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ABSTRACT. This paper is devoted to the approximation by a piecewise linear finite element
method of a noncoercive system of elliptic quasi-variational inequalities arising in the manage-
ment of energy production. A quasi-optimalL∞ error estimate is established, using the concept
of subsolution.
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1. I NTRODUCTION

A lot of results on error estimates in theL∞ norm for the classical obstacle problem in par-
ticular and variational inequalities (VIs) in general have been achieved in the last three decades.
(cf., e.g [6], [7], [8], [9]). However, very few works are known in this area when it comes to
quasi-variational inequalities (QVIs) (cf., [10], [11]), and especially the case of systems which
is the subject of this paper.(cf. e.g [3]

Indeed, we are concerned with the numerical approximation in theL∞ norm for the non-
coercive problem associated with the following system of QVIs: FindU = (u1, . . . , uJ) ∈
(H1

0 (Ω))J satisfying

(1.1)

 ai(ui, v − ui) = (f i, v − ui) ∀v ∈ H1
0 (Ω)

ui ≤ Mui; ui ≥ 0; v ≤ Mui
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2 MESSAOUDBOULBRACHENE

in which,Ω is a bounded smooth domain ofRN , N ≥ 1, ai(·, ·) areJ- elliptic bilinear forms
continuous onH1(Ω)×H1(Ω), assumed to be noncoercive,(·, ·) is the inner product inL2(Ω)
andf i areJ- regular functions.

This system arises in the management of energy production problems, whereJ-units are
involved (see e.g. [1], [2] and the references therein). In the case studied here,Mui represents
a “cost function” and the prototype encountered is

(1.2) Mui = k + inf
µ 6=i

uµ.

In (1.2) k represents the switching cost. It is positive when the unit is “turned on” and equal
to zero when the unit is “turned off”. Note also that operatorM provides the coupling between
the unknownsu1, . . . , uJ .

TheL∞-error estimate for the proposed system is a challenge not only for the practical mo-
tivation behind the problem, but also due to the inherent difficulty of convergence in this norm.
Moreover, the interest in using such a norm for the approximation of VI and QVIs is that they
are types of free boundary problems (cf. [4], [5]).

The coercive version of (1.1) is mathematically well understood. The numerical analysis
study has also been considered in [3] and a quasi-optimalL∞-error estimate established.

In this paper we propose to demonstrate that the standard finite element approximation ap-
plied to the noncoercive problem corresponding to system (1.1) is quasi-optimally accurate in
L∞(Ω). For that purpose we shall develop an approach mainly based on both theL∞- stability
of the solution with respect to the right hand side and its characterization as the least upper
bound of the set of subsolutions.

It is worth mentioning that the method presented in this paper is entirely different from the
one developed for the coercive problem.

The paper is organized as follows. In Section 2 we state the continuous problem and study
some qualitative proerties. In Section 3 we consider the discrete problem and achieve an analo-
gous result to that of the continuous problem. In Section 4, we prove the main result.

2. THE CONTINUOUS PROBLEM

2.1. Notations, Assumptions.We are given functionsai
jk(x) in C1,α(Ω̄), ai

k(x), ai
0(x) in

C0,α(Ω) such that:

(2.1)
∑

1≤j,k≤N

ai
jk(x)ξjξk = α |ζ|2 ; ζ ∈ RN ; α > 0,

(2.2) ai
0(x) = β > 0 (x ∈ Ω).

We define the second order differential operators

(2.3) Aiϕ =
∑

1≤j,k≤N

∂

∂xj

ai
jk

∂ϕ

∂xk

+
N∑

k=1

ai
k

∂ϕ

∂xk

+ ai
0ϕ

and the associated variational forms: for anyu, v ∈ H1
0 (Ω)

(2.4) ai(u, v) =

∫
Ω

( ∑
1≤j,k≤N

ai
jk(x)

∂u

∂xj

∂v

∂xk

+
N∑

k=1

ai
k(x)

∂u

∂xk

v + ai
0(x)uv)dx

)
.

We are also given right hand sidef 1, . . . , f J such that

(2.5) f i ∈ C0,α(Ω); f i ≥ f 0 > 0.
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SYSTEM OF QUASI-VARIATIONAL INEQUALITIES 3

Throughout the paperU = ∂(F, MU) will denote the solution of system (1.1) whereF =
(f 1, . . ., fJ) and MU = (Mu1, . . ., MuJ).

2.2. Existence, Uniqueness and Regularity.To solve the noncoercive problem, we transform
(1.1) into the following auxiliary system: findU = (u1, . . ., uJ) ∈ (H1

0 (Ω))J such that:

(2.6)

 bi(ui, v − ui) = (f i + λui, v − ui) ∀v ∈ H1
0 (Ω)

ui ≤ Mui; ui ≥ 0; v ≤ Mui ,
,

where

(2.7) bi(u, v) = ai(u, v) + λ(v, v)

andλ > 0 is large enough such that:

(2.8) bi(v, v) ≥ γ ‖v‖2
H1(Ω) γ > 0; ∀v ∈ H1(Ω).

Let us recall just the main steps leading to the existence of a unique solution to system (1.1).
For more details, we refer the reader to ([1]).

Let H+ = (L∞+ (Ω))J = {V = (v1, . . ., vJ) such thatvi ∈ L∞+ (Ω)}, equipped with the norm:

(2.9) ‖V ‖∞ = max
1≤i≤J

∥∥vi
∥∥

L∞(Ω)
,

whereL∞+ (Ω) is the positive cone ofL∞(Ω). We introduce the following mapping

T : H+ −→ H+(2.10)

W −→ TW = (ζ1, . . ., ζJ)

where∀ i = 1, . . ., J , ζ i = σ(f i + λwi; Mwi) is solution to the following VI:

(2.11)

 bi(ζ i, v − ζ i) = (f i + λwi, v − ζ i) ∀v ∈ H1
0 (Ω)

ζ i ≤ Mwi , v ≤ Mwi
.

Problem (2.11), being a coercive variational inequality, thanks to [12], it has a unique solu-
tion.

Let us also define the vector̂U0 = (û1,0, . . ., ûJ,0), where∀i = 1, . . ., J, ûi,0 is solution to
the equation

(2.12) ai(ûi,0, v) = (f i, v) ∀v ∈ H1
0 (Ω).

Sincef i ≥ 0, there exists a unique positive solution to problem (2.12). Moreover,ûi,0 ∈
W 2,,p(Ω), p < ∞ (Cf. e.g., [1]).

Proposition 2.1. (Cf. [1]) Under the preceding notations and assumptions, the mappingT is
increasing, concave and satisfies:TW ≤ Û0, ∀ W ∈ H+ such thatW ≤ Û0.

The mappingT clearly generates the following iterative scheme.

2.3. A Continuous Iterative Scheme.Starting fromÛ0 defined in (2.12) (resp.̌U0 = (0, . . ., 0))
, we define the sequences below

(2.13) Ûn+1 = TÛn; n = 0, 1, . . .

(resp.)

(2.14) Ǔn+1 = TǓn; n = 0, 1, . . ..
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4 MESSAOUDBOULBRACHENE

Theorem 2.2. (cf. [1]) Let C = {W ∈ H+ such that W ≤ Û0}. Then, under conditions of
Proposition 2.1 the sequences(Ûn) and(Ǔn) remain inC . Moreover, they converge monoton-
ically to the unique solution of system (1.1).

Theorem 2.3. (cf. [1]) Under the preceding assumptions, the solution(u1, . . ., uJ) of system
(1.1) belongs to(W 2,p(Ω))J ; 2 ≤ p < ∞.

In what follows, we shall give a monotonicity and anL∞ stability property for the solution
of system (1.1). These properties together with the notion of subsolution will play a crucial role
in proving the main result of this paper.

2.4. A Monotonicity Property. Let F = (f 1, . . ., fJ) ; F̃ = (f̃ 1, . . ., f̃J) be two families
of right hands side andU = ∂(F, MU) = (u1, . . ., uJ); Ũ = ∂(F̃ ,MŨ) = (ũ1, . . ., ũJ) the
corresponding solutions to system (1.1), respectively.

Theorem 2.4. If F ≥ F̃ then ∂(F, MU) ≥ ∂(F̃ , MŨ).

Proof. We proceed by induction. For that let us associate withU andŨ the following iterations

Ûn = (û1,n, . . ., ûJ,n) and ˜̂
U

n

= (˜̌u1,n
, . . ., ˜̌uJ,n

)

respectively. Then, from (2.10), (2.11), (2.13) we clearly have

ûi,n+1 = σ(f i + λûi,n, Mûi,n) and ˜̂ui,n+1
= σ(f i + λ˜̂ui,n

, M ˜̂ui,n
),

whereÛ0 = (û1,0, . . ., ûJ,0) and˜̂U0 = (˜̂u1,0
. . ., ˜̂uJ,0

) are solutions to equation (2.12) with right
hand sidesF andF̃ , respectively.

Clearly, f i ≥ f̃ i implies ûi,0 ≥ ˜̂ui,0
. So,f i + λ ûi,0 ≥ f̃ i + λ˜̂ui,0

andMûi,0 ≥ M ˜̂ui,0
.

Therefore, using standard comparison results in coercive variational inequalities, we getûi,1 ≥˜̂ui,1
.

Now assume that̂ui,n−1 ≥ ˜̂ui,n−1
. Then, asf i ≥ f̃ i, applying the same comparison argument

as before, we get̂ui,n ≥ ˜̂ui,n
. Finally, by Theorem 2.2, makingn tend to∞, we getU ≥ Ũ .

This completes the proof. �

2.5. A Continuous L∞ Stability Property. Using the above notations we have the following
result.

Theorem 2.5.Under conditions of Theorem 2.4, we have

(2.15)
∥∥∥∂(F, MU)− ∂(F̃ , MŨ)

∥∥∥
∞
≤ 1

β

∥∥∥F − F̃
∥∥∥
∞

.

Proof. Let us denote byui = σ(f i, Mui); ũi = σ(f̃ i, Mũi) the ith components ofU andŨ ,

respectively. Then, settingΦi =
1

β

∥∥∥f i − f̃ i
∥∥∥

L∞(Ω)
, using (2.2) it is easy to see that∀i =

1, 2, . . ., J

f i ≤ f̃ i +
∥∥∥f i − f̃ i

∥∥∥
L∞(Ω)

≤ f̃ i +
ai

0(x)

β

∥∥∥f i − f̃ i
∥∥∥

L∞(Ω)
≤ f̃ i + (ai

0(x)Φi).

Hence, making use of Theorem 2.4, it follows that

σ(f i, Mui) ≤ σ(f̃ i + (ai
0(x)Φi, M(ũi + Φi))

≤ σ(f̃ i, Mũi) + Φi.

Thus,
ui − ũi ≤ Φi.
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SYSTEM OF QUASI-VARIATIONAL INEQUALITIES 5

Interchanging the roles off i andf̃ i, we similarly get

ũi − ui ≤ Φi.

This completes the proof. �

2.6. Characterization of the solution of system (1.1) as the least upper bound of the set of
sub-solutions.
Definition 2.1. ([1]) W = (w1, .., wJ) ∈ (H1

0 (Ω))J is said to be a subsolution for the system
of QVIs (1.1) if

(2.16)

 bi(wi, v) ≤ (f + λwi, v) ∀v ∈ H1
0 (Ω) v ≥ 0,

wi ≤ Mwi; i = 1, . . ., J.

Let X be the set of such subsolutions.

Theorem 2.6.The solution of system of QVIs (1.1) is the maximum element of the setX.

Proof. It is a straightforward adaptation of ([1, p.358]) �

3. THE DISCRETE PROBLEM

Let Ω be decomposed into triangles and letτh denote the set of all those elements;h > 0 is
the mesh size. We assume the familyτh is regular and quasi-uniform.

Let Vh denote the standard piecewise linear finite element space andBi, 1 ≤ i ≤ J be the
matrices with generic entries:

(3.1) (Bi)ls = bi(ϕl, ϕs); 1 ≤ l, s ≤ m(h),

whereϕs, s = 1, 2, . . .m(h) are the nodal basis functions andrh is the usual interpolation
operator.

The discrete maximum principle assumption (dmp): We assume that theBi are M -
matrices (cf. [13]).

In this section, we shall see that the discrete problem below inherits all the qualitative prop-
erties of the continuous problem, provided thedmp is satisfied. Their respective proofs shall be
omitted, as they are very similar to their continuous analogues.

Let Vh = (Vh)
J . The noncoercive system of QVIs consists of seekingUh = (u1

h, . . ., u
J
h) ∈

Vh such that

(3.2)

 ai(ui
h, v − ui

h) = (f i, v − ui
h) ∀v ∈ Vh

ui
h ≤ rhMui

h, v ≤ rhMui
h,

or equivalently

(3.3)

 bi(ui
h, v − ui

h) = (f i + λwi, v − ui
h) ∀v ∈ Vh

ui
h ≤ rhMui

h, v ≤ rhMui
h.

Let Û0
h be the piecewise linear approximation ofÛ0 defined in (2.12):

(3.4) ai(ûi,0
h , v) = (f i, v) ∀v ∈ Vh; 1 ≤ i ≤ J

and consider the following discrete mapping

Th : H+ −→ Vh(3.5)

W −→ TW = (ζ1
h, . . ., ζ

J
h )
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6 MESSAOUDBOULBRACHENE

where,∀ i = 1, . . ., J , ζ i
h is the solution of the following discrete VI:

(3.6)

 bi(ζ i
h, v − ζ i

h) = (f i + λwi, v − ζ i
h) ∀v ∈ Vh,

ζ i
h ≤ rhMwi, v ≤ rhMwi.

Proposition 3.1. Let thedmphold. ThenTh is increasing, concave and satisfiesThW ≤ Û0
h

∀W ∈ H+, W ≤ Û0
h .

3.1. A Discrete Iterative Scheme.We associate with the mappingTh the following discrete
iterative scheme: starting from̂U0

h defined in (3.4), anďU0
h = 0, we define:

(3.7) Ûn+1
h = ThÛ

n
h n = 0, 1, . . .

and

(3.8) Ǔn+1
h = ThǓ

n
h n = 0, 1, . . .

respectively.
Similar to the continuous case, the following theorem establishes the monotone convergence

of the above discrete sequences to the solution of system (3.2).

Theorem 3.2. Let Ch = {W ∈ H+ such thatW ≤ Û0
h}. Then, under thedmp, the

sequences(Ûn
h ) and(Ǔn

h ) remain inCh. Moreover, they converge monotonically to the unique
solution of system (3.2).

3.2. A Discrete Monotonicity Property. Let F = (f 1, . . ., fJ) andF̃ = (f̃ 1, . . ., f̃J) be two
families of right hand sides, andUh = ∂h(F, MUh), Ũh = ∂h(F̃ , MŨh) the corresponding
solutions to system (3.2), respectively.

Theorem 3.3.Under thedmp, if F ≥ F̃ then ∂h(F, MUh) ≥ ∂h(F̃ , MŨh).

3.3. A DiscreteL∞ Stability Property.
Theorem 3.4.Under conditions of Theorem 3.3, we have

(3.9)
∥∥∥∂h(F, MUh)− ∂h(F̃ ,MŨh)

∥∥∥
∞
≤ 1

β

∥∥∥F − F̃
∥∥∥
∞

.

3.4. Characterization of the solution of system (3.2) as the least upper bound of the set of
discrete sub-solutions.
Definition 3.1. W = (w1

h, .., w
J
h) ∈ Vh is said to be a subsolution for the system of QVIs (3.2)

if

(3.10)

 bi(wi
h, ϕs) ≤ (f i + λwi

h, ϕs) ∀ϕs; s = 1, . . ., m(h);

wi
h ≤ rhMwi

h.

Let Xh be the set of discrete subsolutions.

Theorem 3.5. Under thedmp, the solution of system of QVIs (3.2) is the maximum element
of the setXh.

4. THE FINITE ELEMENT ERROR ANALYSIS

This section is dedicated to prove that the proposed method is quasi-optimally accurate in
L∞(Ω), according to the approximation theory. To achieve that, we first introduce two auxiliary
coercive systems of QVIs and give some intermediate error estimates.
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4.1. Definition of Two Auxiliary Coercive System of QVIs.

1. A Continuous system of QVIs: Find Ū (h) = (ū1(h), . . ., ūJ(h)) ∈ (H1
0 (Ω))J solution to:

(4.1)

 bi(ūi(h), v − ūi(h)) ≥ (f i + λui
h, v − ūi(h)) ∀v ∈ H1

0 (Ω);

ūi(h) ≤ Mūi(h); v ≤ Mūi(h),

whereUh = (u1
h, . . ., u

J
h) is the solution of the discrete system of QVIs (3.2).

Lemma 4.1. (cf. [3])

(4.2)
∥∥Ū (h) − Uh

∥∥
∞ ≤ Ch2 |Logh|3 .

2. A Discrete System of Coercive QVIs:Find Ūh =
(
ū1

h, . . ., ū
J
h

)
∈ Vh solution to:

(4.3)

 bi(ūi
h, v − ūi

h) ≥ (f i + λui, v − ūi
h) ∀v ∈ Vh;

u ≤ rhMūi
h; v ≤ rhMūi

h,

whereU = (u1, . . ., uJ) is the solution of the continuous system of QVIs (1.1).

Lemma 4.2. (cf. [3])

(4.4)
∥∥Ūh − U

∥∥
∞ ≤ Ch2 |Logh|3 .

4.2. L∞- Error Estimate For System (1.1).
Theorem 4.3. Let U and Uh be the solutions of the noncoercive problems (1.1) and (3.2),
respectively. Then, then under conditions of Theorem 2.3, and Lemmas 4.1, 4.2, we have the
error estimate

(4.5) ‖U − Uh‖∞ ≤ Ch2 |Logh|3 .

Proof. The proof will be carried out in three steps.
Step 1. It consists of constructing a vector of continuous functionsβ(h) = (β1(h), . . ., βJ(h))
such that:

(4.6) β(h) ≤ U and
∥∥β(h) − Uh

∥∥
∞ ≤ Ch2 |Logh|3

Indeed,Ū (h) being solution to system (4.1) it is easy to see thatŪ (h) is also a subsolution, i.e.,
∀i = 1, . . ., J  bi(ūi(h), v) ≤ (f i + λui

h, v) ∀v ∈ H1
0 (Ω), v ≥ 0,

ūi(h) ≤ Mūi(h); v ≤ Mūi(h).

This implies
bi
(
ūi(h), v

)
≤
(
f i + λ

∥∥ui
h − ūi(h)

∥∥
L∞(Ω)

+ λūi(h), v
)

∀v ∈ H1
0 (Ω), v ≥ 0,

ūi (h) ≤ Mūi(h); v ≤ Mūi(h),

and, from Theorem 2.6, it follows that

(4.7) Ū (h) ≤ Ũ = ∂(F̃ ,MŨ)

with F̃ = F + λ
∥∥Ū (h) − Uh

∥∥
∞ . Therefore, using both the stability Theorem 2.5 and estimate

(4.2) we get

(4.8)
∥∥∥U − Ũ

∥∥∥
∞
≤ λ

∥∥Ū (h) − Uh

∥∥
∞ ≤ Ch2 |Logh|3
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8 MESSAOUDBOULBRACHENE

which combined with (4.7) yields:

Ū (h) ≤ U + Ch2 |Logh|3 .

Finally, takingβ(h) = Ū (h) − Ch2 |Logh|3, (4.6) follows.
Step 2. Similarly to Step 1., we construct a vector of discrete functionsαh = (α1

h, . . ., α
J
h)

satisfying

(4.9) αh ≤ Uh and ‖αh − U‖∞ ≤ Ch2 |Logh|3 .

Indeed,Ūh being solution to system (4.3), it is also a subsolution, i.e. bi(ūi
h, ϕs) ≤ (f i + λui, ϕs) ∀ϕs; s = 1, . . ., m(h);

u ≤ Mūi
h; v ≤ Mūi

h,

which implies
bi(ūi

h, ϕs) ≤ (f i + λ ‖ui − ūi
h‖L∞(Ω) + λūi

h, ϕs) ∀ϕs; s = 1, . . ., m(h)

u ≤ Mūi
h; v ≤ Mūi

h.

Hence, lettingF̃ = F + λ
∥∥Ūh − U

∥∥
∞ and applying Theorem 3.5, we obtain that

(4.10) Ūh ≤ Ũh = ∂h(F̃ , MŨh).

Therefore, using both Theorem 3.4 and estimate (4.4), we get

(4.11)
∥∥∥Uh − Ũh

∥∥∥
∞
≤ λ

∥∥Ūh − U
∥∥
∞ ≤ Ch2 |Logh|3

which combined with (4.10), yields

Ūh ≤ Uh + Ch2 |Logh|3 .

Finally, takingαh = Ūh − Ch2 |Logh|3, we immediately get (4.9).
Step 3.Now collecting the results of Steps 1 and 2., we derive the desired error estimate (4.5)
as follows:

Uh ≤ β(h) + Ch2 |Logh|3

≤ U + Ch2 |Logh|3

≤ αh + Ch2 |Logh|3 ≤ Uh + Ch2 |Logh|3 .

Thus
‖U − Uh‖∞ ≤ Ch2 |Logh|3 .

�
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