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ABSTRACT. We prove a certain type of inequalities concerning the integral of the Fourier trans-
form of a function integrable on the real line.
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1. I NTRODUCTION

Hardy’s inequality states that a constantC > 0 exists such that

(1.1)
∞∑

n=1

|f̂(n)|
n

≤ C‖f‖1

for all integrable functionsf on the circleT = [0, 2π) with f̂(n) = 0 for n < 0, where

f̂(n) =
1

2π

∫ 2π

0

f(t)e−intdt, ∀n ∈ Z and ‖f‖1 =
1

2π

∫ 2π

0

|f(t)|dt.

Questions of how inequality (1.1) can be generalized for allf ∈ L1(T) have been raised, and
some partial answers were given. Some references on the subject are [3], [4], [5] and [7].

In [4] it was proved that a constantC > 0 exists such that

(1.2)
∞∑

n=1

|f̂(n)|2

n
≤ C‖f‖2

1 +
∞∑

n=1

|f̂(−n)|2

n

for all f ∈ L1(T).
Now, letf ∈ L1(R) and let‖f‖1 denote theL1 norm off . We shall prove in the next section,

that

(1.3)
∫ ∞

0

|f̂(ξ)|2

ξ
dξ ≤ 2π‖f‖2

1 +

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ

056-08

mailto:sababheh@psut.edu.jo
http://www.ams.org/msc/


2 MOHAMMAD SABABHEH

for all f ∈ X, whereX is an infinite dimensional subspace ofL1. Then we interpolate this
inequality to get the inequality ∫ ∞

0

|f̂(ξ)|α

ξ
≤ 2π‖f‖α

1

for all α ≥ 2 whenf lies in a certain space.
We emphasize that the main purpose of this article is not only the concrete inequalities that it

contains. Rather, we would like to show that the methodology for proving Hardy-type inequal-
ities on the real line is very similar to that for proving such inequalities on the circle.

In other words, it is well known that proving Hardy-type inequalities on the circle depends
on the construction of a certain bounded function. This constructed function is, then, used in a
standard duality argument to produce the required inequality.

Although the first proof of Hardy’s inequality does not depend on such a construction, many
proofs were given later depending on the construction of bounded functions whose Fourier
coefficients have desired decay properties. We encourage the reader to have a look at [3], [5],
[7] and [8] to see how such bounded functions are constructed.

It is a very tough task to construct these bounded functions and usually these functions are
constructed through an inductive procedure. We refer the reader to [1] for the most comprehen-
sive discussion of these inductive constructions.

In this article, we prove some Hardy-type inequalities on the real line depending on the
construction of a certain bounded function. This bounded function is constructed in a very
simple way and no inductive procedure is followed.

We remark that inequality (1.2) was proved first in [6] where the authors gave a quite com-
plicated proof; it uses BMO and the theory of Hankel and Teoplitz operators. Later Koosis [4]
gave a simpler proof. In fact, we can imitate the given proof of inequality (1.3), in this article,
to prove inequality (1.2) on the circle. This is the only known proof of (1.2) which uses the
construction of bounded functions.1

2. M AIN RESULTS

We begin by introducing the set

X =

{
f ∈ L1(R) :

∫ x

−∞
f(t)dt ∈ L1(R)

}
.

It is clear thatX is a subspace ofL1(R). In fact,X is an infinite dimensional space. Indeed, for
α ≥ 3, let

fα(x) =

{
0, x ≤ 1;

1
xα+2 − α+2

(α+1)xα+3 , x > 1.

Then(fα)α≥3 is a linearly independent set inX. This implies thatX is an infinite dimensional
subspace ofL1(R).

We remark that iff ∈ X thenf̂(0) = 0 and [2]:(∫ x

−∞
f(t)dt

)∧
(ξ) =

f̂(ξ)

iξ
, ξ 6= 0.

1This is for sure to the best of the author’s knowledge. The proof which uses the construction of a bounded
function is in an unpublished work of the author. But, the reader of this article will be able to conclude how to
prove (1.2) using a duality argument without any difficulties.
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Theorem 2.1.Letf ∈ X, then

(2.1)
∫ ∞

0

|f̂(ξ)|2

ξ
dξ ≤ 2π‖f‖2

1 +

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ.

Proof. Let f ∈ X be such that̂f is of compact support, so that the inversion formula holds for
f . Let

F (x) =

∫ x

−∞
f(t)dt,

and observe that‖F‖∞ ≤ ‖f‖1 and for realξ 6= 0, F̂ (ξ) = f̂(ξ)
iξ

. Therefore,

‖f‖2
1 ≥ ‖F‖∞‖f‖1

≥
∣∣∣∣∫

R
f(x)F (x)dx

∣∣∣∣
=

1

2π

∣∣∣∣∫
R

∫
R

f̂(ξ)eixξdξF (x)dx

∣∣∣∣ ,
where, in the last line, we have used the inversion formula forf . Consequently

‖f‖2 ≥ 1

2π

∣∣∣∣∫
R

f̂(ξ)

∫
R

F (x)e−ixξdxdξ

∣∣∣∣
=

1

2π

∣∣∣∣∫
R

f̂(ξ)F̂ (ξ)dξ

∣∣∣∣
=

1

2π

∣∣∣∣∣
∫

R\{0}
f̂(ξ)

f̂(ξ)

ξ
dξ

∣∣∣∣∣
=

1

2π

∣∣∣∣∣
∫ ∞

0

|f̂(ξ)|2

ξ
dξ −

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ

∣∣∣∣∣ ,
whence ∫ ∞

0

|f̂(ξ)|2

ξ
dξ ≤ 2π‖f‖2

1 +

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ.

Thus the inequality holds for allf ∈ X such thatf̂ is compactly supported.
Now, letf ∈ X be arbitrary. Letg = f ∗Kλ whereKλ is the Fejer kernel onR of orderλ.

Then,ĝ = f̂ × K̂λ is of compact support becausêKλ(ξ) = 0 when|ξ| ≥ λ.
We now prove thatG(x) =

∫ x

−∞ g(y)dy ∈ L1(R), in order to apply the statement of the
theorem ong. Observe that

(2.2)
∫ ∞

−∞
|G(x)|dx =

∫ ∞

−∞

∣∣∣∣∫ x

−∞

∫ ∞

−∞
f(y − t)Kλ(t)dtdy

∣∣∣∣ dx.

Now, ∫ x

−∞

∫ ∞

−∞
|f(y − t)Kλ(t)|dtdy ≤

∫ ∞

−∞

∫ ∞

−∞
|f(y − t)|Kλ(t)dydt

=

∫ ∞

−∞
Kλ(t)

∫ ∞

−∞
|f(y − t)|dydt

= ‖f‖1‖Kλ‖1 < ∞
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becausef andKλ are both integrable onR. Therefore, the Tonelli theorem applies and (2.2)
becomes ∫ ∞

−∞
|G(x)|dx =

∫ ∞

−∞

∣∣∣∣∫ ∞

−∞

∫ x

−∞
f(y − t)Kλ(t)dydt

∣∣∣∣ dx

≤
∫ ∞

−∞

∫ ∞

−∞

∣∣∣∣∫ x

−∞
f(y − t)Kλ(t)dy

∣∣∣∣ dtdx

=

∫ ∞

−∞

∫ ∞

−∞
Kλ(t)

∣∣∣∣∫ x

−∞
f(y − t)dy

∣∣∣∣ dtdx

=

∫ ∞

−∞
Kλ(t)

∫ ∞

−∞

∣∣∣∣∫ x

−∞
f(y − t)dy

∣∣∣∣ dxdt.(2.3)

Recall the definition ofF in the statement of the theorem and note that∫ ∞

−∞

∣∣∣∣∫ x

−∞
f(t− y)dy

∣∣∣∣ dx =

∫ ∞

−∞

∣∣∣∣∫ x−t

−∞
f(y)dy

∣∣∣∣ dx

=

∫ ∞

−∞
|F (x− t)|dx

=

∫ ∞

−∞
|F (x)|dx = ‖F‖1 < ∞

where in the last line we used the assumption thatF ∈ L1(R).
Whence, (2.3) boils down to saying∫ ∞

−∞
|G(x)|dx ≤ ‖F‖1‖Kλ‖ < ∞.

Therefore, the result of the theorem applies forg. That is

(2.4)
∫ ∞

0

|ĝ(ξ)|2

ξ
dξ ≤ 2π‖g‖2

1 +

∫ ∞

0

|ĝ(−ξ)|2

ξ
dξ.

Recalling that

K̂λ(ξ) =

{ (
1− |ξ|

λ

)
, |ξ| ≤ λ

0, |ξ| ≥ λ

and that‖f ∗Kλ‖1 ≤ ‖f‖1‖Kλ‖1 = ‖f‖1, (2.4) reduces to∫ ∞

0

|f̂(ξ)|2|K̂λ(ξ)|2

ξ
dξ ≤ 2π‖f‖2

1 +

∫ λ

0

|f̂(−ξ)|2(1− ξ/λ)2

ξ
dξ

≤ 2π‖f‖2
1 +

∫ λ

0

|f̂(−ξ)|2

ξ
dξ

≤ 2π‖f‖2
1 +

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ.

Also, it is clear that|K̂λ+1(ξ)| ≥ |K̂λ(ξ)| for all λ ∈ R andξ ∈ [0,∞). Hence, the monotone
convergence theorem implies∫ ∞

0

|f̂(ξ)|2

ξ
dξ ≤ 2π‖f‖2

1 +

∫ ∞

0

|f̂(−ξ)|2

ξ
dξ,

where we have used the fact thatlimλ→∞ |K̂λ(ξ)| = 1 for all ξ ∈ [0,∞). �

On replacing the functionf by f ∗ f the above theorem gives:
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Corollary 2.2. Letf ∈ X, then

(2.5)
∫ ∞

0

|f̂(ξ)|4

ξ
dξ ≤ 2π‖f‖4

1 +

∫ ∞

0

|f̂(−ξ)|4

ξ
dξ.

Proof. Observe first that if
∫ x

−∞ f(y)dy ∈ L1(R) then
∫ x

−∞(f ∗ f)(y)dy ∈ L1(R) and the proof
of this conclusion is exactly the same as proving thatG ∈ L1(R), whereG is as in the above
theorem, ifKλ is replaced withf . �

Thus, replacing the power 2 by any even power2m makes no difference on (2.1).

Now, letX ′ =
{

f ∈ X : f̂(ξ) = 0 whenξ < 0
}

, then

(2.6)

(∫ ∞

0

|f̂(ξ)|2m

ξ
dξ

) 1
2m

≤ 2m
√

2π‖f‖1, ∀m ∈ N.

LetM be the sigma algebra of Lebesgue measurable subsets of[0,∞) and letµ be the mea-
sure given bydµ = dξ

ξ
wheredξ is the Lebesgue measure. Define a linear mappingT ′ :

X ′2m([0,∞),M, µ) by

T ′(f) = f̂ .

This is a well defined mapping because inequality (2.6) guarantees thatf̂ ∈ L2m([0,∞),M, µ)
whenf ∈ X ′. Moreover,T ′ is a continuous linear mapping of norm≤ 2m

√
2π. By the Hahn-

Banach theorem,T ′ extends to a bounded linear mappingT : L1 −→ L2m([0,∞),M, µ) with
norm≤ 2m

√
2π.

Now, by the Riesz-Thorin theorem for interpolating a linear operator [2],T remains contin-
uous as a mapping fromL1 into Lα([0,∞),M, µ) for all α ≥ 2. Thus, we have proved the
following result.

Theorem 2.3.Letf ∈ X ′, then forα ≥ 2, we have∫ ∞

0

|f̂(ξ)|α

ξ
dξ ≤ 2π‖f‖α

1 .

Remark 1.

(1) If f ∈ L1(T) is such thatf̂(n) = 0, ∀n < 0 (that is,f ∈ H1(T)) then

∞∑
n=1

|f̂(n)|m

n
≤ C‖f‖m

1 .

This follows from Hardy’s inequality (1.1) whenf is replaced by the convolution off
with itself m ∈ N times.

A similar interpolation idea as above yields the inequality

∞∑
n=1

|f̂(n)|α

n
≤ C‖f‖α

1

for all f ∈ H1(T) whenα ≥ 1.
(2) The above interpolated inequalities can be proved at once using the observation‖f̂‖∞ ≤

‖f‖1 and no interpolation is needed. But we believe that the interpolation idea can be
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used to obtain the inequalities
∞∑

n=1

|f̂(n)|α

n
≤ C‖f‖α

1 +
∞∑

n=1

|f̂(−n)|α

n
(on the circle) and

∫ ∞

0

|f̂(ξ)|α

ξ
dξ ≤ 2π‖f‖α

1 +

∫ ∞

0

|f̂(−ξ)|α

ξ
dξ (on the line)

for α ≥ 2. The truth of these two inequalities is still an open problem.

These ideas suggest the following question: Forf ∈ H1(T), is there a constantC > 0 such
that

∞∑
n=1

|f̂(n)|α

n
≤ C‖f‖α

1

whenα > 0? How about forH1(R)? Also, what is the smallest value ofα > 0 such that the
above inequality holds?
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