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ABSTRACT. The main result of this paper shows thatonvex functions can be characterized
in terms of a lower second-order generalized derivative.
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1. INTRODUCTION

Let I C R be an open interval ank: 12 — (0, 1) be a fixed function. A real-valued function
f : I — R defined on an interval C R is called\-convexf

(1.1) fMa, )z + (1= Xz,9)y) < Mz,y)f(x) + (1= Xaz,y) fly)  for z,yel

Such functions were introduced and discussed by Zs. Palés in [6], who obtained a Bernstein-
Doetch type theorem for them. A Siengki-type result, stating that measurabteonvex func-

tions are convex, can be found in [2]. Recently K. Nikodem and Zs. Pales [5] proved that
functions satisfying[(1]1) with a constakican be characterized by use of a second-order gen-
eralized derivative. The main results of this paper show Xhatnvexity, for\ not necessarily
constant, can also be characterized in terms of a properly chosen lower second-order generalized
derivative.

2. DIVIDED DIFFERENCES AND CONVEXITY TRIPLETS

If f:I — Ris an arbitrary function then define the second-order divided differen¢daf
three pairwise distinct points, y, z of I by

f() ) £(2)
-0 @-ni-y @-2)y-2

(2.1) fley, 2] =
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2 M. ADAMEK

It is known (cf. e.gl[4],[[7]) and easy to check that a functipn I — R is convex if and

only if
fle,y, 21 >0

for every pairwise distinct points, y, z of /. Motivated by this characterization of convexity,
a triplet (z,y, z) in I? with pairwise distinct points:, y, z is called aconvexity triplet for a
functionf : I — Rif f[z,y, z] > 0 and the set of all convexity triplets gfis denoted by(f).
Using this terminologyy is A-convex if and only if
(2.2) (2, Mz, y)z + (1= Xz,y)y,y) € €(f)  for z,yelwithz#y.

The following result obtained in [5] will be used in the proof of the main theorem.

Lemma 2.1. (Chain Inequality) Letf : ] — Randzy < z; < --- < x, (n > 2) be arbitrary
points in/. Then, for all fixed) < j < n,

(2.3) 1;@%{}_1 floict, 2, g1 < floo, @), 20] < 1%?5%3(—1 flwica, 2, @iga].

3. MAIN RESULTS

Assume that : 7 — (0, 1) is a fixed function and consider th@ver 2nd-order generalized
A-derivativeof a functionf : I — R at a point¢ € I defined by

(3.1) Nf(€) = liminf 2f[z, Aw, y)z + (1= Mz, y))y, yl-
geco{z,y}

One can easily show that jfis twice continuously differentiable gtthen

Bf(&) = f"(€).
Moreover, from[(2.R) and (3.1), if a functioh: I — R is A-convex, ther? f(£) > 0 for every
¢ € 1. The following example shows that the reverse implication is not true in general.

Example 3.1. Define\ : R* — (0, 1) by the formula

if xt=uy,
Az, y) =
it z#y,

N = W

and take the functiorf : R — R;
f 0 if =0,
=9 it 2 0.

It is easy to check that this function is nbiconvex, buts; f(£) > 0 for every¢ € R.
Now, let) : I? — (0, 1) be a fixed function. Define

M(z,y) = Mz, y)r + (1 = Xz, y))y
and write conditions

(3.2) inf  A(z,y) >0 and sup A(z,y) <1, forall zg,yo € I with 2y < yo,
z,y€[wo,y0] z,y€[zo,y0]
(3.3) MMz, M(z, ), M(y, M(z,1))) = M(z,y), forallz,y € I

Of course, the above assumptions are satisfied for arbitrary consténoreover, observe
that if M fulfils the bisymmetry equation (cf[[1], [3]) then it fulfils equatidn (3.3), too. Thus
for each quasi-arithmetic mean these conditions are also fulfilled.

Using a similar method as inl[5] we can prove the following result.
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Theorem 3.1. (Mean Value Inequality foA-convexity) Let/ C R be an interval,\ : I? —
(0, 1) satisfies assumptiorf8.2)— (3.3), f : I — R andx,y € I with z # y. Then there exists
a point{ € co{z, y} such that

(3.4) 2flw, Ma,y)r + (1= ANz, 9)y, y] = 65 f(€)-

Proof. In the sequel, a tripletr, u, y) € I* will be called a\-triplet if
u=Az,y)z+ (1= Az, y))y

or

Let z andy be distinct elements of. Assume that: < y (the proof in the case > y is
similar). In what follows, we intend to construct a sequencg-tiplets (z,,, u,, y,) such that

(3.5) o<1 <2< ..., YoYU ZY> .., Tp<u, <y, (neN),

(3.6) y,—x, < (max {1 — inf  A(x,y), sup )\(a:,y)}> (Yo —xo) (n€N),

z,y€[zo,y0] z,y€[x0,y0]
and
(3.7) flzo, w0, yo] = floy, ur,p1] = flra, ug,ya] > -
Define

(-T07 U, yO) = (iL‘, )\(iL‘, y)x + (1 - A(*/Ea y>>y7 y)
and assume that we have construdted u,,, y,,). Now set
Zn,0 = Tn, Zn,l = A(xm un)xn + (1 - )\(l’n, un))um Zn,2 = Unp,
Zn3 = )\(yna un)yn + (1 - )\(ymun))una Znd = Yn-

Then (2,1, zn, 2ni+1) are-triplets fori € {1,2,3} (for i € {1,3} immediately from the
definition of A-triplets and fori = 2 from condition [[3.8)).
Using the Chain Inequality, we find that there exists an index 1, 2, 3} such that

f[xm Up, yn] Z f[zn,i—h Znis Zn,i-‘rl]'
Finally, define

($n+1, Un+1, yn+1) = (Zn,i—h Zn,is Zn,i+1)-

The sequence so constructed clearly satidfie$ (3.5) arjd (3.7). We [prdve (3.6) by induction. It is
obvious forn = 0. Assume that it holds for andw,, = Az, yn)zn + (1 — MZn, Yn))yn (if
Un, = MYn, Tn)Yn + (1 — Myn, z,)) 2, then the motivation is the same). Consider three cases.

(i)

(:Bn-i-].v Un+1, yn+1) = (ﬂfn, )\(-rna un)xn + (1 - )\(.Tn, un))una un)
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then

yn+1 - xn+1 = Up — Ty,
- )‘(xn7yn)xn + (1 - )\(xm yn))yn — Tn
= (1= XM2n; Yn)) (Yn — T0)

< max {1 — inf  A(z,y), sup A(ﬂf,y)} (Y — )

x,y€[0,y0] Z,Y€[x0,Y0)
n+1
S max< 1 — inf A($a y)> sup )\(SE, y> <y0 - 33'())-
z,y€[x0,Y0] z,y€[wo,y0)

(i)
(anrlv Unp41, ynJrl)
- (/\(.Z’n, un)xn + (1 - )\(In, Un))“ny Uy, /\(yna un>yn + (1 - )\(yny un))un)
then

Ynt1 — Tpta
= MZn, tn) (Un = Tn) + MYns Un) (Yn — Un)
= M@, Un) (1 = MZn, Yn)) Un — Tn) + AMYns Un) M T, Yn) (Y — Tn)

< max {1 — inf  A(x,y), sup /\(x,y)} (1 = XMZn, Yn)) (Yn — )

x,y€[x0,Y0) =,y €[z0,y0]

+ max {1 — inf  Aa,y), sup Az, y)} M, Yn) (Yn — Tn)

x,y€[z0,Y0] x,y€E[z0,y0]

= max {1 — inf  A(x,y), sup )\(:v,y)} (Yn — )

z,y€[20,y0] z,y€[wo,y0]
n+1
< (max{1— inf )‘(3:7 y)> sSup )\(Q?, y) (yO - 1’0)-
,y€[z0,yo] ,y€[z0,yo]
(iir)
(Tnt1s Units Ynt1) = (Uny A(Yns Un)Yn + (1 = A(Yn, Un))Un, Yn)
then

Yn+l — Tptl = Yn — Un
= Yn — (M@0, Yn) 0 + (1 = M@0, Yn) )Un)
= >‘($n> yn)(yn - :Bn)

< max {1 — inf  A(x,y), sup A(:c,y)} (Yn — xn)

©,y€x0,y0] x,y€lwo,yo]
n+1
< |maxg1— inf Max,y), sup A(z,y) (Yo — o).
x,9€[x0,y0] z,Y€[T0,Y0]

Thus [3.6) is also verified.
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Due to the monotonicity properties of the sequenges, (v,) and also[(3]2), (3]6), there
exists a unique elemeéte [z, y| such that

[e.o]

ﬂ[xm Yl = {&}-

1=0
Then, by [(3.F) and symmetry of the second-order divided difference, we get that
fle, Mz, )z + (1= XNz, 9))y. y] = flzo, o, yo]
> liminf fz,, w,, yn)

n—oo

> liminf flv, A(v,w)v + (1 — A(v, w))w, w)

(v,w)—(§,6)
¢eco{v,w}

1
which completes the proof. O

As an immediate consequence of the above theorem, we get the following characterization
of A-convexity.

Theorem 3.2.Let \ : I? — (0,1) be a fixed function satisfying assumptidB2) — (3-3). A
functionf : I — R is A\-convex oY if and only if
(3.8) 02 f(€) >0, forall £ € 1.

Proof. If f is A-convex, then, clearly; f > 0. Conversely, iff; f is nonnegative oi, then, by
the previous theorem

forall x,y € I, i.e., f is A-convex. O

An obvious but interesting consequence of Thedrem 3.2 is thaX-tranvexity property is
localizablein the following sense:

Corollary 3.3. Let A : I — (0,1) be a fixed function satisfying assumptid8s?) — (3-3).
A functionf : I — R is A\-convex on/ if and only if, for each point € I, there exists a
neighborhoodJ of £ such thatf is A-convex o/ N U.
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