Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 7, Issue 2, Article 49, 2006

ON CERTAIN CLASSES OF ANALYTIC FUNCTIONS

KHALIDA INAYAT NOOR

Mathematics Department
COMSATS Institute of Information Techonolgy
ISLAMABAD, PAKISTAN
khalidanoor@hotmail.com
Received 28 August, 2005; accepted 21 October, 2005
Communicated by Th.M. Rassias

Abstract

Let \mathcal{A} be the class of functions $f: f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are analytic in the unit disk E. We introduce the class $B_{k}(\lambda, \alpha, \rho) \subset \mathcal{A}$ and study some of their interesting properties such as inclusion results and covering theorem. We also consider an integral operator for these classes.

Key words and phrases: Analytic functions, Univalent, Functions with positive real part, Convex functions, Convolution, Integral operator.
2000 Mathematics Subject Classification. 30C45, 30C50.

1. Introduction

Let \mathcal{A} denote the class of functions

$$
f: f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}
$$

which are analytic in the unit disk $E=\{z:|z|<1\}$ and let $S \subset \mathcal{A}$ be the class of functions univalent in E.

Let $P_{k}(\rho)$ be the class of functions $p(z)$ analytic in E satisfying the properties $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\rho}{1-\rho}\right| d \theta \leq k \pi \tag{1.1}
\end{equation*}
$$

where $z=r e^{i} \theta, \quad k \geq 2$ and $0 \leq \rho<1$. This class has been introduced in [7]. We note that, for $\rho=0$, we obtain the class P_{k} defined and studied in [8], and for $\rho=0, k=2$, we have the well known class P of functions with positive real part. The case $k=2$ gives the class $P(\rho)$ of functions with positive real part greater than ρ.

[^0]From (1.1) we can easily deduce that $p \in P_{k}(\rho)$ if, and only if, there exist $p_{1}, p_{2} \in P(\rho)$ such that, for E,

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) . \tag{1.2}
\end{equation*}
$$

Let f and g be analytic in E with $f(z)=\sum_{m=0}^{\infty} a_{m} z^{m}$ and $g(z)=\sum_{m=0}^{\infty} b_{m} z^{m}$ in E. Then the convolution \star (or Hadamard Product) of f and g is defined by

$$
(f \star g)(z)=\sum_{m=0}^{\infty} a_{m} b_{m} z^{m}, \quad m \in \mathbb{N}_{0}=\{0,1,2, \ldots\}
$$

Definition 1.1. Let $f \in \mathcal{A}$. Then $f \in B_{k}(\lambda, \alpha, \rho)$ if and only if

$$
\begin{equation*}
\left[(1-\lambda)\left(\frac{f(z)}{z}\right)^{\alpha}+\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\alpha}\right] \in P_{k}(\rho), \quad z \in E \tag{1.3}
\end{equation*}
$$

where $\alpha>0, \lambda>0, k \geq 2$ and $0 \leq \rho<1$. The powers are understood as principal values.
For $k=2$ and with different choices of λ, α and ρ, these classes have been studied in [2, 3, 4, 10]. In particular $B_{2}(1, \alpha, \rho)$ is the class of Bazilevic functions studied in [1].

We shall need the following results.
Lemma 1.1 ([9]). If $p(z)$ is analytic in E with $p(0)=1$ and if λ is a complex number satisfying $\operatorname{Re} \lambda \geq 0,(\lambda \neq 0)$, then

$$
\operatorname{Re}\left[p(z)+\lambda z p^{\prime}(z)\right]>\beta \quad(0 \leq \beta<1)
$$

implies

$$
\operatorname{Re} p(z)>\beta+(1-\beta)(2 \gamma-1)
$$

where γ is given by

$$
\gamma=\gamma_{\mathrm{Re} \lambda}=\int_{0}^{1}\left(1+t^{\operatorname{Re} \lambda}\right)^{-1} d t
$$

Lemma 1.2 ([5]). Let $c>0, \lambda>0, \rho<1$ and $p(z)=1+b_{1} z+b_{2} z^{2}+\cdots$ be analytic in E. Let $\operatorname{Re}\left[p(z)+c \lambda z p^{\prime}(z)\right]>\rho$ in E, then

$$
\operatorname{Re}\left[p(z)+c z p^{\prime}(z)\right] \geq 2 \rho-1+2(1-\rho)\left(1-\frac{1}{\lambda}\right) \frac{1}{c \lambda} \int_{0}^{1} \frac{u^{\frac{1}{c \lambda}-1}}{1+u} d u
$$

This result is sharp.

2. Main Results

Theorem 2.1. Let $\lambda, \alpha>0,0 \leq \rho<1$ and let $f \in b_{k}(\lambda, \alpha, \rho)$. Then $\left(\frac{f(z)}{z}\right)^{\alpha} \in P_{k}\left(\rho_{1}\right)$, where ρ_{1} is given by

$$
\begin{equation*}
\rho_{1}=\rho+(1-\rho)(2 \gamma-1) \tag{2.1}
\end{equation*}
$$

and

$$
\gamma=\int_{0}^{1}\left(1+t^{\frac{\lambda}{\alpha}}\right)^{-1} d t
$$

Proof. Let

$$
\left(\frac{f(z)}{z}\right)^{\alpha}=p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) .
$$

Then $p(z)=1+\alpha a_{2} z+\cdots$ is analytic in E, and

$$
\begin{equation*}
(f(z))^{\alpha}=z^{\alpha} p(z) . \tag{2.2}
\end{equation*}
$$

Differentiation of (2.2) and some computation give us

$$
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\alpha}+\lambda \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\alpha}=p(z)+\frac{\lambda}{\alpha} z p^{\prime}(z) .
$$

Since $f \in B_{k}(\lambda, \alpha, \rho)$, so $\left\{p(z)+\frac{\lambda}{\alpha} z p^{\prime}(z)\right\} \in P_{k}(\rho)$ for $z \in E$. This implies that

$$
\operatorname{Re}\left[p_{i}(z)+\frac{\lambda}{\alpha} z p_{i}^{\prime}(z)\right]>\rho, \quad i=1,2 .
$$

Using Lemma 1.1, we see that $\operatorname{Re}\left\{p_{i}(z)\right\}>\rho_{1}$, where ρ_{1} is given by (2.1). Consequently $p \in P_{k}\left(\rho_{1}\right)$ for $z \in E$, and the proof is complete.

Corollary 2.2. Let $f=z F_{1}^{\prime}$ and $f \in B_{2}(\lambda, 1, \rho)$. Then F_{1} is univalent in E.
Proceeding as in Theorem 2.1 and using Lemma 1.2, we have the following.
Theorem 2.3. Let $\alpha>0, \lambda>0,0 \leq \rho<1$ and let $f \in B_{k}(\lambda, \alpha, \rho)$. Then $\frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\alpha} \in$ $P_{k}\left(\rho_{2}\right)$, where

$$
\rho_{2}=2 \rho-1+\frac{1-\rho}{\lambda}+2(1-\rho)\left(1-\frac{1}{\lambda}\right) \frac{\alpha}{\lambda} \int_{0}^{1} \frac{u^{\frac{\alpha}{\lambda}-1}}{1+u} d u .
$$

This result is sharp.
For $k=2$, we note that f is univalent, see [1].
Theorem 2.4. Let, for $\alpha>0, \lambda>0,0 \leq \rho<1, f \in B_{k}(\lambda, \alpha, \rho)$ and define $I(f): \mathcal{A} \longrightarrow \mathcal{A}$ as

$$
\begin{equation*}
I(f)=F(z)=\left[\frac{1}{\lambda} z^{\alpha-\frac{1}{\lambda}} \int_{0}^{z} t^{\frac{1}{\lambda}-1-\alpha}(f(z))^{\alpha} d t\right]^{\frac{1}{\alpha}}, \quad z \in E . \tag{2.3}
\end{equation*}
$$

Then $F \in B_{k}\left(\alpha \lambda, \alpha, \rho_{1}\right)$ for $z \in E$, where ρ_{1} is given by (2.1).
Proof. Differentiating (2.3), we have

$$
(1-\alpha \lambda)\left(\frac{F(z)}{z}\right)^{\alpha}+\alpha \lambda \frac{z F^{\prime}(z)}{F(z)}\left(\frac{F(z)}{z}\right)^{\alpha}=\left(\frac{f(z)}{z}\right)^{\alpha} .
$$

Now, using Theorem 2.1, we obtain the required result.
Theorem 2.5. Let

$$
f: f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in B_{k}(\lambda, \alpha, \rho) .
$$

Then

$$
\left|a_{n}\right| \leq \frac{k(1-\rho)}{\lambda+\alpha} .
$$

The function $f_{\lambda, \alpha, \rho}(z)$ defined as

$$
\begin{aligned}
\left(\frac{f_{\lambda, \alpha, \rho}(z)}{z}\right)^{\alpha}=\frac{\alpha}{\lambda} \int_{0}^{1}\left[\left(\frac{k}{4}+\frac{1}{2}\right) u^{\frac{\alpha}{\lambda}-1}\right. & \frac{1+(1-2 \rho) u z}{1-u z} \\
& \left.-\left(\frac{k}{4}-\frac{1}{2}\right) u^{\frac{\alpha}{\lambda}-1} \frac{1-(1-2 \rho) u z}{1+u z}\right] d u
\end{aligned}
$$

shows that this inequality is sharp.
Proof. Since $f \in B_{k}(\lambda, \alpha, \rho)$, so

$$
\begin{aligned}
(1-\lambda)\left(1+\sum_{n=2}^{\infty} a_{n} z^{n-1}\right)^{\alpha}+\lambda\left(1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right) & \left(1+\sum_{n=2}^{\infty} a_{n} z^{n-1}\right)^{\alpha} \\
= & H(z)=\left(1+\sum_{n=1}^{\infty} c_{n} z^{n}\right) \in P_{k}(\rho)
\end{aligned}
$$

It is known that $\left|c_{n}\right| \leq k(1-\rho)$ for all n and using this inequality, we prove the required result.

Different choices of k, λ, α and ρ yield several known results.
Theorem 2.6 (Covering Theorem). Let $\lambda>0$ and $0<\rho<1$. Let $f=z F_{1}^{\prime} \in B_{2}(\lambda, 1, \rho)$. If D is the boundary of the image of E under F_{1}, then every point of D has a distance of at least $\frac{\lambda+1}{(3+2 \lambda-\rho)}$ from the origin.
Proof. Let $F_{1}(z) \neq w_{0}, w_{0} \neq 0$. Then $f_{1}(z)=\frac{w_{0} F_{1}(z)}{w_{0}+F_{1}(z)}$ is univalent in E since F_{1} is univalent. Let

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad F_{1}(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

Then $a_{2}=2 b_{2}$. Also

$$
f_{1}(z)=z+\left(b_{2}+\frac{1}{w_{0}}\right) z^{2}+\cdots
$$

and so $\left|b_{2}+\frac{1}{w_{0}}\right| \leq 2$. Since, by Theorem $2.5,\left|b_{2}\right| \leq \frac{1-\rho}{1+\lambda}$, we obtain $\left|w_{0}\right| \geq \frac{\lambda+1}{3+2 \lambda-\rho}$.
Theorem 2.7. For each $\alpha>0, B_{k}\left(\lambda_{1}, \alpha, \rho\right) \subset B_{k}\left(\lambda_{2}, \alpha, \rho\right)$ for $0 \leq \lambda_{2}<\lambda_{1}$.
Proof. For $\lambda_{2}=0$, the proof is immediate. Let $\lambda_{2}>0$ and let $f \in B_{k}\left(\lambda_{1}, \alpha, \rho\right)$. Then there exist two functions $h_{1}, h_{2} \in P_{k}(\rho)$ such that, from Definition 1.1 and Theorem 2.1,

$$
(1-\lambda)\left(\frac{f(z)}{z}\right)^{\alpha}+\lambda_{1} \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\alpha}=h_{1}(z)
$$

and

$$
\left(\frac{f(z)}{z}\right)^{\alpha}=h_{2}(z)
$$

Hence

$$
\begin{equation*}
\left(1-\lambda_{2}\right)\left(\frac{f(z)}{z}\right)^{\alpha}+\lambda_{2} \frac{z f^{\prime}(z)}{f(z)}\left(\frac{f(z)}{z}\right)^{\alpha}=\frac{\lambda_{2}}{\lambda_{1}} h_{1}(z)+\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right) h_{2}(z) . \tag{2.4}
\end{equation*}
$$

Since the class $P_{k}(\rho)$ is a convex set, see [6], it follows that the right hand side of (2.4) belongs to $P_{k}(\rho)$ and this proves the result.

REFERENCES

[1] I.E. BAZILEVIC, On a class of integrability in quadratures of the Loewner-Kuarev equation, Math. Sb., 37 (1955), 471-476.
[2] M.P. CHEN, On the regular functions satisfying $\operatorname{Re} \frac{f(z)}{z}>\alpha$, Bull. Inst. Math. Acad. Sinica, 3 (1975), 65-70.
[3] P.N. CHICHRA, New Subclass of the class of close-to-convex functions, Proc. Amer. Math. Soc., 62 (1977), 37-43.
[4] S.S. DING, Y. LING AND G.J. BAO, Some properties of a class of analytic functions, J. Math. Anal. Appl., 195 (1995), 71-81.
[5] L. MING SHENG, Properties for some subclasses of analytic functions, Bull. Inst. Math. Acad. Sinica, 30 (2002), 9-26
[6] K. INAYAT NOOR, On subclasses of close-to-convex functions of higher order, Internat. J. Math. and Math. Sci., 15 (1992), 279-290.
[7] K. PADMANABHAN AND R. PARVATHAM, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31 (1975), 311-323.
[8] B. PINCHUCK, Functions with bounded boundary rotation, Isr. J. Math., 10 (1971), 7-16.
[9] S. PONNUSAMY, Differential subordination and Bazilevic functions, Preprint.
[10] S. OWA AND M. OBRADOVIC, Certain subclasses of Bazilevic functions of type α, Internat. J. Math. and Math. Sci., 9 (1986), 97-105.

[^0]: ISSN (electronic): 1443-5756
 (c) 2006 Victoria University. All rights reserved.

 This research is supported by the Higher Education Commission, Pakistan, through grant No: 1-28/HEC/HRD/2005/90.
 054-06

