THE EQUAL VARIABLE METHOD

VASILE CÎRTOAJE

Department of Automation and Computers
University of Ploieşti
Bucureşti 39, Romania
vcirtoaje@upg-ploiesti.ro
Received 01 March, 2006; accepted 17 April, 2006
Communicated by P.S. Bullen

Abstract

The Equal Variable Method (called also $n-1$ Equal Variable Method on the Mathlinks Site - Inequalities Forum) can be used to prove some difficult symmetric inequalities involving either three power means or, more general, two power means and an expression of form $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)$.

Key words and phrases: Symmetric inequalities, Power means, EV-Theorem.
2000 Mathematics Subject Classification. 26D10, 26D20.

1. Statement of results

In order to state and prove the Equal Variable Theorem (EV-Theorem) we require the following lemma and proposition.

Lemma 1.1. Let a, b, c be fixed non-negative real numbers, not all equal and at most one of them equal to zero, and let $x \leq y \leq z$ be non-negative real numbers such that

$$
x+y+z=a+b+c, \quad x^{p}+y^{p}+z^{p}=a^{p}+b^{p}+c^{p},
$$

where $p \in(-\infty, 0] \cup(1, \infty)$. For $p=0$, the second equation is $x y z=a b c>0$. Then, there exist two non-negative real numbers x_{1} and x_{2} with $x_{1}<x_{2}$ such that $x \in\left[x_{1}, x_{2}\right]$. Moreover,
(1) if $x=x_{1}$ and $p \leq 0$, then $0<x<y=z$;
(2) if $x=x_{1}$ and $p>1$, then either $0=x<y \leq z$ or $0<x<y=z$;
(3) if $x \in\left(x_{1}, x_{2}\right)$, then $x<y<z$;
(4) if $x=x_{2}$, then $x=y<z$.

Proposition 1.2. Let a, b, c be fixed non-negative real numbers, not all equal and at most one of them equal to zero, and let $0 \leq x \leq y \leq z$ such that

$$
x+y+z=a+b+c, \quad x^{p}+y^{p}+z^{p}=a^{p}+b^{p}+c^{p}
$$

where $p \in(-\infty, 0] \cup(1, \infty)$. For $p=0$, the second equation is $x y z=a b c>0$. Let $f(u)$ be a differentiable function on $(0, \infty)$, such that $g(x)=f^{\prime}\left(x^{\frac{1}{p-1}}\right)$ is strictly convex on $(0, \infty)$, and let

$$
F_{3}(x, y, z)=f(x)+f(y)+f(z) .
$$

(1) If $p \leq 0$, then F_{3} is maximal only for $0<x=y<z$, and is minimal only for $0<x<y=z$;
(2) If $p>1$ and either $f(u)$ is continuous at $u=0$ or $\lim _{u \rightarrow 0} f(u)=-\infty$, then F_{3} is maximal only for $0<x=y<z$, and is minimal only for either $x=0$ or $0<x<y=z$.

Theorem 1.3 (Equal Variable Theorem (EV-Theorem)). Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed non-negative real numbers, and let $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n}, \\
x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p} & =a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p},
\end{aligned}
$$

where p is a real number, $p \neq 1$. For $p=0$, the second equation is $x_{1} x_{2} \cdots x_{n}=a_{1} a_{2} \cdots a_{n}>$ 0 . Let $f(u)$ be a differentiable function on $(0, \infty)$ such that

$$
g(x)=f^{\prime}\left(x^{\frac{1}{p-1}}\right)
$$

is strictly convex on $(0, \infty)$, and let

$$
F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)
$$

(1) If $p \leq 0$, then F_{n} is maximal for $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal for $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$;
(2) If $p>0$ and either $f(u)$ is continuous at $u=0$ or $\lim _{u \rightarrow 0} f(u)=-\infty$, then F_{n} is maximal for $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal for either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.

Remark 1.4. Let $0<\alpha<\beta$. If the function f is differentiable on (α, β) and the function $g(x)=f^{\prime}\left(x^{\frac{1}{p-1}}\right)$ is strictly convex on $\left(\alpha^{p-1}, \beta^{p-1}\right)$ or $\left(\beta^{p-1}, \alpha^{p-1}\right)$, then the EV-Theorem holds true for $x_{1}, x_{2}, \ldots, x_{n} \in(\alpha, \beta)$.

By Theorem 1.3, we easily obtain some particular results, which are very useful in applications.

Corollary 1.5. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed non-negative numbers, and let $0 \leq x_{1} \leq$ $x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n}, \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2} & =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2} .
\end{aligned}
$$

Let f be a differentiable function on $(0, \infty)$ such that $g(x)=f^{\prime}(x)$ is strictly convex on $(0, \infty)$. Moreover, either $f(x)$ is continuous at $x=0$ or $\lim _{x \rightarrow 0} f(x)=-\infty$. Then,

$$
F_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)
$$

is maximal for $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal for either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.

Corollary 1.6. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed positive numbers, and let $0<x_{1} \leq x_{2} \leq$ $\cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n} \\
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} & =\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}} .
\end{aligned}
$$

Let f be a differentiable function on $(0, \infty)$ such that $g(x)=f^{\prime}\left(\frac{1}{\sqrt{x}}\right)$ is strictly convex on $(0, \infty)$. Then,

$$
F_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)
$$

is maximal for $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal for $0<x_{1} \leq x_{2}=x_{3}=\cdots=$ x_{n}.

Corollary 1.7. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed positive numbers, and let $0<x_{1} \leq x_{2} \leq$ $\cdots \leq x_{n}$ such that

$$
x_{1}+x_{2}+\cdots+x_{n}=a_{1}+a_{2}+\cdots+a_{n}, \quad x_{1} x_{2} \cdots x_{n}=a_{1} a_{1} \cdots a_{n} .
$$

Let f be a differentiable function on $(0, \infty)$ such that $g(x)=f^{\prime}\left(\frac{1}{x}\right)$ is strictly convex on $(0, \infty)$. Then,

$$
F_{n}=f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)
$$

is maximal for $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal for $0<x_{1} \leq x_{2}=x_{3}=\cdots=$ x_{n}.

Corollary 1.8. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed non-negative numbers, and let $0 \leq x_{1} \leq$ $x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n}, \\
x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p} & =a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p},
\end{aligned}
$$

where p is a real number, $p \neq 0$ and $p \neq 1$.
(a) For $p<0, P=x_{1} x_{2} \cdots x_{n}$ is minimal when $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is maximal when $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
(b) For $p>0, P=x_{1} x_{2} \cdots x_{n}$ is maximal when $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal when either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.

Corollary 1.9. Let $a_{1}, a_{2}, \ldots, a_{n}(n \geq 3)$ be fixed non-negative numbers, let $0 \leq x_{1} \leq x_{2} \leq$ $\cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =a_{1}+a_{2}+\cdots+a_{n}, \\
x_{1}^{p}+x_{2}^{p}+\cdots+x_{n}^{p} & =a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p},
\end{aligned}
$$

and let $E=x_{1}^{q}+x_{2}^{q}+\cdots+x_{n}^{q}$.
Case 1. $p \leq 0\left(p=0\right.$ yields $\left.x_{1} x_{2} \cdots x_{n}=a_{1} a_{2} \cdots a_{n}>0\right)$.
(a) For $q \in(p, 0) \cup(1, \infty), E$ is maximal when $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal when $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
(b) For $q \in(-\infty, p) \cup(0,1), E$ is minimal when $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is maximal when $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.

Case 2. $0<p<1$.
(a) For $q \in(0, p) \cup(1, \infty), E$ is maximal when $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal when either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
(b) For $q \in(-\infty, 0) \cup(p, 1), E$ is minimal when $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is maximal when either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.

Case 3. $p>1$.
(a) For $q \in(0,1) \cup(p, \infty), E$ is maximal when $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is minimal when either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
(b) For $q \in(-\infty, 0) \cup(1, p), E$ is minimal when $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, and is maximal when either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.

2. Proofs

Proof of Lemma 1.1. Let $a \leq b \leq c$. Note that in the excluded cases $a=b=c$ and $a=b=0$, there is a single triple (x, y, z) which verifies the conditions

$$
x+y+z=a+b+c \quad \text { and } \quad x^{p}+y^{p}+z^{p}=a^{p}+b^{p}+c^{p} .
$$

Consider now three cases: $p=0, p<0$ and $p>1$.
A. Case $p=0(x y z=a b c>0)$. Let $S=\frac{a+b+c}{3}$ and $P=\sqrt[3]{a b c}$, where $S>P>0$ by AM-GM Inequality. We have

$$
x+y+z=3 S, \quad x y z=P^{3},
$$

and from $0<x \leq y \leq z$ and $x<z$, it follows that $0<x<P$. Now let

$$
f=y+z-2 \sqrt{y z}
$$

It is clear that $f \geq 0$, with equality if and only if $y=z$. Writing f as a function of x,

$$
f(x)=3 S-x-2 P \sqrt{\frac{P}{x}}
$$

we have

$$
f^{\prime}(x)=\frac{P}{x} \sqrt{\frac{P}{x}}-1>0
$$

and hence the function $f(x)$ is strictly increasing. Since $f(P)=3(S-P)>0$, the equation $f(x)=0$ has a unique positive root $x_{1}, 0<x_{1}<P$. From $f(x) \geq 0$, it follows that $x \geq x_{1}$.
Sub-case $x=x_{1}$. Since $f(x)=f\left(x_{1}\right)=0$ and $f=0$ implies $y=z$, we have $0<x<y=z$.
Sub-case $x>x_{1}$. We have $f(x)>0$ and $y<z$. Consider now that y and z depend on x. From $x+y(x)+z(x)=3 S$ and $x \cdot y(x) \cdot z(x)=P^{3}$, we get $1+y^{\prime}+z^{\prime}=0$ and $\frac{1}{x}+\frac{y^{\prime}}{y}+\frac{z^{\prime}}{z}=0$. Hence,

$$
y^{\prime}(x)=\frac{y(x-z)}{x(z-y)}, \quad z^{\prime}(x)=\frac{z(y-x)}{x(z-y)} .
$$

Since $y^{\prime}(x)<0$, the function $y(x)$ is strictly decreasing. Since $y\left(x_{1}\right)>x_{1}$ (see sub-case $x=x_{1}$), there exists $x_{2}>x_{1}$ such that $y\left(x_{2}\right)=x_{2}, y(x)>x$ for $x_{1}<x<x_{2}$ and $y(x)<x$ for $x>x_{2}$. Taking into account that $y \geq x$, it follows that $x_{1}<x \leq x_{2}$. On the other hand, we see that $z^{\prime}(x)>0$ for $x_{1}<x<x_{2}$. Consequently, the function $z(x)$ is strictly increasing, and hence $z(x)>z\left(x_{1}\right)=y\left(x_{1}\right)>y(x)$. Finally, we conclude that $x<y<z$ for $x \in\left(x_{1}, x_{2}\right)$, and $x=y<z$ for $x=x_{2}$.
B. Case $p<0$. Denote $S=\frac{a+b+c}{3}$ and $R=\left(\frac{a^{p}+b^{p}+c^{p}}{3}\right)^{\frac{1}{p}}$. Taking into account that

$$
x+y+z=3 S, \quad x^{p}+y^{p}+z^{p}=3 R^{p},
$$

from $0<x \leq y \leq z$ and $x<z$ we get $x<S$ and $3^{\frac{1}{p}} R<x<R$. Let

$$
h=(y+z)\left(\frac{y^{p}+z^{p}}{2}\right)^{\frac{-1}{p}}-2 .
$$

By the AM-GM Inequality, we have

$$
h \geq 2 \sqrt{y z} \frac{1}{\sqrt{y z}}-2=0
$$

with equality if and only if $y=z$. Writing now h as a function of x,

$$
h(x)=(3 S-x)\left(\frac{3 R^{p}-x^{p}}{2}\right)^{\frac{-1}{p}}-2,
$$

from

$$
h^{\prime}(x)=\frac{3 R^{p}}{2}\left(\frac{3 R^{p}-x^{p}}{2}\right)^{\frac{-1-p}{p}}\left[\left(\frac{S}{x}\right)\left(\frac{R}{x}\right)^{-p}-1\right]>0
$$

it follows that $h(x)$ is strictly increasing. Since $h(x) \geq 0$ and $h\left(3^{\frac{1}{p}} R\right)=-2$, the equation $h(x)=0$ has a unique root x_{1} and $x \geq x_{1}>3^{\frac{1}{p}} R$.
Sub-case $x=x_{1}$. Since $f(x)=f\left(x_{1}\right)=0$, and $f=0$ implies $y=z$, we have $0<x<y=z$. Sub-case $x>x_{1}$. We have $h(x)>0$ and $y<z$. Consider now that y and z depend on x. From $x+y(x)+z(x)=3 S$ and $x^{p}+y(x)^{p}+z(x)^{p}=3 R^{p}$, we get $1+y^{\prime}+z^{\prime}=0$ and $x^{p-1}+y^{p-1} y^{\prime}+z^{p-1} z^{\prime}=0$, and hence

$$
y^{\prime}(x)=\frac{x^{p-1}-z^{p-1}}{z^{p-1}-y^{p-1}}, \quad z^{\prime}(x)=\frac{x^{p-1}-y^{p-1}}{y^{p-1}-z^{p-1}} .
$$

Since $y^{\prime}(x)>0$, the function $y(x)$ is strictly decreasing. Since $y\left(x_{1}\right)>x_{1}$ (see sub-case $x=x_{1}$), there exists $x_{2}>x_{1}$ such that $y\left(x_{2}\right)=x_{2}, y(x)>x$ for $x_{1}<x<x_{2}$, and $y(x)<x$ for $x>x_{2}$. The condition $y \geq x$ yields $x_{1}<x \leq x_{2}$. We see now that $z^{\prime}(x)>0$ for $x_{1}<x<x_{2}$. Consequently, the function $z(x)$ is strictly increasing, and hence $z(x)>z\left(x_{1}\right)=y\left(x_{1}\right)>y(x)$. Finally, we have $x<y<z$ for $x \in\left(x_{1}, x_{2}\right)$ and $x=y<z$ for $x=x_{2}$.
C. Case $p>1$. Denoting $S=\frac{a+b+c}{3}$ and $R=\left(\frac{a^{p}+b^{p}+c^{p}}{3}\right)^{\frac{1}{p}}$ yields

$$
x+y+z=3 S, \quad x^{p}+y^{p}+z^{p}=3 R^{p} .
$$

By Jensen's inequality applied to the convex function $g(u)=u^{p}$, we have $R>S$, and hence $x<S<R$. Let

$$
h=\frac{2}{y+z}\left(\frac{y^{p}+z^{p}}{2}\right)^{\frac{1}{p}}-1 .
$$

By Jensen's Inequality, we get $h \geq 0$, with equality if only if $y=z$. From

$$
h(x)=\frac{2}{3 S-x}\left(\frac{3 R^{p}-x^{p}}{2}\right)^{\frac{1}{p}}-1
$$

and

$$
h^{\prime}(x)=\frac{3}{(3 S-x)^{2}}\left(\frac{3 R^{p}-x^{p}}{2}\right)^{\frac{1-p}{p}}\left(R^{p}-S x^{p-1}\right)>0
$$

it follows that the function $h(x)$ is strictly increasing, and $h(x) \geq 0$ implies $x \geq x_{1}$. In the case $h(0) \geq 0$ we have $x_{1}=0$, and in the case $h(0)<0$ we have $x_{1}>0$ and $h\left(x_{1}\right)=0$.

Sub-case $x=x_{1}$. If $h(0) \geq 0$, then $0=x_{1}<y\left(x_{1}\right) \leq z\left(x_{1}\right)$. If $h(0)<0$, then $h\left(x_{1}\right)=0$, and since $h=0$ implies $y=z$, we have $0<x_{1}<y\left(x_{1}\right)=z\left(x_{1}\right)$.
Sub-case $x>x_{1}$. Since $h(x)$ is strictly increasing, for $x>x_{1}$ we have $h(x)>h\left(x_{1}\right) \geq 0$, hence $h(x)>0$ and $y<z$. From $x+y(x)+z(x)=3 S$ and $x^{p}+y^{p}(x)+z^{p}(x)=3 R^{p}$, we get

$$
y^{\prime}(x)=\frac{x^{p-1}-z^{p-1}}{z^{p-1}-y^{p-1}}, \quad z^{\prime}(x)=\frac{y^{p-1}-x^{p-1}}{z^{p-1}-y^{p-1}} .
$$

Since $y^{\prime}(x)<0$, the function $y(x)$ is strictly decreasing. Taking account of $y\left(x_{1}\right)>x_{1}$ (see sub-case $x=x_{1}$), there exists $x_{2}>x_{1}$ such that $y\left(x_{2}\right)=x_{2}, y(x)>x$ for $x_{1}<x<x_{2}$, and $y(x)<x$ for $x>x_{2}$. The condition $y \geq x$ implies $x_{1}<x \leq x_{2}$. We see now that $z^{\prime}(x)>0$ for $x_{1}<x<x_{2}$. Consequently, the function $z(x)$ is strictly increasing, and hence $z(x)>z\left(x_{1}\right) \geq y\left(x_{1}\right)>y(x)$. Finally, we conclude that $x<y<z$ for $x \in\left(x_{1}, x_{2}\right)$, and $x=y<z$ for $x=x_{2}$.
Proof of Proposition 1.2. Consider the function

$$
F(x)=f(x)+f(y(x))+f(z(x))
$$

defined on $x \in\left[x_{1}, x_{2}\right]$. We claim that $F(x)$ is minimal for $x=x_{1}$ and is maximal for $x=x_{2}$. If this assertion is true, then by Lemma 1.1 it follows that:
(a) $F(x)$ is minimal for $0<x=y<z$ in the case $p \leq 0$, or for either $x=0$ or $0<x<y=z$ in the case $p>1$;
(b) $F(x)$ is maximal for $0<x=y<z$.

In order to prove the claim, assume that $x \in\left(x_{1}, x_{2}\right)$. By Lemma 1.1, we have $0<x<y<$ z. From

$$
\begin{aligned}
x+y(x)+z(x) & =a+b+c \quad \text { and } \\
x^{p}+y^{p}(x)+z^{p}(x) & =a^{p}+b^{p}+c^{p},
\end{aligned}
$$

we get

$$
y^{\prime}+z^{\prime}=-1, \quad y^{p-1} y^{\prime}+z^{p-1} z^{\prime}=-x^{p-1}
$$

whence

$$
y^{\prime}=\frac{x^{p-1}-z^{p-1}}{z^{p-1}-y^{p-1}}, \quad z^{\prime}=\frac{x^{p-1}-y^{p-1}}{y^{p-1}-z^{p-1}}
$$

It is easy to check that this result is also valid for $p=0$. We have

$$
F^{\prime}(x)=f^{\prime}(x)+y^{\prime} f^{\prime}(y)+z^{\prime} f^{\prime}(z)
$$

and

$$
\begin{aligned}
& \frac{F^{\prime}(x)}{\left(x^{p-1}-y^{p-1}\right)\left(x^{p-1}-z^{p-1}\right)} \\
& =\frac{g\left(x^{p-1}\right)}{\left(x^{p-1}-y^{p-1}\right)\left(x^{p-1}-z^{p-1}\right)}+\frac{g\left(y^{p-1}\right)}{\left(y^{p-1}-z^{p-1}\right)\left(y^{p-1}-x^{p-1}\right)} \\
& +\frac{g\left(z^{p-1}\right)}{\left(z^{p-1}-x^{p-1}\right)\left(z^{p-1}-y^{p-1}\right)} .
\end{aligned}
$$

Since g is strictly convex, the right hand side is positive. On the other hand,

$$
\left(x^{p-1}-y^{p-1}\right)\left(x^{p-1}-z^{p-1}\right)>0 .
$$

These results imply $F^{\prime}(x)>0$. Consequently, the function $F(x)$ is strictly increasing for $x \in\left(x_{1}, x_{2}\right)$. Excepting the trivial case when $p>1, x_{1}=0$ and $\lim _{u \rightarrow 0} f(u)=-\infty$, the function
$F(x)$ is continuous on $\left[x_{1}, x_{2}\right]$, and hence is minimal only for $x=x_{1}$, and is maximal only for $x=x_{2}$.

Proof of Theorem 1.3 . We will consider two cases.
Case $p \in(-\infty, 0] \cup(1, \infty)$. Excepting the trivial case when $p>1, x_{1}=0$ and $\lim _{u \rightarrow 0} f(u)=-\infty$, the function $F_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ attains its minimum and maximum values, and the conclusion follows from Proposition 1.2 above, via contradiction. For example, let us consider the case $p \leq$ 0 . In order to prove that F_{n} is maximal for $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$, we assume, for the sake of contradiction, that F_{n} attains its maximum at $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ and $b_{1}<b_{n-1}$. Let x_{1}, x_{n-1}, x_{n} be positive numbers such that $x_{1}+x_{n-1}+x_{n}=b_{1}+b_{n-1}+b_{n}$ and $x_{1}^{p}+x_{n-1}^{p}+x_{n}^{p}=b_{1}^{p}+b_{n-1}^{p}+b_{n}^{p}$. According to Proposition 1.2, the expression

$$
F_{3}\left(x_{1}, x_{n-1}, x_{n}\right)=f\left(x_{1}\right)+f\left(x_{n-1}\right)+f\left(x_{n}\right)
$$

is maximal only for $x_{1}=x_{n-1}<x_{n}$, which contradicts the assumption that F_{n} attains its maximum at $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with $b_{1}<b_{n-1}$.
Case $p \in(0,1)$. This case reduces to the case $p>1$, replacing each of the a_{i} by $a_{i}^{\frac{1}{p}}$, each of the x_{i} by $x_{i}^{\frac{1}{p}}$, and then p by $\frac{1}{p}$. Thus, we obtain the sufficient condition that $h(x)=x f^{\prime}\left(x^{\frac{1}{1-p}}\right)$ to be strictly convex on $(0, \infty)$. We claim that this condition is equivalent to the condition that $g(x)=f^{\prime}\left(x^{\frac{1}{p-1}}\right)$ to be strictly convex on $(0, \infty)$. Actually, for our proof, it suffices to show that if $g(x)$ is strictly convex on $(0, \infty)$, then $h(x)$ is strictly convex on $(0, \infty)$. To show this, we see that $g\left(\frac{1}{x}\right)=\frac{1}{x} h(x)$. Since $g(x)$ is strictly convex on $(0, \infty)$, by Jensen's inequality we have

$$
u g\left(\frac{1}{x}\right)+v g\left(\frac{1}{y}\right)>(u+v) g\left(\frac{\frac{u}{x}+\frac{v}{y}}{u+v}\right)
$$

for any $x, y, u, v>0$ with $x \neq y$. This inequality is equivalent to

$$
\frac{u}{x} h(x)+\frac{v}{y} h(y)>\left(\frac{u}{x}+\frac{v}{y}\right) h\left(\frac{u+v}{\frac{u}{x}+\frac{v}{y}}\right)
$$

Substituting $u=t x$ and $v=(1-t) y$, where $t \in(0,1)$, reduces the inequality to

$$
t h(x)+(1-t) h(y)>h(t x+(1-t) y)
$$

which shows us that $h(x)$ is strictly convex on $(0, \infty)$.
Proof of Corollary 1.8 . We will apply Theorem 1.3 to the function $f(u)=p \ln u$. We see that $\lim _{u \rightarrow 0} f(u)=-\infty$ for $p>0$, and

$$
f^{\prime}(u)=\frac{p}{u}, \quad g(x)=f^{\prime}\left(x^{\frac{1}{p-1}}\right)=p x^{\frac{1}{1-p}}, \quad g^{\prime \prime}(x)=\frac{p^{2}}{(1-p)^{2}} x^{\frac{2 p-1}{1-p}}
$$

Since $g^{\prime \prime}(x)>0$ for $x>0$, the function $g(x)$ is strictly convex on $(0, \infty)$, and the conclusion follows by Theorem 1.3 .

Proof of Corollary 1.9. We will apply Theorem 1.3 to the function

$$
f(u)=q(q-1)(q-p) u^{q}
$$

For $p>0$, it is easy to check that either $f(u)$ is continuous at $u=0$ (in the case $q>0$) or $\lim _{u \rightarrow 0} f(u)=-\infty$ (in the case $q<0$). We have

$$
f^{\prime}(u)=q^{2}(q-1)(q-p) u^{q-1}
$$

and

$$
\begin{aligned}
g(x) & =f^{\prime}\left(x^{\frac{1}{p-1}}\right)=q^{2}(q-1)(q-p) x^{\frac{q-1}{p-1}} \\
g^{\prime \prime}(x) & =\frac{q^{2}(q-1)^{2}(q-p)^{2}}{(p-1)^{2}} x^{\frac{2 p-1}{1-p}} .
\end{aligned}
$$

Since $g^{\prime \prime}(x)>0$ for $x>0$, the function $g(x)$ is strictly convex on $(0, \infty)$, and the conclusion follows by Theorem 1.3 .

3. Applications

Proposition 3.1. Let x, y, z be non-negative real numbers such that $x+y+z=2$. If $r_{0} \leq r \leq 3$, where $r_{0}=\frac{\ln 2}{\ln 3-\ln 2} \approx 1.71$, then

$$
x^{r}(y+z)+y^{r}(z+x)+z^{r}(x+y) \leq 2 .
$$

Proof. Rewrite the inequality in the homogeneous form

$$
x^{r+1}+y^{r+1}+z^{r+1}+2\left(\frac{x+y+z}{2}\right)^{r+1} \geq(x+y+z)\left(x^{r}+y^{r}+z^{r}\right)
$$

and apply Corollary 1.9 (case $p=r$ and $q=r+1$):
If $0 \leq x \leq y \leq z$ such that

$$
\begin{aligned}
x+y+z & =\text { constant } \quad \text { and } \\
x^{r}+y^{r}+z^{r} & =\text { constant },
\end{aligned}
$$

then the sum $x^{r+1}+y^{r+1}+z^{r+1}$ is minimal when either $x=0$ or $0<x \leq y=z$.
Case $x=0$. The initial inequality becomes

$$
y z\left(y^{r-1}+z^{r-1}\right) \leq 2,
$$

where $y+z=2$. Since $0<r-1 \leq 2$, by the Power Mean inequality we have

$$
\frac{y^{r-1}+z^{r-1}}{2} \leq\left(\frac{y^{2}+z^{2}}{2}\right)^{\frac{r-1}{2}}
$$

Thus, it suffices to show that

$$
y z\left(\frac{y^{2}+z^{2}}{2}\right)^{\frac{r-1}{2}} \leq 1
$$

Taking account of

$$
\frac{y^{2}+z^{2}}{2}=\frac{2\left(y^{2}+z^{2}\right)}{(y+z)^{2}} \geq 1 \quad \text { and } \quad \frac{r-1}{2} \leq 1
$$

we have

$$
\begin{aligned}
1-y z\left(\frac{y^{2}+z^{2}}{2}\right)^{\frac{r-1}{2}} & \geq 1-y z\left(\frac{y^{2}+z^{2}}{2}\right) \\
& =\frac{(y+z)^{4}}{16}-\frac{y z\left(y^{2}+z^{2}\right)}{2} \\
& =\frac{(y-z)^{4}}{16} \geq 0 .
\end{aligned}
$$

Case $0<x \leq y=z$. In the homogeneous inequality we may leave aside the constraint $x+y+z=2$, and consider $y=z=1,0<x \leq 1$. The inequality reduces to

$$
\left(1+\frac{x}{2}\right)^{r+1}-x^{r}-x-1 \geq 0
$$

Since $\left(1+\frac{x}{2}\right)^{r+1}$ is increasing and x^{r} is decreasing in respect to r, it suffices to consider $r=r_{0}$. Let

$$
f(x)=\left(1+\frac{x}{2}\right)^{r_{0}+1}-x^{r_{0}}-x-1 .
$$

We have

$$
\begin{gathered}
f^{\prime}(x)=\frac{r_{0}+1}{2}\left(1+\frac{x}{2}\right)^{r_{0}}-r_{0} x^{r_{0}-1}-1, \\
\frac{1}{r_{0}} f^{\prime \prime}(x)=\frac{r_{0}+1}{4}\left(1+\frac{x}{2}\right)^{r_{0}}-\frac{r_{0}-1}{x^{2-r_{0}}} .
\end{gathered}
$$

Since $f^{\prime \prime}(x)$ is strictly increasing on $(0,1], f^{\prime \prime}\left(0_{+}\right)=-\infty$ and

$$
\begin{aligned}
\frac{1}{r_{0}} f^{\prime \prime}(1) & =\frac{r_{0}+1}{4}\left(\frac{3}{2}\right)^{r_{0}}-r_{0}+1 \\
& =\frac{r_{0}+1}{2}-r_{0}+1=\frac{3-r_{0}}{2}>0
\end{aligned}
$$

there exists $x_{1} \in(0,1)$ such that $f^{\prime \prime}\left(x_{1}\right)=0, f^{\prime \prime}(x)<0$ for $x \in\left(0, x_{1}\right)$, and $f^{\prime \prime}(x)>0$ for $x \in\left(x_{1}, 1\right]$. Therefore, the function $f^{\prime}(x)$ is strictly decreasing for $x \in\left[0, x_{1}\right]$, and strictly increasing for $x \in\left[x_{1}, 1\right]$. Since

$$
f^{\prime}(0)=\frac{r_{0}-1}{2}>0 \quad \text { and } \quad f^{\prime}(1)=\frac{r_{0}+1}{2}\left[\left(\frac{3}{2}\right)^{r_{0}}-2\right]=0
$$

there exists $x_{2} \in\left(0, x_{1}\right)$ such that $f^{\prime}\left(x_{2}\right)=0, f^{\prime}(x)>0$ for $x \in\left[0, x_{2}\right)$, and $f^{\prime}(x)<0$ for $x \in\left(x_{2}, 1\right)$. Thus, the function $f(x)$ is strictly increasing for $x \in\left[0, x_{2}\right]$, and strictly decreasing for $x \in\left[x_{2}, 1\right]$. Since $f(0)=f(1)=0$, it follows that $f(x) \geq 0$ for $0<x \leq 1$, establishing the desired result.

For $x \leq y \leq z$, equality occurs when $x=0$ and $y=z=1$. Moreover, for $r=r_{0}$, equality holds again when $x=y=z=1$.

Proposition 3.2 ([12]). Let x, y, z be non-negative real numbers such that $x y+y z+z x=3$. If $1<r \leq 2$, then

$$
x^{r}(y+z)+y^{r}(z+x)+z^{r}(x+y) \geq 6 .
$$

Proof. Rewrite the inequality in the homogeneous form

$$
x^{r}(y+z)+y^{r}(z+x)+z^{r}(x+y) \geq 6\left(\frac{x y+y z+z x}{3}\right)^{\frac{r+1}{2}}
$$

For convenience, we may leave aside the constraint $x y+y z+z x=3$. Using now the constraint $x+y+z=1$, the inequality becomes

$$
x^{r}(1-x)+y^{r}(1-y)+z^{r}(1-z) \geq 6\left(\frac{1-x^{2}-y^{2}-z^{2}}{6}\right)^{\frac{r+1}{2}} .
$$

To prove it, we will apply Corollary 1.5 to the function $f(u)=-u^{r}(1-u)$ for $0 \leq u \leq 1$. We have $f^{\prime}(u)=-r u^{r-1}+(r+1) u^{r}$ and

$$
g(x)=f^{\prime}(x)=-r x^{r-1}+(r+1) x^{r}, \quad g^{\prime \prime}(x)=r(r-1) x^{r-3}[(r+1) x+2-r] .
$$

Since $g^{\prime \prime}(x)>0$ for $x>0, g(x)$ is strictly convex on $[0, \infty)$. According to Corollary 1.5 , if $0 \leq x \leq y \leq z$ such that $x+y+z=1$ and $x^{2}+y^{2}+z^{2}=$ constant, then the sum $f(x)+f(y)+f(z)$ is maximal for $0 \leq x=y \leq z$.

Thus, we have only to prove the original inequality in the case $x=y \leq z$. This means, to prove that $0<x \leq 1 \leq y$ and $x^{2}+2 x z=3$ implies

$$
x^{r}(x+z)+x z^{r} \geq 3 .
$$

Let $f(x)=x^{r}(x+z)+x z^{r}-3$, with $z=\frac{3-x^{2}}{2 x}$.
Differentiating the equation $x^{2}+2 x z=3$ yields $z^{\prime}=\frac{-(x+z)}{x}$. Then,

$$
\begin{aligned}
f^{\prime}(x) & =(r+1) x^{r}+r x^{r-1} z+z^{r}+\left(x^{r}+r x z^{r-1}\right) z^{\prime} \\
& =\left(x^{r-1}-z^{r-1}\right)[r x+(r-1) z] \leq 0 .
\end{aligned}
$$

The function $f(x)$ is strictly decreasing on $[0,1]$, and hence $f(x) \geq f(1)=0$ for $0<x \leq 1$. Equality occurs if and only if $x=y=z=1$.

Proposition 3.3 ([5]). If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers such that

$$
x_{1}+x_{2}+\cdots+x_{n}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}},
$$

then

$$
\frac{1}{1+(n-1) x_{1}}+\frac{1}{1+(n-1) x_{2}}+\cdots+\frac{1}{1+(n-1) x_{n}} \geq 1 .
$$

Proof. We have to consider two cases.
Case $n=2$. The inequality is verified as equality.
Case $n \geq 3$. Assume that $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, and then apply Corollary 1.6 to the function $f(u)=\frac{1}{1+(n-1) u}$ for $u>0$. We have $f^{\prime}(u)=\frac{-(n-1)}{[1+(n-1) u]^{2}}$ and

$$
\begin{aligned}
g(x) & =f^{\prime}\left(\frac{1}{\sqrt{x}}\right)=\frac{-(n-1) x}{(\sqrt{x}+n-1)^{2}} \\
g^{\prime \prime}(x) & =\frac{3(n-1)^{2}}{2 \sqrt{x}(\sqrt{x}+n-1)^{4}}
\end{aligned}
$$

Since $g^{\prime \prime}(x)>0, g(x)$ is strictly convex on $(0, \infty)$. According to Corollary 1.6, if $0<x_{1} \leq$ $x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =\text { constant } \quad \text { and } \\
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}} & =\text { constant }
\end{aligned}
$$

then the sum $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)$ is minimal when $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
Thus, we have to prove the inequality

$$
\frac{1}{1+(n-1) x}+\frac{n-1}{1+(n-1) y} \geq 1
$$

under the constraints $0<x \leq 1 \leq y$ and

$$
x+(n-1) y=\frac{1}{x}+\frac{n-1}{y} .
$$

The last constraint is equivalent to

$$
(n-1)(y-1)=\frac{y\left(1-x^{2}\right)}{x(1+y)}
$$

Since

$$
\begin{aligned}
\frac{1}{1+(n-1) x} & +\frac{n-1}{1+(n-1) y}-1 \\
& =\frac{1}{1+(n-1) x}-\frac{1}{n}+\frac{n-1}{1+(n-1) y}-\frac{n-1}{n} \\
& =\frac{(n-1)(1-x)}{n[1+(n-1) x]}-\frac{(n-1)^{2}(y-1)}{n[1+(n-1) y]} \\
& =\frac{(n-1)(1-x)}{n[1+(n-1) x]}-\frac{(n-1) y\left(1-x^{2}\right)}{n x(1+y)[1+(n-1) y]}
\end{aligned}
$$

we must show that

$$
x(1+y)[1+(n-1) y] \geq y(1+x)[1+(n-1) x]
$$

which reduces to

$$
(y-x)[(n-1) x y-1] \geq 0 .
$$

Since $y-x \geq 0$, we have still to prove that

$$
(n-1) x y \geq 1
$$

Indeed, from $x+(n-1) y=\frac{1}{x}+\frac{n-1}{y}$ we get $x y=\frac{y+(n-1) x}{x+(n-1) y}$, and hence

$$
(n-1) x y-1=\frac{n(n-2) x}{x+(n-1) y}>0
$$

For $n \geq 3$, one has equality if and only if $x_{1}=x_{2}=\cdots=x_{n}=1$.
Proposition 3.4 ([10]). Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers such that $a_{1} a_{2} \cdots a_{n}=1$. If m is a positive integer satisfying $m \geq n-1$, then

$$
a_{1}^{m}+a_{2}^{m}+\cdots+a_{n}^{m}+(m-1) n \geq m\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}\right) .
$$

Proof. For $n=2$ (hence $m \geq 1$), the inequality reduces to

$$
a_{1}^{m}+a_{2}^{m}+2 m-2 \geq m\left(a_{1}+a_{2}\right) .
$$

We can prove it by summing the inequalities $a_{1}^{m} \geq 1+m\left(a_{1}-1\right)$ and $a_{2}^{m} \geq 1+m\left(a_{2}-1\right)$, which are straightforward consequences of Bernoulli's inequality. For $n \geq 3$, replacing $a_{1}, a_{2}, \ldots, a_{n}$ by $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{n}}$, respectively, we have to show that

$$
\frac{1}{x_{1}^{m}}+\frac{1}{x_{2}^{m}}+\cdots+\frac{1}{x_{n}^{m}}+(m-1) n \geq m\left(x_{1}+x_{2}+\cdots+x_{n}\right)
$$

for $x_{1} x_{2} \cdots x_{n}=1$. Assume $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and apply Corollary 1.9 (case $p=0$ and $q=-m)$:

If $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =\text { constant } \quad \text { and } \\
x_{1} x_{2} \cdots x_{n} & =1,
\end{aligned}
$$

then the $\operatorname{sum} \frac{1}{x_{m}^{m}}+\frac{1}{x_{2}^{m}}+\cdots+\frac{1}{x_{n}^{m}}$ is minimal when $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$.
Thus, it suffices to prove the inequality for $x_{1}=x_{2}=\cdots=x_{n-1}=x \leq 1, x_{n}=y$ and $x^{n-1} y=1$, when it reduces to:

$$
\frac{n-1}{x^{m}}+\frac{1}{y^{m}}+(m-1) n \geq m(n-1) x+m y
$$

By the AM-GM inequality, we have

$$
\frac{n-1}{x^{m}}+(m-n+1) \geq \frac{m}{x^{n-1}}=m y .
$$

Then, we have still to show that

$$
\frac{1}{y^{m}}-1 \geq m(n-1)(x-1)
$$

This inequality is equivalent to

$$
x^{m n-m}-1-m(n-1)(x-1) \geq 0
$$

and

$$
(x-1)\left[\left(x^{m n-m-1}-1\right)+\left(x^{m n-m-2}-1\right)+\cdots+(x-1)\right] \geq 0
$$

The last inequality is clearly true. For $n=2$ and $m=1$, the inequality becomes equality. Otherwise, equality occurs if and only if $a_{1}=a_{2}=\cdots=a_{n}=1$.
Proposition 3.5 ([6]). Let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative real numbers such that $x_{1}+x_{2}+\cdots+$ $x_{n}=n$. If k is a positive integer satisfying $2 \leq k \leq n+2$, and $r=\left(\frac{n}{n-1}\right)^{k-1}-1$, then

$$
x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}-n \geq n r\left(1-x_{1} x_{2} \cdots x_{n}\right)
$$

Proof. If $n=2$, then the inequality reduces to $x_{1}^{k}+x_{2}^{k}-2 \geq\left(2^{k}-2\right) x_{1} x_{2}$. For $k=2$ and $k=3$, this inequality becomes equality, while for $k=4$ it reduces to $6 x_{1} x_{2}\left(1-x_{1} x_{2}\right) \geq 0$, which is clearly true.

Consider now $n \geq 3$ and $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Towards proving the inequality, we will apply Corollary 1.8 (case $p=k>0$): If $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that $x_{1}+x_{2}+\cdots+x_{n}=n$ and $x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}=$ constant, then the product $x_{1} x_{2} \cdots x_{n}$ is minimal when either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
Case $x_{1}=0$. The inequality reduces to

$$
x_{2}^{k}+\cdots+x_{n}^{k} \geq \frac{n^{k}}{(n-1)^{k-1}}
$$

with $x_{2}+\cdots+x_{n}=n$, This inequality follows by applying Jensen's inequality to the convex function $f(u)=u^{k}$:

$$
x_{2}^{k}+\cdots+x_{n}^{k} \geq(n-1)\left(\frac{x_{2}+\cdots+x_{n}}{n-1}\right)^{k}
$$

Case $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$. Denoting $x_{1}=x$ and $x_{2}=x_{3}=\cdots=x_{n}=y$, we have to prove that for $0<x \leq 1 \leq y$ and $x+(n-1) y=n$, the inequality holds:

$$
x^{k}+(n-1) y^{k}+n r x y^{n-1}-n(r+1) \geq 0 .
$$

Write the inequality as $f(x) \geq 0$, where

$$
f(x)=x^{k}+(n-1) y^{k}+n r x y^{n-1}-n(r+1), \quad \text { with } \quad y=\frac{n-x}{n-1} .
$$

We see that $f(0)=f(1)=0$. Since $y^{\prime}=\frac{-1}{n-1}$, we have

$$
\begin{aligned}
f^{\prime}(x) & =k\left(x^{k-1}-y^{k-1}\right)+n r y^{n-2}(y-x) \\
& =(y-x)\left[n r y^{n-2}-k\left(y^{k-2}+y^{k-3} x+\cdots+x^{k-2}\right)\right] \\
& =(y-x) y^{n-2}[n r-k g(x)],
\end{aligned}
$$

where

$$
g(x)=\frac{1}{y^{n-k}}+\frac{x}{y^{n-k+1}}+\cdots+\frac{x^{k-2}}{y^{n-2}} .
$$

Since the function $y(x)=\frac{n-x}{n-1}$ is strictly decreasing, the function $g(x)$ is strictly increasing for $2 \leq k \leq n$. For $k=n+1$, we have

$$
\begin{aligned}
g(x) & =y+x+\frac{x^{2}}{y}+\cdots+\frac{x^{n-1}}{y^{n-2}} \\
& =\frac{(n-2) x+n}{n-1}+\frac{x^{2}}{y}+\cdots+\frac{x^{n-1}}{y^{n-2}},
\end{aligned}
$$

and for $k=n+2$, we have

$$
\begin{aligned}
g(x) & =y^{2}+y x+x^{2}+\frac{x^{3}}{y}+\cdots+\frac{x^{n}}{y^{n-2}} \\
& =\frac{\left(n^{2}-3 n+3\right) x^{2}+n(n-3) x+n^{2}}{(n-1)^{2}}+\frac{x^{3}}{y}+\cdots+\frac{x^{n}}{y^{n-2}} .
\end{aligned}
$$

Therefore, the function $g(x)$ is strictly increasing for $2 \leq k \leq n+2$, and the function

$$
h(x)=n r-k g(x)
$$

is strictly decreasing. Note that

$$
f^{\prime}(x)=(y-x) y^{n-2} h(x) .
$$

We assert that $h(0)>0$ and $h(1)<0$. If our claim is true, then there exists $x_{1} \in(0,1)$ such that $h\left(x_{1}\right)=0, h(x)>0$ for $x \in\left[0, x_{1}\right)$, and $h(x)<0$ for $x \in\left(x_{1}, 1\right]$. Consequently, $f(x)$ is strictly increasing for $x \in\left[0, x_{1}\right]$, and strictly decreasing for $x \in\left[x_{1}, 1\right]$. Since $f(0)=f(1)=0$, it follows that $f(x) \geq 0$ for $0<x \leq 1$, and the proof is completed.
In order to prove that $h(0)>0$, we assume that $h(0) \leq 0$. Then, $h(x)<0$ for $x \in(0,1)$, $f^{\prime}(x)<0$ for $x \in(0,1)$, and $f(x)$ is strictly decreasing for $x \in[0,1]$, which contradicts $f(0)=f(1)$. Also, if $h(1) \geq 0$, then $h(x)>0$ for $x \in(0,1), f^{\prime}(x)>0$ for $x \in(0,1)$, and $f(x)$ is strictly increasing for $x \in[0,1]$, which also contradicts $f(0)=f(1)$.

For $n \geq 3$ and $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$, equality occurs when $x_{1}=x_{2}=\cdots=x_{n}=1$, and also when $x_{1}=0$ and $x_{2}=\cdots=x_{n}=\frac{n}{n-1}$.

Remark 3.6. For $k=2, k=3$ and $k=4$, we get the following nice inequalities:

$$
\begin{gathered}
(n-1)\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)+n x_{1} x_{2} \cdots x_{n} \geq n^{2}, \\
(n-1)^{2}\left(x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}\right)+n(2 n-1) x_{1} x_{2} \cdots x_{n} \geq n^{3}, \\
(n-1)^{3}\left(x_{1}^{4}+x_{2}^{4}+\cdots+x_{n}^{4}\right)+n\left(3 n^{2}-3 n+1\right) x_{1} x_{2} \cdots x_{n} \geq n^{4} .
\end{gathered}
$$

Remark 3.7. The inequality for $k=n$ was posted in 2004 on the Mathlinks Site - Inequalities Forum by Gabriel Dospinescu and Călin Popa.

Proposition 3.8 ([11]). Let $x_{1}, x_{2}, \ldots, x_{n}$ be positive real numbers such that $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}=$ n. Then

$$
x_{1}+x_{2}+\cdots+x_{n}-n \leq e_{n-1}\left(x_{1} x_{2} \cdots x_{n}-1\right),
$$

where $e_{n-1}=\left(1+\frac{1}{n-1}\right)^{n-1}<e$.

Proof. Replacing each of the x_{i} by $\frac{1}{a_{i}}$, the statement becomes as follows:
If $a_{1}, a_{2}, \ldots, a_{n}$ are positive numbers such that $a_{1}+a_{2}+\cdots+a_{n}=n$, then

$$
a_{1} a_{2} \cdots a_{n}\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}-n+e_{n-1}\right) \leq e_{n-1} .
$$

It is easy to check that the inequality holds for $n=2$. Consider now $n \geq 3$, assume that $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and apply Corollary 1.8 (case $p=-1$): If $0<a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ such that $a_{1}+a_{2}+\cdots+a_{n}=n$ and $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{n}}=$ constant, then the product $a_{1} a_{2} \cdots a_{n}$ is maximal when $0<a_{1} \leq a_{2}=a_{3}=\cdots=a_{n}$.
Denoting $a_{1}=x$ and $a_{2}=a_{3}=\cdots=a_{n}=y$, we have to prove that for $0<x \leq 1 \leq y<$ $\frac{n}{n-1}$ and $x+(n-1) y=n$, the inequality holds:

$$
y^{n-1}+(n-1) x y^{n-2}-\left(n-e_{n-1}\right) x y^{n-1} \leq e_{n-1} .
$$

Letting

$$
\begin{aligned}
f(x) & =y^{n-1}+(n-1) x y^{n-2}-\left(n-e_{n-1}\right) x y^{n-1}-e_{n-1}, \quad \text { with } \\
y & =\frac{n-x}{n-1},
\end{aligned}
$$

we must show that $f(x) \leq 0$ for $0<x \leq 1$. We see that $f(0)=f(1)=0$. Since $y^{\prime}=\frac{-1}{n-1}$, we have

$$
\frac{f^{\prime}(x)}{y^{n-3}}=(y-x)\left[n-2-\left(n-e_{n-1}\right) y\right]=(y-x) h(x),
$$

where

$$
h(x)=n-2-\left(n-e_{n-1}\right) \frac{n-x}{n-1}
$$

is a linear increasing function.
Let us show that $h(0)<0$ and $h(1)>0$. If $h(0) \geq 0$, then $h(x)>0$ for $x \in(0,1)$, hence $f^{\prime}(x)>0$ for $x \in(0,1)$, and $f(x)$ is strictly increasing for $x \in[0,1]$, which contradicts $f(0)=f(1)$. Also, $h(1)=e_{n-1}-2>0$.

From $h(0)<0$ and $h(1)>0$, it follows that there exists $x_{1} \in(0,1)$ such that $h\left(x_{1}\right)=0$, $h(x)<0$ for $x \in\left[0, x_{1}\right)$, and $h(x)>0$ for $x \in\left(x_{1}, 1\right]$. Consequently, $f(x)$ is strictly decreasing for $x \in\left[0, x_{1}\right]$, and strictly increasing for $x \in\left[x_{1}, 1\right]$. Since $f(0)=f(1)=0$, it follows that $f(x) \leq 0$ for $0 \leq x \leq 1$.
For $n \geq 3$, equality occurs when $x_{1}=x_{2}=\cdots=x_{n}=1$.
Proposition 3.9 ([9]). If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers, then

$$
\begin{aligned}
& x_{1}^{n}+x_{2}^{n}+\cdots+x_{n}^{n}+n(n-1) x_{1} x_{2} \cdots x_{n} \\
& \geq x_{1} x_{2} \cdots x_{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right) .
\end{aligned}
$$

Proof. For $n=2$, one has equality. Assume now that $n \geq 3,0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and apply Corollary 1.9 (case $p=0$): If $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =\text { constant } \quad \text { and } \\
x_{1} x_{2} \cdots x_{n} & =\text { constant },
\end{aligned}
$$

then the sum $x_{1}^{n}+x_{2}^{n}+\cdots+x_{n}^{n}$ is minimal and the sum $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}$ is maximal when $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
Thus, it suffices to prove the inequality for $0<x_{1} \leq 1$ and $x_{2}=x_{3}=\cdots=x_{n}=1$. The inequality becomes

$$
x_{1}^{n}+(n-2) x_{1} \geq(n-1) x_{1}^{2},
$$

and is equivalent to

$$
x_{1}\left(x_{1}-1\right)\left[\left(x_{1}^{n-2}-1\right)+\left(x_{1}^{n-3}-1\right)+\cdots+\left(x_{1}-1\right)\right] \geq 0,
$$

which is clearly true. For $n \geq 3$, equality occurs if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
Proposition 3.10 ([14]). If $x_{1}, x_{2}, \ldots, x_{n}$ are non-negative real numbers, then

$$
\begin{aligned}
& (n-1)\left(x_{1}^{n}+x_{2}^{n}+\cdots+x_{n}^{n}\right)+n x_{1} x_{2} \cdots x_{n} \\
& \quad \geq\left(x_{1}+x_{2}+\cdots+x_{n}\right)\left(x_{1}^{n-1}+x_{2}^{n-1}+\cdots+x_{n}^{n-1}\right) .
\end{aligned}
$$

Proof. For $n=2$, one has equality. For $n \geq 3$, assume that $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and apply Corollary 1.9 (case $p=n$ and $q=n-1$) and Corollary 1.8 (case $p=n$): If $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =\text { constant } \quad \text { and } \\
x_{1}^{n}+x_{2}^{n}+\cdots+x_{n}^{n} & =\text { constant },
\end{aligned}
$$

then the sum $x_{1}^{n-1}+x_{2}^{n-1}+\cdots+x_{n}^{n-1}$ is maximal and the product $x_{1} x_{2} \cdots x_{n}$ is minimal when either $x_{1}=0$ or $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.

So, it suffices to consider the cases $x_{1}=0$ and $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$.
Case $x_{1}=0$. The inequality reduces to

$$
(n-1)\left(x_{2}^{n}+\cdots+x_{n}^{n}\right) \geq\left(x_{2}+\cdots+x_{n}\right)\left(x_{2}^{n-1}+\cdots+x_{n}^{n-1}\right),
$$

which immediately follows by Chebyshev's inequality.
Case $0<x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$. Setting $x_{2}=x_{3}=\cdots=x_{n}=1$, the inequality reduces to:

$$
(n-2) x_{1}^{n}+x_{1} \geq(n-1) x_{1}^{n-1}
$$

Rewriting this inequality as

$$
x_{1}\left(x_{1}-1\right)\left[x_{1}^{n-3}\left(x_{1}-1\right)+x_{1}^{n-4}\left(x_{1}^{2}-1\right)+\cdots+\left(x_{1}^{n-2}-1\right)\right] \geq 0,
$$

we see that it is clearly true. For $n \geq 3$ and $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ equality occurs when $x_{1}=x_{2}=\cdots=x_{n}$, and for $x_{1}=0$ and $x_{2}=\cdots=x_{n}$.
Proposition $3.11([8])$. If $x_{1}, x_{2}, \ldots, x_{n}$ are positive real numbers, then

$$
\left(x_{1}+x_{2}+\cdots+x_{n}-n\right)\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}-n\right)+x_{1} x_{2} \cdots x_{n}+\frac{1}{x_{1} x_{2} \cdots x_{n}} \geq 2 .
$$

Proof. For $n=2$, the inequality reduces to

$$
\frac{\left(1-x_{1}\right)^{2}\left(1-x_{2}\right)^{2}}{x_{1} x_{2}} \geq 0
$$

For $n \geq 3$, assume that $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Since the inequality preserves its form by replacing each number x_{i} with $\frac{1}{x_{i}}$, we may consider $x_{1} x_{2} \cdots x_{n} \geq 1$. So, by the AM-GM inequality we get

$$
x_{1}+x_{2}+\cdots+x_{n}-n \geq n \sqrt[n]{x_{1} x_{2} \cdots x_{n}}-n \geq 0
$$

and we may apply Corollary 1.9 (case $p=0$ and $q=-1$): If $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that

$$
\begin{aligned}
x_{1}+x_{2}+\cdots+x_{n} & =\text { constant } \quad \text { and } \\
x_{1} x_{2} \cdots x_{n} & =\text { constant },
\end{aligned}
$$

then the sum $\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}$ is minimal when $0<x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$.

According to this statement, it suffices to consider $x_{1}=x_{2}=\cdots=x_{n-1}=x$ and $x_{n}=y$, when the inequality reduces to

$$
((n-1) x+y-n)\left(\frac{n-1}{x}+\frac{1}{y}-n\right)+x^{n-1} y+\frac{1}{x^{n-1} y} \geq 2
$$

or

$$
\left(x^{n-1}+\frac{n-1}{x}-n\right) y+\left[\frac{1}{x^{n-1}}+(n-1) x-n\right] \frac{1}{y} \geq \frac{n(n-1)(x-1)^{2}}{x} .
$$

Since

$$
\begin{aligned}
x^{n-1}+\frac{n-1}{x}-n & =\frac{x-1}{x}\left[\left(x^{n-1}-1\right)+\left(x^{n-2}-1\right)+\cdots+(x-1)\right] \\
& =\frac{(x-1)^{2}}{x}\left[x^{n-2}+2 x^{n-3}+\cdots+(n-1)\right]
\end{aligned}
$$

and

$$
\frac{1}{x^{n-1}}+(n-1) x-n=\frac{(x-1)^{2}}{x}\left[\frac{1}{x^{n-2}}+\frac{2}{x^{n-3}}+\cdots+(n-1)\right],
$$

it is enough to show that

$$
\left[x^{n-2}+2 x^{n-3}+\cdots+(n-1)\right] y+\left[\frac{1}{x^{n-2}}+\frac{2}{x^{n-3}}+\cdots+(n-1)\right] \frac{1}{y} \geq n(n-1) .
$$

This inequality is equivalent to

$$
\begin{aligned}
\left(x^{n-2} y+\frac{1}{x^{n-2} y}-2\right)+2\left(x^{n-3} y+\frac{1}{x^{n-3} y}-2\right) & \\
& +\cdots+(n-1)\left(y+\frac{1}{y}-2\right) \geq 0
\end{aligned}
$$

or

$$
\frac{\left(x^{n-2} y-1\right)^{2}}{x^{n-2} y}+\frac{2\left(x^{n-3} y-1\right)^{2}}{x^{n-3} y}+\cdots+\frac{(n-1)(y-1)^{2}}{y} \geq 0
$$

which is clearly true. Equality occurs if and only if $n-1$ of the numbers x_{i} are equal to 1 .
Proposition 3.12 ([15]). If $x_{1}, x_{2}, \ldots, x_{n}$ are non-negative real numbers such that $x_{1}+x_{2}+$ $\cdots+x_{n}=n$, then

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{\frac{1}{\sqrt{n-1}}}\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right) \leq n
$$

Proof. For $n=2$, the inequality reduces to $2\left(x_{1} x_{2}-1\right)^{2} \geq 0$. For $n \geq 3$, assume that $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and apply Corollary 1.8 (case $p=2$): If $0 \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that $x_{1}+x_{2}+\cdots+x_{n}=n$ and $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=$ constant, then the product $x_{1} x_{2} \cdots x_{n}$ is maximal when $0 \leq x_{1}=x_{2}=\cdots=x_{n-1} \leq x_{n}$.
Consequently, it suffices to show that the inequality holds for $x_{1}=x_{2}=\cdots=x_{n-1}=x$ and $x_{n}=y$, where $0 \leq x \leq 1 \leq y$ and $(n-1) x+y=n$. Under the circumstances, the inequality reduces to

$$
x^{\sqrt{n-1}} y^{\frac{1}{\sqrt{n-1}}}\left[(n-1) x^{2}+y^{2}\right] \leq n
$$

For $x=0$, the inequality is trivial. For $x>0$, it is equivalent to $f(x) \leq 0$, where

$$
\begin{aligned}
& f(x)=\sqrt{n-1} \ln x+\frac{1}{\sqrt{n-1}} \ln y+\ln \left[(n-1) x^{2}+y^{2}\right]-\ln n \\
& \quad \text { with } \quad y=n-(n-1) x .
\end{aligned}
$$

We have $y^{\prime}=-(n-1)$ and

$$
\frac{f^{\prime}(x)}{\sqrt{n-1}}=\frac{1}{x}-\frac{1}{y}+\frac{2 \sqrt{n-1}(x-y)}{(n-1) x^{2}+y^{2}}=\frac{(y-x)(\sqrt{n-1} x-y)^{2}}{x y\left[(n-1) x^{2}+y^{2}\right]} \geq 0
$$

Therefore, the function $f(x)$ is strictly increasing on $(0,1]$ and hence $f(x) \leq f(1)=0$. Equality occurs if and only if $x_{1}=x_{2}=\cdots=x_{n}=1$.
Remark 3.13. For $n=5$, we get the following nice statement:
If a, b, c, d, e are positive real numbers such that $a^{2}+b^{2}+c^{2}+d^{2}+e^{2}=5$, then

$$
a b c d e\left(a^{4}+b^{4}+c^{4}+d^{4}+e^{4}\right) \leq 5
$$

Proposition 3.14 ([4]). Let x, y, z be non-negative real numbers such that $x y+y z+z x=3$, and let

$$
p \geq \frac{\ln 9-\ln 4}{\ln 3} \approx 0.738
$$

Then,

$$
x^{p}+y^{p}+z^{p} \geq 3 .
$$

Proof. Let $r=\frac{\ln 9-\ln 4}{\ln 3}$. By the Power-Mean inequality, we have

$$
\frac{x^{p}+y^{p}+z^{p}}{3} \geq\left(\frac{x^{r}+y^{r}+z^{r}}{3}\right)^{\frac{p}{r}} .
$$

Thus, it suffices to show that

$$
x^{r}+y^{r}+z^{r} \geq 3
$$

Let $x \leq y \leq z$. We consider two cases.
Case $x=0$. We have to show that $y^{r}+z^{r} \geq 3$ for $y z=3$. Indeed, by the AM-GM inequality, we get

$$
y^{r}+z^{r} \geq 2(y z)^{r / 2}=2 \cdot 3^{r / 2}=3
$$

Case $x>0$. The inequality $x^{r}+y^{r}+z^{r} \geq 3$ is equivalent to the homogeneous inequality

$$
x^{r}+y^{r}+z^{r} \geq 3\left(\frac{x y z}{3}\right)^{\frac{r}{2}}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^{\frac{r}{2}}
$$

Setting $x=a^{\frac{1}{r}}, y=b^{\frac{1}{r}}, z=c^{\frac{1}{r}}(0<a \leq b \leq c)$, the inequality becomes

$$
a+b+c \geq 3\left(\frac{a b c}{3}\right)^{\frac{1}{2}}\left(a^{\frac{-1}{r}}+b^{\frac{-1}{r}}+c^{\frac{-1}{r}}\right)^{\frac{r}{2}}
$$

Towards proving this inequality, we apply Corollary 1.9 (case $p=0, q=\frac{-1}{r}$): If $0<a \leq b \leq c$ such that $a+b+c=$ constant and $a b c=$ constant, then the sum $a^{\frac{-1}{r}}+b^{\frac{-1}{r}}+c^{\frac{-1}{r}}$ is maximal when $0<a \leq b=c$.

So, it suffices to prove the inequality for $0<a \leq b=c$; that is, to prove the homogeneous inequality in x, y, z for $0<x \leq y=z$. Without loss of generality, we may leave aside the constraint $x y+y z+z x=3$, and consider $y=z=1$ and $0<x \leq 1$. The inequality reduces to

$$
x^{r}+2 \geq 3\left(\frac{2 x+1}{3}\right)^{\frac{r}{2}}
$$

Denoting

$$
f(x)=\ln \frac{x^{r}+2}{3}-\frac{r}{2} \ln \frac{2 x+1}{3}
$$

we have to show that $f(x) \geq 0$ for $0<x \leq 1$. The derivative

$$
f^{\prime}(x)=\frac{r x^{r-1}}{x^{r}+2}-\frac{r}{2 x+1}=\frac{r\left(x-2 x^{1-r}+1\right)}{x^{1-r}\left(x^{r}+2\right)(2 x+1)}
$$

has the same sign as $g(x)=x-2 x^{1-r}+1$. Since $g^{\prime}(x)=1-\frac{2(1-r)}{x^{r}}$, we see that $g^{\prime}(x)<0$ for $x \in\left(0, x_{1}\right)$, and $g^{\prime}(x)>0$ for $x \in\left(x_{1}, 1\right]$, where $x_{1}=(2-2 r)^{1 / r} \approx 0.416$. The function $g(x)$ is strictly decreasing on $\left[0, x_{1}\right]$, and strictly increasing on $\left[x_{1}, 1\right]$. Since $g(0)=1$ and $g(1)=0$, there exists $x_{2} \in(0,1)$ such that $g\left(x_{2}\right)=0, g(x)>0$ for $x \in\left[0, x_{2}\right)$ and $g(x)<0$ for $x \in\left(x_{2}, 1\right)$. Consequently, the function $f(x)$ is strictly increasing on $\left[0, x_{2}\right]$ and strictly decreasing on $\left[x_{2}, 1\right]$. Since $f(0)=f(1)=0$, we have $f(x) \geq 0$ for $0<x \leq 1$, establishing the desired result.

Equality occurs for $x=y=z=1$. Additionally, for $p=\frac{\ln 9-\ln 4}{\ln 3}$ and $x \leq y \leq z$, equality holds again for $x=0$ and $y=z=\sqrt{3}$.

Proposition 3.15 ([7]). Let x, y, z be non-negative real numbers such that $x+y+z=3$, and let $p \geq \frac{\ln 9-\ln 8}{\ln 3-\ln 2} \approx 0.29$. Then,

$$
x^{p}+y^{p}+z^{p} \geq x y+y z+z x
$$

Proof. For $p \geq 1$, by Jensen's inequality we have

$$
\begin{aligned}
x^{p}+y^{p}+z^{p} & \geq 3\left(\frac{x+y+z}{3}\right)^{p} \\
& =3=\frac{1}{3}(x+y+z)^{2} \geq x y+y z+z x
\end{aligned}
$$

Assume now $p<1$. Let $r=\frac{\ln 9-\ln 8}{\ln 3-\ln 2}$ and $x \leq y \leq z$. The inequality is equivalent to the homogeneous inequality

$$
2\left(x^{p}+y^{p}+z^{p}\right)\left(\frac{x+y+z}{3}\right)^{2-p}+x^{2}+y^{2}+z^{2} \geq(x+y+z)^{2} .
$$

By Corollary 1.9 (case $0<p<1$ and $q=2$), if $x \leq y \leq z$ such that $x+y+z=$ constant and $x^{p}+y^{p}+z^{p}=$ constant, then the sum $x^{2}+y^{2}+z^{2}$ is minimal when either $x=0$ or $0<x \leq y=z$.
Case $x=0$. Returning to our original inequality, we have to show that $y^{p}+z^{p} \geq y z$ for $y+z=3$. Indeed, by the AM-GM inequality, we get

$$
\begin{aligned}
y^{p}+z^{p}-y z & \geq 2(y z)^{\frac{p}{2}}-y z \\
& =(y z)^{\frac{p}{2}}\left[2-(y z)^{\frac{2-p}{2}}\right] \\
& \geq(y z)^{\frac{p}{2}}\left[2-\left(\frac{y+z}{2}\right)^{2-p}\right] \\
& =(y z)^{\frac{p}{2}}\left[2-\left(\frac{3}{2}\right)^{2-p}\right] \\
& \geq(y z)^{\frac{p}{2}}\left[2-\left(\frac{3}{2}\right)^{2-r}\right]=0 .
\end{aligned}
$$

Case $0<x \leq y=z$. In the homogeneous inequality, we may leave aside the constraint $x+y+z=3$, and consider $y=z=1$ and $0<x \leq 1$. Thus, the inequality reduces to

$$
\left(x^{p}+2\right)\left(\frac{x+2}{3}\right)^{2-p} \geq 2 x+1
$$

To prove this inequality, we consider the function

$$
f(x)=\ln \left(x^{p}+2\right)+(2-p) \ln \frac{x+2}{3}-\ln (2 x+1) .
$$

We have to show that $f(x) \geq 0$ for $0<x \leq 1$ and $r \leq p<1$. We have

$$
f^{\prime}(x)=\frac{p x^{p-1}}{x^{p}+2}+\frac{2-p}{x+2}-\frac{2}{2 x+1}=\frac{2 g(x)}{x^{1-p}\left(x^{p}+2\right)(2 x+1)},
$$

where

$$
g(x)=x^{2}+(2 p-1) x+p+2(1-p) x^{2-p}-(p+2) x^{1-p}
$$

and

$$
\begin{gathered}
g^{\prime}(x)=2 x+2 p-1+2(1-p)(2-p) x^{1-p}-(p+2)(1-p) x^{-p}, \\
g^{\prime \prime}(x)=2+2(1-p)^{2}(2-p) x^{-p}+p(p+2)(1-p) x^{-p-1} .
\end{gathered}
$$

Since $g^{\prime \prime}(x)>0$, the first derivative $g^{\prime}(x)$ is strictly increasing on $(0,1]$. Taking into account that $g^{\prime}(0+)=-\infty$ and $g^{\prime}(1)=3(1-p)+3 p^{2}>0$, there is $x_{1} \in(0,1)$ such that $g^{\prime}\left(x_{1}\right)=0$, $g^{\prime}(x)<0$ for $x \in\left(0, x_{1}\right)$ and $g^{\prime}(x)>0$ for $x \in\left(x_{1}, 1\right]$. Therefore, the function $g(x)$ is strictly decreasing on $\left[0, x_{1}\right]$ and strictly increasing on $\left[x_{1}, 1\right]$. Since $g(0)=p>0$ and $g(1)=0$, there is $x_{2} \in\left(0, x_{1}\right)$ such that $g\left(x_{2}\right)=0, g(x)>0$ for $x \in\left[0, x_{2}\right)$ and $g(x)<0$ for $x \in\left(x_{2}, 1\right]$. We have also $f^{\prime}\left(x_{2}\right)=0, f^{\prime}(x)>0$ for $x \in\left(0, x_{2}\right)$ and $f^{\prime}(x)<0$ for $x \in\left(x_{2}, 1\right]$. According to this result, the function $f(x)$ is strictly increasing on $\left[0, x_{2}\right]$ and strictly decreasing on $\left[x_{2}, 1\right]$. Since

$$
f(0)=\ln 2+(2-p) \ln \frac{2}{3} \geq \ln 2+(2-r) \ln \frac{2}{3}=0
$$

and $f(1)=0$, we get $f(x) \geq \min \{f(0), f(1)\}=0$.
Equality occurs for $x=y=z=1$. Additionally, for $p=\frac{\ln 9-\ln 8}{\ln 3-\ln 2}$ and $x \leq y \leq z$, equality holds again when $x=0$ and $y=z=\frac{3}{2}$.
Proposition 3.16 ([8]). If $x_{1}, x_{2}, \ldots, x_{n}(n \geq 4)$ are non-negative numbers such that $x_{1}+x_{2}+$ $\cdots+x_{n}=n$, then

$$
\frac{1}{n+1-x_{2} x_{3} \cdots x_{n}}+\frac{1}{n+1-x_{3} x_{4} \cdots x_{1}}+\cdots+\frac{1}{n+1-x_{1} x_{2} \cdots x_{n-1}} \leq 1 .
$$

Proof. Let $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and $e_{n-1}=\left(1+\frac{1}{n-1}\right)^{n-1}$. By the AM-GM inequality, we have

$$
x_{2} \cdots x_{n} \leq\left(\frac{x_{2}+\cdots+x_{n}}{n-1}\right)^{n-1} \leq\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n-1}\right)^{n-1}=e_{n-1}
$$

Hence

$$
n+1-x_{2} x_{3} \cdots x_{n} \geq n+1-e_{n-1}>0
$$

and all denominators of the inequality are positive.
Case $x_{1}=0$. It is easy to show that the inequality holds.
Case $x_{1}>0$. Suppose that $x_{1} x_{2} \cdots x_{n}=(n+1) r=$ constant, $r>0$. The inequality becomes

$$
\frac{x_{1}}{x_{1}-r}+\frac{x_{2}}{x_{2}-r}+\cdots+\frac{x_{n}}{x_{n}-r} \leq n+1
$$

or

$$
\frac{1}{x_{1}-r}+\frac{1}{x_{2}-r}+\cdots+\frac{1}{x_{n}-r} \leq \frac{1}{r}
$$

By the AM-GM inequality, we have

$$
(n+1) r=x_{1} x_{2} \cdots x_{n} \leq\left(\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right)^{n}=1,
$$

hence $r \leq \frac{1}{n+1}$. From $x_{n}<x_{1}+x_{2}+\cdots+x_{n}=n<n+1 \leq \frac{1}{r}$, we get $x_{n}<\frac{1}{r}$. Therefore, we have $r<x_{i}<\frac{1}{r}$ for all numbers x_{i}.

We will apply now Corollary 1.7 to the function $f(u)=\frac{-1}{u-r}, u>r$. We have $f^{\prime}(u)=\frac{1}{(u-r)^{2}}$ and

$$
g(x)=f^{\prime}\left(\frac{1}{x}\right)=\frac{x^{2}}{(1-r x)^{2}}, \quad g^{\prime \prime}(x)=\frac{4 r x+2}{(1-r x)^{4}} .
$$

Since $g^{\prime \prime}(x)>0, g(x)$ is strictly convex on $\left(r, \frac{1}{r}\right)$. According to Corollary 1.7 , if $0 \leq x_{1} \leq$ $x_{2} \leq \cdots \leq x_{n}$ such that for $x_{1}+x_{2}+\cdots+x_{n}=$ constant and $x_{1} x_{2} \cdots x_{n}=$ constant, then the sum $f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right)$ is minimal when $x_{1} \leq x_{2}=x_{3}=\cdots=x_{n}$. Thus, to prove the original inequality, it suffices to consider the case $x_{1}=x$ and $x_{2}=x_{3}=\cdots=x_{n}=y$, where $0<x \leq 1 \leq y$ and $x+(n-1) y=n$. We leave ending the proof to the reader.
Remark 3.17. The inequality is a particular case of the following more general statement:
Let $n \geq 3, e_{n-1}=\left(1+\frac{1}{n-1}\right)^{n-1}, k_{n}=\frac{(n-1) e_{n-1}}{n-e_{n-1}}$ and let $a_{1}, a_{2}, \ldots, a_{n}$ be non-negative numbers such that $a_{1}+a_{2}+\cdots+a_{n}=n$.
(a) If $k \geq k_{n}$, then

$$
\frac{1}{k-a_{2} a_{2} \cdots a_{n}}+\frac{1}{k-a_{3} a_{4} \cdots a_{1}}+\cdots+\frac{1}{k-a_{1} a_{2} \cdots a_{n-1}} \leq \frac{n}{k-1}
$$

(b) If $e_{n-1}<k<k_{n}$, then

$$
\frac{1}{k-a_{2} a_{3} \cdots a_{n}}+\frac{1}{k-a_{3} a_{4} \cdots a_{1}}+\cdots+\frac{1}{k-a_{1} a_{2} \cdots a_{n-1}} \leq \frac{n-1}{k}+\frac{1}{k-e_{n-1}}
$$

Finally, we mention that many other applications of the EV-Method are given in the book [2].

References

[1] V. CÎRTOAJE, A generalization of Jensen's inequality, Gazeta Matematică A, 2 (2005), 124-138.
[2] V. CÎRTOAJE, Algebraic Inequalities - Old and New Methods, GIL Publishing House, Romania, 2006.
[3] V. CÎRTOAJE, Two generalizations of Popoviciu's Inequality, Crux Math., 31(5) (2005), 313-318.
[4] V. CÎRTOAJE, Solution to problem 2724 by Walther Janous, Crux Math., 30(1) (2004), 44-46.
[5] V. CÎRTOAJE, Problem 10528, A.M.M, 103(5) (1996), 428.
[6] V. CÎRTOAJE, Mathlinks site,http://www.mathlinks.ro/Forum/viewtopic.php?t= 123604, Dec 10, 2006.
[7] V. CÎRTOAJE, Mathlinks site, http://www.mathlinks.ro/Forum/viewtopic.php?t= 56732, Oct 19, 2005.
[8] V. CÎRTOAJE, Mathlinks site,http://www.mathlinks.ro/Forum/viewtopic.php?t= 18627, Jan 29, 2005.
[9] V. CÎRTOAJE, Mathlinks site,http://www.mathlinks.ro/Forum/viewtopic.php?t= 14906. Aug 04, 2004.
[10] V. CÎRTOAJE, Mathlinks site, http://www.mathlinks.ro/Forum/viewtopic.php? $t=19076$, Nov 2, 2004.
[11] V. CÎRTOAJE, Mathlinks site, http://www.mathlinks.ro/Forum/viewtopic.php? $t=21613$, Feb 15, 2005.
[12] W. JANOUS AND V. CÎRTOAJE, Two solutions to problem 2664, Crux Math., 29(5) (2003), 321323.
[13] D.S. MITRINOVIC, J.E. PECARIC AND A.M. FINK, Classical and New Inequalities in Analysis, Kluwer, 1993.
[14] J. SURANYI, Miklos Schweitzer Competition-Hungary. http://www.mathlinks.ro/ Forum/viewtopic.php?t=14008, Jul 11, 2004.
[15] http://www.mathlinks.ro/Forum/viewtopic.php?t=36346, May 10, 2005.
[16] http://www.mathlinks.ro/Forum/viewtopic.php?p=360537, Nov 2, 2005.

