≥ 0. If αn,1 ∈ [−C, D] and
αn,k ∈ [−A, 0] for all n ≥ 2 and2 ≤ k ≤ n− 1, then|bn|/|b1| ≤ Un for all n ≥ 1, where

(2.2) Un =



1, if n = 1

max(C, D), if n = 2

A max(C, D) + min(C, D), if n = 3

AUn−1 + Un−2, if n > 3

.

Theorems 2.1 and 2.2 are proven in Section 5. There, we first prove the results in the simple
setting whereA = C = ∆ > 1, D = 0, andb1 = −1 to convey the basic ideas of a sign change
analysis. In particular, we prove the following Corollary.

Corollary 2.3. Suppose thatb1 = −1 and thatαn,k ∈ [−∆, 0] for all n, k where∆ ≥ 1. Then
|bn| ≤ Un for all n ≥ 1, where{Un} satisfies

(2.3) Un =

{
∆n−1, if n ≤ 2

∆Un−1 + Un−2, if n ≥ 3
.

Solving (2.3) explicitly forUn gives

(2.4) Un =
∆√

∆2 + 4

(
rn−1
1 −

(
− 1

r1

)n−1
)

,

for n ≥ 2, wherer1 is the root

(2.5) r1 =
∆ +

√
∆2 + 4

2

of the characteristic polynomial associated with (2.3). The other root of the characteristic poly-
nomial in (2.3) isr2 = 2−1(∆−

√
∆2 + 4). Observe that|r1| > |r2| andr1r2 = −1.

The flexibility allowed in bounds forαn,1 in Theorems 2.1 and 2.2 comes at a bookkeeping
price during the proof in Section 5. The benefits of such generality will become apparent in Sec-
tions 3 and 4 where we bound solutions of nonhomogeneous (rather than merely homogeneous)
matrix equations and the coefficients of power series ratios (rather than merely reciprocals).

This section concludes with some comments on the assumptions and optimality of Theorems
2.1 and 2.2.

Remark 2.4. (Optimality of Theorems 2.1 and 2.2). For a givenb1, {Dn}∞n=2, A, andB, the
bound in (2.1) cannot be improved upon. To see this, set

(2.6) αn,1 =

{
−Dn if n is odd

Dn if n is even

and

(2.7) αn,k =

{
−A if n + k is odd

B if n + k is even

for n ≥ 2 and1 < k ≤ n − 1. It is easy to verify from (1.1) thatbn = (−1)nUnb1 for n ≥ 2,
implying that the bound in Theorem 2.1 is achieved. A similar construction shows that the
bound in Theorem 2.2 is also optimal.

For completeness, we also consider situations where0 ≤ A ≤ B. In this case, a straightfor-
ward analysis will yield the following bound for solutions to (1.1).
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Remark 2.5. Consider the setup in Theorem 2.1 except that0 ≤ A ≤ B. Then{U∗n}∞n=1

defined by

(2.8) U∗n =



1, if n = 1

D2, if n = 2

BD2 + D3, if n = 3

(B + 1)U∗n−1 + Dn −Dn−1, if n > 3

is a bound satisfying|bn|/|b1| ≤ U∗n for all n ≥ 1. This bound is achieved in the case where
αn,1 = Dn andαn,k = B for n ≥ 2 and2 ≤ k ≤ n− 1.

The above results provide optimal bounds for|bn| whenαn,k ∈ [−A, B] except when0 ≤
B < A < 1. As our next remark shows, the conditionA ≥ 1 is essential for optimality.

Remark 2.6. Optimality of Theorem 2.1 may not occur whenA < 1. To see this, suppose that
B < A < 1 and consider{bn}∞n=1 satisfying (1.1) withb1 = −1, α2,1 = D2, α3,1 = D3, α3,2 =
B, α4,1 = −D4, α4,2 = −A, andα4,3 = −A. Then (1.1) givesb2 = −D2, b3 = −(BD2 + D3),
and

b4 = D4 + A(BD2 + D3) + AD2

= (A + AB)D2 + AD3 + D4

> (A2 + B)D2 + AD3 + D4,(2.9)

where the strict inequality above follows fromA + AB > A2 + B (which follows fromB <
A < 1). Applying (2.1) now gives

b4 > A(AD2 + D3) + (B + 1)D2 + D4 −D2

= AU3 + (1 + B)U2 + D4 −D2

= U4.(2.10)

Hence,Un may not bound|bn| in this setting.

Example 2.1. In the setting of Example 1.1, the{αn,k} producing the maximal{|bn|} are
obtained via the argument in Remark 2.4. Whenαn,k ∈ [−3, 0] for all n andk, the maximal
|bn|’s are produced withαn,k either−3 or 0 in the alternating fashion depicted in the table in
Example 1.1.

3. TRIANGULAR L INEAR SYSTEMS WITH RESTRICTED ENTRIES

Theorems 2.1 and 2.2 have applications to systems of linear equations. Consider the lower
triangular linear system

l1,1 0 . . . 0

l2,1 l2,2
... 0

...
...

...
...

ln,1 ln,2 · · · ln,n




x1

x2

...

xn

 =


c1

c2

...

cn

 ,(3.1)

with li,i 6= 0 for 1 ≤ i ≤ n. Solving this for{xj} gives

(3.2) xm =
cm

lm,m

x0 −
m−1∑
k=1

lm,k

lm,m

xk, 1 ≤ m ≤ n,
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6 KENNETH S. BERENHAUT AND ROBERT LUND

with x0 = 1. Lettingbm+1 = xm for 0 ≤ m ≤ n produces

(3.3) bm+1 =
cm

lm,m

b1 −
m∑

k=2

lm,k−1

lm,m

bk

which is (1.1) withαm,1 = cm−1/lm−1,m−1 andαm,k = −lm−1,k−1/lm−1,m−1 for 2 ≤ k ≤ m−1.
Hence, Theorems 2.1 and 2.2 become the following.

Corollary 3.1. Consider the linear system in (3.1). Suppose that0 ≤ B ≤ A and thatDk is
nondecreasing ink. Then

(i) If ci/li,i ∈ [−Di+1, Di+1] for 1 ≤ i ≤ n and li,j/li,i ∈ [−B, A] for 2 ≤ i ≤ n and
1 ≤ j ≤ i, then|xi| ≤ Ui+1 for 2 ≤ i ≤ n where{Uk} is as in (2.1).

(ii) If ci/li,i ∈ [−C, D] for 1 ≤ i ≤ n and li,j/li,i ∈ [0, A] for 2 ≤ i ≤ n and1 ≤ j ≤ i,
then|xi| ≤ Ui+1 for 1 ≤ i ≤ n where{Uk} is as in (2.2).

Example 3.1. Returning to Example 1.3, the bound in (1.7) follows from Part (i) of Corollary
3.1 withDi = (i− 1)2, A = 10, andB = 0. The difference equation in (2.1) simplifies to

(3.4) Un = 10Un−1 + Un−2 + 4n− 8.

Corollary 3.1 compares favorably to the bounds for matrix equation solutions with coef-
ficients that are restricted to more general intervals in Neumaier [17], Hansen [9] and [8],
Hansen and Smith [10], and Kearfott [12]. Here, optimal bounds are obtained regardless of
interval widths and dimension; moreover, the computational burden is limited to solving the
second-order linear recurrences in (2.1) or (2.2).

If ci = 0 for i ≥ 2 in (3.1) (this situation is discussed further in Viswanath and Trefethen
[26]), then (3.2) is

(3.5) xm = −
m−1∑
k=1

lm,k

lm,m

xk, 1 ≤ m ≤ n,

with x1 = c1/l1,1. One can now bound|xn| via Theorem 2.1 or 2.2.

4. RATIOS OF POWER SERIES

The recurrence equation (1.1) arises when computing coefficients of ratios of formal power
series. Equating coefficients in the expansion

(4.1) h0 + h1z + h2z
2 + · · · = g0 + g1z + g2z

2 + · · ·
f0 + f1z + f2z2 + · · ·

(takef0 = 1 andg0 = 1 for simplicity) givesh0 = 1 and

(4.2) hn = (gn − fn)h0 −
n−1∑
j=1

fn−jhj, n ≥ 1.

The theorems in Section 2 translate to the following.

Corollary 4.1. Suppose that0 ≤ B ≤ A, that {Dn}∞n=2 is a nondecreasing sequence of non-
negative real numbers, and that{fn}∞n=0, {gn}∞n=0, and{hn}∞n=0 satisfy (4.1) withf0 = g0 = 1.

(i) If gn − fn ∈ [−Dn+1, Dn+1] for all n ≥ 1 and fn ∈ [−B, A] for all n ≥ 0, then
|hn| ≤ Un+1 for all n ≥ 0 where{Un}∞n=1 is as in (2.1).

(ii) If gn − fn ∈ [−C, D] for n ≥ 1 andfn ∈ [0, A] for n ≥ 0, then|hn| ≤ Un+1 for n ≥ 0
where{Un}∞n=1 is as in (2.2).
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Merely inverting a power series simplifies the statements in Corollary 4.1. Here,gk = 0 for
all k ≥ 1 andg0 = 1. Using this in (4.2), applying Part (i) of Corollary 3.1 (withDn ≡ A) and
Part (ii) of Corollary 3.1 (withC = A andD = 0), and solving (2.1) and (2.2) for{Un} gives
the following results.
Corollary 4.2. Suppose that0 ≤ B ≤ A and thatgk = 0 for k ≥ 1 andg0 = 1. Let

(4.3) r1 =
A +

√
A2 + 4(1 + B)

2
be a root of the characteristic polynomial in (2.1).

(i) If fn ∈ [−B, A] for all n ≥ 0, then

(4.4) |hn| ≤ κ1r
n
1 + κ2

[
−(B + 1)

r1

]n

for all n ≥ 1 where

(4.5) κ1 =
2(B + 1)− A +

√
A2 + 4(1 + B)

2(B + 1)
√

A2 + 4(1 + B)
,

and

(4.6) κ2 = −
2(B + 1)− A−

√
A2 + 4(1 + B)

2(B + 1)
√

A2 + 4(1 + B)
.

(ii) If fn ∈ [0, A] for all n ≥ 0 (B = 0), then

(4.7) |hn| ≤
A√

A2 + 4
rn
1 −

A√
A2 + 4

[
−1

r1

]n

for all n ≥ 1.

Remark 4.3. Corollary 4.2 (ii) is optimal as the bound is attained forf(z) = 1 + Az + Az3 +
Az5 + · · · . Regarding the sharpness of Corollary 4.2 (i), setf(z) = 1+Az−Bz2 +Az3 + · · · .
If un is taken to be the bound on the right hand side of (4.4) then it is not difficult to show that
un andhn are similar in magnitude:un/|hn| ≤ 1 + 2(A−B)/A2 and

(4.8) lim
n→∞

un

|hn|
= 1 +

(A−B)(
√

A2 + 4(1 + B)− A)

AB + 2A + B
√

A2 + 4(1 + B)
.

Hence, the rate is again sharp.
Corollaries 4.1 and 4.2 are useful when generating functions or formal power series are uti-

lized such as in enumerative combinatorics and stochastic processes (cf. Wilf [27], Feller [6],
Kijima [14]).

The above results provide bounds for the location of the smallest root of a complex valued
power series. Power series with restricted coefficients have been studied in the context of deter-
mining distributions of zeroes (cf. Flattoet al. [7], Solomyak [22], Beaucoupet al. [1], [2], and
Pinner [21]). Related problems for polynomials have been considered by Odlyzko and Poonen
[18], Yamamoto [29], Borwein and Pinner [4], and Borwein and Erdelyi [3]. As mentioned
above, Flattoet al. [7] and Solomyak [22] independently proved that ifz is a root of a series
in F[0,1], then|z| ≥ 2/(1 +

√
5). The following extension of this result is a consequence of

Corollary 4.2.
Corollary 4.4. If z is a root of a power series inF[−B,A] with 0 ≤ B ≤ A, then

(4.9) |z| ≥ 2

A +
√

A2 + 4(1 + B)
.
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8 KENNETH S. BERENHAUT AND ROBERT LUND

Proof. Suppose thatf ∈ F[−B,A]. Apply Part (i) of Corollary 4.2 and note from (4.4) that
f(z)−1 is finite for |z| < r−1

1 (Observe thatr1 is the root of the characteristic polynomial with
largest magnitude). Iff had a root in{z : |z| < r−1

1 }, say atz = z0, then we would have the
contradiction|f(z0)|−1 = ∞. �

The result in Corollary 4.4 is again optimal: for given0 ≤ B ≤ A, f(z) = 1 + Az − Bz2 +
Az3 −Bz4 + · · · has a root atz = −r−1

1 .

5. PROOFS

This section proves Theorem 2.1. As the arguments for Theorem 2.2 are similar, we concen-
trate on Theorem 2.1 only. While the proof of Theorem 2.1 is self-contained and elementary, it
does employ a “sign change analysis” of{bn}∞n=1 which is case-by-case intensive and delicate.
Attempts to find a direct analytic argument, by other authors as well as ourselves, have been un-
successful to date. In particular, standard manipulations with classical inequalities do not yield
the sharpness or generality of Theorem 2.1. The rudimentary structure of the problem emerges
with the sign change arguments. Moreover, the arguments provide both a convergence rate and
explicit “first constant” bound for the rate. Obtaining an explicit first constant, a practical matter
needed to apply the bounds, takes considerably more effort in general.

The sign-change arguments below first bound all solutions to (1.1) that have a particular sign
configuration; in the notation below, this is|bn| ≤ |Bn| for all n ≥ 1. A subsequent analysis is
needed to bound|Bn| by an accessible quantity; in the notation below, this is|Bn| ≤ Un where
Un is defined in (2.1). We first consider the arguments for Corollary 2.3 as these are reasonably
brief and convey the essence of the general analysis.

Arguments for Corollary 2.3. Suppose thatb1 = −1 and letP = {n ≥ 1 : bn ≥ 0} and
N = {n ≥ 1 : bn < 0} partition the sign configuration of{bn}∞n=1. Now defineBn recursively
in n from N andP via B1 = −1 and

(5.1) Bn =


∆−∆

∑
2≤r≤n−1

r∈N

Br, n ∈ P

−∆
∑

2≤r≤n−1

r∈P

Br, n ∈ N

for n ≥ 2. A simple induction with (5.1) will show thatBn andbn have the same sign forn ≥ 1.
We now prove by induction that|bn| ≤ |Bn| for all n > 1. First, assume thatn > 1 and that

n ∈ P . Returning to (1.1) and collecting positive and negative terms gives

(5.2) bn = αn,1b1 +
∑

2≤r≤n−1

r∈P

αn,rbr +
∑

2≤r≤n−1

r∈N

αn,rbr.

Using b1 = −1, the boundαn,k ∈ [−∆, 0] for all n, k, and neglecting the first summation in
(5.2) gives

bn ≤ ∆ +
∑

2≤r≤n−1

r∈N

−∆br

= ∆ + ∆
∑

2≤r≤n−1

r∈N

|br|.(5.3)
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Using the inductive hypothesis and the fact that|bn| = bn in (5.3) produces

|bn| ≤ ∆ + ∆
∑

2≤r≤n−1

r∈N

|Br|

= ∆−∆
∑

2≤r≤n−1

r∈N

Br

= Bn(5.4)

after (5.1) is applied. An analogous argument works whenn ∈ N .
We now finish the arguments for Corollary 2.3 by inductively showing that|Bn| ≤ Un from

(5.1). First, it is easy to verify that|Bi| ≤ Ui, for 1 ≤ i ≤ 3 for all possible sign configurations
of {B1, B2, B3}. Now assume thatn ∈ P (Bn ≥ 0) wheren > 3. If n − 1 ∈ P (Bn−1 ≥ 0),
thenBn = Bn−1 by (5.1) and|Bn| = |Bn−1| ≤ Un−1 ≤ Un sinceUn is nondecreasing inn (this
follows from ∆ ≥ 1). So we need only consider the case wheren − 1 ∈ N (Bn−1 < 0). If
r ∈ N for all r ≤ n− 1 (Br < 0 for 1 ≤ r ≤ n− 1), thenB2 = B3 = · · · = Bn−1 = 0 by (5.1)
and we haveBn = ∆ = U3 ≤ Un.

Finally, consider the case where a non-negative element in{B1, . . . , Bn−2} exists; that is,
r ∈ P for some2 ≤ r ≤ n− 2. Let r∗ be the largest such integer and setk = n− r∗ − 1. For
signs of{Bn}, we haveBn−k−1 ≥ 0 (Bn−k−1 ∈ P ) andBj < 0 for n− k ≤ j ≤ n− 1. Using
these in (5.1) givesBn−1 = · · · = Bn−k. Applying (5.1) yet again produces

Bn = ∆−∆
∑

2≤r≤n−1

r∈N

Br

= ∆−∆
n−1∑

r=n−k

Br −∆
∑

2≤r≤n−k−2

r∈N

Br

= Bn−k−1 −∆kBn−k.(5.5)

Applying the induction hypothesis and the triangle inequality in (5.5) produces

(5.6) |Bn| ≤ Un−k−1 + ∆kUn−k,

and the difference equation in (2.3) can be used to increase the smallest subscript appearing on
the right hand side of (5.6) ton− k:

(5.7) |Bn| ≤ Un−k+1 + ∆(k − 1)Un−k.

SinceUn is nondecreasing inn and∆(k − 1) ≥ 1, we may swap the coefficients onUn−k+1

andUn−k in (5.7) to obtain

(5.8) |Bn| ≤ Un−k + ∆(k − 1)Un−k+1.

Note that (5.8) is (5.6) withk replaced byk−1. As the discourse from (5.6) – (5.8) is merely
algebraic, we iterate the above arguments to obtain

(5.9) |Bn| ≤ Un−(k−j)−1 + ∆(k − j)Un−(k−j)

for each0 ≤ j ≤ k − 1. In particular, takingj = k − 1 in (5.9) now gives

(5.10) |Bn| ≤ Un−2 + ∆Un−1.

Applying (2.3) in (5.10) immediately gives the required bound|Bn| ≤ Un and finishes our
work. The arguments for the case wheren ∈ N are similar. �

Following the logic of the above arguments, we now present the proof of Theorem 2.1 in its
generality.
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Proof of Theorem 2.1.We first reduce to the case whereb1 = −1 by examiningbn/b1. Again
let P = {n ≥ 1 : bn ≥ 0} andN = {n ≥ 1 : bn < 0} be the sign partition for{bn}∞n=1.
This time, define a bounding sequence{Bn}∞n=1 for this sign configuration recursively inn via
B1 = −1, and forn ≥ 2 by

(5.11) Bn =


Dn − A

∑
2≤r≤n−1

r∈N

Br + B
∑

2≤r≤n−1

r∈P

Br, n ∈ P

−Dn − A
∑

2≤r≤n−1

r∈P

Br + B
∑

2≤r≤n−1

r∈N

Br, n ∈ N
.

As before, an induction will show thatBn andbn have the same sign for eachn ≥ 1. This fact
will be used repeatedly in the discourse below.

We now justify the majorizing properties of{Bn} by inductively showing that|bn| ≤ |Bn|
for all n ≥ 1. First, consider the case wheren ∈ P . Now partition positive and negative terms
in (1.1) and apply the bounds assumed on theαn,k’s in Theorem 2.1 to get

(5.12) bn ≤ −Dnb1 + B
∑

2≤r≤n−1

r∈P

br − A
∑

2≤r≤n−1

r∈N

br.

Applying b1 = −1 and the induction hypothesis, and then (5.11) gives

bn ≤ Dn + B
∑

2≤r≤n−1

r∈P

|Br|+ A
∑

2≤r≤n−1

r∈N

|Br|

= Dn + B
∑

2≤r≤n−1

r∈P

Br − A
∑

2≤r≤n−1

r∈N

Br

= Bn.(5.13)

Similar arguments tackle the case wheren ∈ N . Equation (5.13) represents the core of our
arguments. The remainder of our work lies with devising a useful bound for theBn’s in (5.11).

To complete the proof of Theorem 2.1, it remains to show that|Bn| ≤ Un for all n ≥ 1.
For this it will be convenient to have the following technical lemma which we prove after the
arguments for Theorem 2.1 (one can verify non-circularity of discourse).

Lemma 5.1. Consider the setup in Theorem 2.1 and define{En}∞n=1 via E0 = 1, E1 = A,
E2 = A2 + B, andEj = AEj−1 + (1 + B)Ej−2 for j ≥ 3. ThenUn can be expressed as

(5.14) Un = Dn +
n−1∑
j=2

En−jDj,

for n ≥ 2, with the inequality

(5.15) Un − (1 + B)Un−1 ≥ Dn −Dn−1

holding forn ≥ 3. Finally, in the case wheren ≥ 2 andBj < 0 for 1 ≤ j ≤ n− 1 (j ∈ N for
1 ≤ j ≤ n− 1) andBn ≥ 0 (n ∈ P ), we have

(5.16) Bn = Dn +
n−1∑
j=2

A(1 + B)n−j−1Dj.
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We now return to the proof of Theorem 2.1. Assume first thatn ∈ P (Bn > 0). We
start inductive verification that|Bj| ≤ Uj for all j ≥ 1 by noting that|B1| = U1 = 1 and
|B2| = D2 = U2. ForB3, first note that ifB2 ≥ 0 andB3 ≥ 0 ({2, 3} ⊂ P ), then

|B3| = D3 + BD2

≤ U3,(5.17)

where the inequality in (5.17) follows from (2.1),Dj ≥ 0 for all j, andB ≤ A. In the case
whereB2 < 0 andB3 < 0 ({2, 3} ⊂ N), then (5.17) again holds. In the cases where there is
one negative and one positive sign amongst{B2, B3}, one can verify that

|B3| = D3 + AD2

≤ U3(5.18)

by direct application of (2.1).
Now assume that|Bk| ≤ Uk for 1 ≤ k ≤ n− 1. Whenn− 1 ∈ P (Bn−1 ≥ 0), use (5.11) to

get

(5.19) Bn = (1 + B)Bn−1 + Dn −Dn−1.

Applying the induction hypothesis thatBn−1 ≤ Un−1 and (5.15) in (5.19) produces

Bn ≤ (1 + B)Un−1 + Dn −Dn−1

≤ Un(5.20)

as claimed.
It remains to consider the case wheren− 1 ∈ N . First suppose thatr ∈ N for all r ≤ n− 1.

From Lemma 5.1,E1 = A andE2 = A2 +B ≥ A(1+B) sinceA ≥ 1 andA ≥ B. UsingA ≥
B and Lemma 5.1 in an induction argument will easily verify the inequalityEj ≥ A(1 + B)j−1

for all j ≥ 1. Comparing coefficients in (5.16) and (5.14) now yields|Bn| ≤ Un as claimed.
Having dealt with the case where theBj are negative for all1 ≤ j ≤ n−1, now suppose that

there exists a non-negativeBj amongst the firstn− 1 indices. In particular, suppose thatr ∈ P
for some2 ≤ r ≤ n − 2 and letr∗ denote the largest such integer. Setk = n − r∗ − 1. For
signs of{Bn}, we haveBn−k−1 ≥ 0 (n− k − 1 ∈ P ), Bj < 0 (j ∈ N for n− k ≤ j ≤ n− 1),
and our standing assumption thatBn ≥ 0 (n ∈ P ). Using these facts in (5.11) produces

(5.21) Bn = Dn − A
∑

n−k≤r≤n−1

Br + A
∑

2≤r≤n−k−2

r∈N

Br + B
∑

2≤r≤n−k−2

r∈P

Br + B|Bn−k−1|.

Now combine the definition ofBn−k−1 in (5.11) with (5.21) to get

(5.22) Bn = Dn + (1 + B)|Bn−k−1| −Dn−k−1 − A
∑

n−k≤r≤n−1

Br.

Returning to (5.11) with the fact thatBj < 0 for n − k ≤ j ≤ n − 1 identifies the rightmost
summation in (5.22):

(5.23)
∑

n−k≤r≤n−1

Br = −|Bn−k|
k−1∑
i=0

(1 + B)i + Dn−k

k−2∑
i=0

(1 + B)i −
k−1∑
i=1

(1 + B)i−1Dn−i.
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Combining (5.22) and (5.23) expressesBn explicitly in terms ofBn−k andBn−k−1:

(5.24) Bn = Dn + (1 + B)|Bn−k−1| −Dn−k−1 + A|Bn−k|
k−1∑
i=0

(1 + B)i

− ADn−k

k−2∑
i=0

(1 + B)i + A

k−1∑
i=1

(1 + B)i−1Dn−i.

The induction hypothesis gives|Bn−k−1| ≤ Un−k−1 and|Bn−k| ≤ Un−k; using these in (5.24)
along withBn = |Bn| gives the bound

(5.25) |Bn| ≤ Dn + (1 + B)Un−k−1 −Dn−k−1 + AUn−k

k−1∑
i=0

(1 + B)i

− ADn−k

k−2∑
i=0

(1 + B)i + A
k−1∑
i=1

(1 + B)i−1Dn−i.

Making the substitutionJi = A
∑i

m=0(1 + B)m into (5.25) now yields

(5.26) |Bn| ≤ Dn + (1 + B)Un−k−1 −Dn−k−1 + Un−kJk−1

−Dn−kJk−2 + A
k−1∑
i=1

(1 + B)i−1Dn−i.

The difference equation (2.1) givesUn−k+1 = AUn−k + (1 + B)Un−k−1 + Dn−k+1 −Dn−k−1.
Using this in (5.26) and algebraically simplifying produces

(5.27) |Bn| ≤ Un−k+1 −Dn−k+1 + (1 + B)Un−kJk−2 + Dn −Dn−kJk−2

+ A
k−1∑
i=1

(1 + B)i−1Dn−i,

where the fact thatJk−1 − A = (1 + B)Jk−2 has been applied. An algebraic rearrangement of
the right hand side of (5.27) now produces

(5.28) |Bn| ≤ (1− Jk−2)[Un−k+1 − (1 + B)Un−k] + Jk−2Un−k+1 + (1 + B)Un−k

−Dn−k+1 + Dn −Dn−kJk−2 + A
k−1∑
i=1

(1 + B)i−1Dn−i.

Noting thatJk−2 ≥ 1 for all k and applying (5.15) to the bracketed term in the right hand side
of (5.28) now produces

|Bn| ≤ (1− Jk−2)[Dn−k+1 −Dn−k] + Jk−2Un−k+1 + (1 + B)Un−k

−Dn−k+1 + Dn −Dn−kJk−2 + A
k−1∑
i=1

(1 + B)i−1Dn−i.

Invoking the difference equation in (2.1) again will give

(5.29) |Bn| ≤ Un−k+2 −Dn−k+2 + (1 + B)Un−k+1Jk−3 + Dn −Dn−k+1Jk−3

+ A
k−2∑
i=1

(1 + B)i−1Dn−i.
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The discourse between (5.27) – (5.29) is purely algebraic, justified via the difference equation
in (2.1). Observe that the bounds for|Bn| in (5.27) and (5.29) are similar in form, except thatk
is replaced byk − 1. As such, one can continue iterating the arguments in (5.27) – (5.29) until
k = 3. This will give

(5.30) |Bn| ≤ Un−1 −Dn−1 + (1 + B)Un−2J0 + Dn −Dn−2J0 + ADn−1.

Now useJ0 = A in (5.30), employ (2.1) and regroup terms to get

(5.31) |Bn| ≤ Un + Dn−2 + (1− A)[Un−1 − (1 + B)Un−2]−Dn−1 −Dn−2A + ADn−1.

Applying (5.20) once more to the bracketed terms in (5.31) andA ≥ 1 to get

|Bn| ≤ Un + Dn−2 + (1− A)(Dn−1 −Dn−2)−Dn−1 −Dn−2A + ADn−1

= Un.(5.32)

This completes the arguments for Theorem 2.1 in the case wheren ∈ P . The discourse for the
case wheren ∈ N is similar and is hence omitted. �

Proof of Lemma 5.1.The convolution identity (5.14) is easy to verify directly from (2.1). To
prove (5.16), return to (5.11) with the facts thatj ∈ N for 1 ≤ j ≤ n − 1 to get|B2| = D2,
Bn = A

∑n−1
j=2 |Bj|+ Dn, and|Bj| = (1 + B)|Bj−1| −Dj−1 + Dj for 3 ≤ j ≤ n− 1.

To prove (5.15), we get an induction started by applying (2.1) withn = 2 andn = 3:

U3 − (1 + B)U2 = AD2 + D3 − (1 + B)D2

= (A−B)D2 + D3 −D2

≥ 0,(5.33)

where the last inequality follows fromA ≥ B, D2 ≥ 0 andD3 ≥ D2. Equation (5.15) with
i = 4 follows from the inequalitiesA ≥ 1 andA ≥ B:

U4 − (1 + B)U3 = [AU3 + (1 + B)U2 + D4 −D2]− (1 + B)[AD2 + D3]

= (A− 1)(A−B)D2 + (A−B)D3 + D4 −D3

≥ D4 −D3,(5.34)

where the last inequality follows fromA ≥ 1, A ≥ B, D3 ≥ 0 andD4 ≥ D3.
For the general inductive step, take ann > 4 and suppose thatUi−(1+B)Ui−1 ≥ Di−Di−1

for 3 ≤ i ≤ n− 1. Then (2.1) gives

Un − (1 + B)Un−1 = [AUn−1 + (1 + B)Un−2 + Dn −Dn−2]

− (1 + B)[AUn−2 + (1 + B)Un−3 + Dn−1 −Dn−3]

= A[Un−1 − (1 + B)Un−2] + (1 + B)[Un−2 − (1 + B)Un−3]

+ Dn −Dn−2 − (1 + B)Dn−1 + (1 + B)Dn−3.(5.35)

Applying the inductive hypothesis to the bracketed terms in (5.35) and collecting terms gives
the inequality

Un − (1 + B)Un−1 ≥ A(Dn−1 −Dn−2) + (1 + B)(Dn−2 −Dn−3) + Dn −Dn−2

− (1 + B)Dn−1 + (1 + B)Dn−3

= Dn −Dn−1 + (A−B)[Dn−1 −Dn−2].(5.36)

The assumed monotonicity ofDk in k andA ≥ B give

(5.37) Un − (1 + B)Un−1 ≥ Dn −Dn−1

and the proof is complete. �
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