Journal of Inequalities in Pure and Applied Mathematics

SOME INEQUALITIES FOR SPECTRAL VARIATIONS

SHILIN ZHAN

Department of Mathematics Hanshan Teacher's College Chaozhou, Guangdong
China, 521041
EMail: shilinzhan@163.com
volume 7, issue 3, article 116, 2006.

Received 01 March, 2006; accepted 20 June, 2006.

Communicated by: B. Yang

Abstract
Contents
Home Page
Go Back
Close

Abstract

Over the last couple of decades, significant progress for the spectral variation of a matrix has been made in partially extending the classical Weyl and Lidskii theory $[11,7]$ to normal matrices and even to diagonalizable matrices for example. Recently these theories have been established for relative perturbations. In this paper, we shall establish relative perturbation theorems for generalized normal matrix. Some well-known perturbation theorems for normal matrix are extended. As applying, some perturbation theorems for positive definite matrix (possibly non-Hermitian) are established.

2000 Mathematics Subject Classification: 15A18, 15A42, 65F15.
Key words: Spectral variation; Unitarily invariant norm; Hadamard product; Relative perturbation theorem.

Contents

1 Introduction
2 Main Result 5
References

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents
Go Back
Close
Quit 2 of 15

J. Ineq. Pure and Appl. Math. 7(3) Art. 116, 2006 http://jipam.vu.edu.au

1. Introduction

The set of all $\lambda \in C$ that are eigenvalues of $A \in M_{n}(C)$ is called the spectrum of A and is denoted by $\sigma(A)$. The spectral radius of A is the nonnegative real number $\rho(A)=\max \{|\lambda|: \lambda \in \sigma(A)\}$. We shall use $\||\cdot|| |$ to denote a unitarily invariant norm (see $[5,9,13,3,20,21]$). $\|X\|_{2}$, the largest singular value of X, is a frequently used unitarily invariant norm. Let $X \circ Y=\left(x_{i j} y_{i j}\right)$ be the Hadamard product of $X=\left(x_{i j}\right)$ and $Y=\left(y_{i j}\right)$. A matrix $A \in M_{n}(C)$ is said to be a generalized normal matrix with respect to H (It is called "general-
ized normal matrix" for short) or H^{+}-normal if there exists a positive definite Hermitian matrix H such that $A^{*} H A=A H A^{*}$, where "*" denotes the conjugate transpose. The definition was given first by [19, 18]. A generalized normal matrix is a very important kind of matrix which contains two subclasses of important matrices: normal matrices and positive definite matrices (possibly non-Hermitian), where a matrix A is called normal if $A^{*} A=A A^{*}$ and positive definite if $\operatorname{Re}\left(x^{*} A x\right)>0$ for any non-zero $x \in C^{n}$ (see [5, 6]). In recent years, the geometric significance, sixty-two equivalent conditions and many properties have been established for generalized normal matrices in [19, 17, 18]. We have

Lemma 1.1 (see [19]). Suppose $A \in M_{n}(C)$. Then

1. A is a generalized normal matrix with respect to H if and only if $H^{1 / 2} A H^{1 / 2}$ is normal.
2. A is a generalized normal matrix with respect to H if and only if there exists a nonsingular matrix P such that $H=\left(P P^{*}\right)^{-1}$ and

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

Title Page
Contents
Go Back
Close
Quit
Page 3 of 15

Page 3 of 15

J. Ineq. Pure and Appl. Math. 7(3) Art. 116, 2006 http://jipam.vu.edu.au
where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Furthermore, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are n eigenvalues of $H A$.

Remark 1. (1.1) is equivalent to $H A=P^{-*} \Lambda P^{*}$ with $P^{-*}=\left(P^{-1}\right)^{*}$, so we say that A has generalized eigen-decomposition (1.1), and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the generalized eigenvalues of matrix A.

The spectral variation of a matrix has recently been a very active research subject in both matrix theory and numerical linear algebra. Over the last couple of decades significant progress has been made in partially extending the classical Weyl and Lidskii theory $[11,16]$ to normal matrices and even to diagonalizable matrices for example. This note will show how certain perturbation problems can be reformulated as simple matrix optimization problems involving Hadamard products. When A and \tilde{A} are normal, we have shown one of many perturbation theorems that can be interpreted as bounding the norms of $Q \circ Z$ where Q is unitary and Z is a special matrix defined by the eigenalues (see [10]). In this paper, we shall extend the above result, and shall show how certain perturbation problems can be reformulated as generalized normal matrix optimization problems involving Hadamard products. Also, we study how generalized eigenvalues of a generalized normal matrix A change when it is perturbed to $\tilde{A}=D^{*} A D$, where D is a nonsingular matrix. As applications, some perturbation theorems for positive definite matrices (possibly non-Hermitian) are established.

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 4 of 15
J. Ineq. Pure and Appl. Math. 7(3) Art. 116, 2006 http://jipam.vu.edu.au

2. Main Result

Suppose that A and \tilde{A} are generalized normal matrices with respect to a common positive definite matrix H, and have generalized eigen-decompositions

$$
\begin{equation*}
A=P \Lambda P^{*} \quad \text { and } \quad \tilde{A}=\tilde{P} \tilde{\Lambda} \tilde{P}^{*} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \quad \text { and } \quad \tilde{\Lambda}=\operatorname{diag}\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots, \tilde{\lambda}_{n}\right) \tag{2.2}
\end{equation*}
$$

and λ_{i} are the generalized eigenvalues of A, and $\tilde{\lambda}_{i}$ are the generalized eigenvalues of $\tilde{A}(i=1,2, \ldots, n)$.

Notice $H=\left(P P^{*}\right)^{-1}$ and $H=\left(\tilde{P} \tilde{P}^{*}\right)^{-1}$, so $\left(P^{-1} \tilde{P}\right)^{*}\left(P^{-1} \tilde{P}\right)=\tilde{P}^{*} H \tilde{P}=$ I, then $Q=P^{-1} \tilde{P}$ is unitary and

$$
\begin{equation*}
\tilde{P}=P Q \tag{2.3}
\end{equation*}
$$

Define

$$
\begin{equation*}
Z_{1}=\left(\lambda_{i}-\tilde{\lambda}_{j}\right)_{i, j=1}^{n} \tag{2.4}
\end{equation*}
$$

We have the following result.
Theorem 2.1. Suppose A and \tilde{A} are H^{+}-normal with generalized eigendecomposition (2.1), Then

$$
\begin{equation*}
\rho(H)^{-1}\left\|\left|Q \circ Z_{1}\right|\right\| \leq\| \| A-\tilde{A}\left|\left\|\leq \rho\left(H^{-1}\right)\right\|\right| Q \circ Z_{1} \mid \| \tag{2.5}
\end{equation*}
$$

where $Q=P^{-1} \tilde{P}$ is unitary and Z_{1} is defined in Eq.(2.4).

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

Go Back
Close
Quit
Page 5 of 15

Proof. For A and \tilde{A} having generalized eigen-decomposition (2.1), noticing that $\tilde{P}=P Q$, where $Q=P^{-1} \tilde{P}$ is unitary, $\||W Y|\| \leq\|W\|_{2}\||Y|\|$ and $\||Y Z|\| \leq$ $\left\|\left||Y|\left\|\|Z\|_{2}\right.\right.\right.$ (see [9, p. 961]), we have

$$
\left\|\left\|P \Lambda P^{*}-P Q \tilde{\Lambda} Q^{*} P^{*}\left|\|\leq\| P\left\|_{2}\right\|\left\|\Lambda-Q \tilde{\Lambda} Q^{*} \mid\right\|\left\|P^{*}\right\|_{2}\right.\right.\right.
$$

then

$$
\||A-\tilde{A}|\| \leq\left\|H^{-1}\right\|_{2}\| \| \Lambda-Q \tilde{\Lambda} Q^{*} \mid \|
$$

Since

$$
\left\|\left\|\Lambda-Q \tilde{\Lambda} Q^{*}\left|\|=\|\left\|\Lambda Q-Q \tilde{\Lambda}|\|=\|| Q \circ Z_{1} \mid\right\|\right.\right.\right.
$$

and $\left\|H^{-1}\right\|_{2}=\rho\left(H^{-1}\right)$,

$$
\begin{equation*}
\||A-\tilde{A}|\| \leq \rho\left(H^{-1}\right)\left\|\left|Q \circ Z_{1}\right|\right\| . \tag{2.6}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
\left\|P^{-1}\right\|_{2}\| \| P \Lambda P^{*}-P Q \tilde{\Lambda} Q^{*} P^{*} \mid\| \| P^{-*} \|_{2} & \geq\| \| \Lambda-Q \tilde{\Lambda} Q^{*} \mid \| \\
& =\left\|\left|Q \circ Z_{1}\right|\right\|
\end{aligned}
$$

Similarly for $H=\left(P P^{*}\right)^{-1}$ and $\left\|P^{-1}\right\|_{2}=\left\|P^{-*}\right\|_{2}=\sqrt{\rho(H)}$, we obtain

$$
\rho(H)\||A-\tilde{A}|\| \geq\left\|\left|Q \circ Z_{1}\right|\right\|
$$

hence

$$
\begin{equation*}
\||A-\tilde{A}|\| \geq \rho(H)^{-1}\left\|\left|Q \circ Z_{1}\right|\right\| \tag{2.7}
\end{equation*}
$$

The inequality (2.5) completes the proof by inequalities (2.6) and (2.7).

In particular, if $H=I$ is the identity matrix, then H^{+}-normal matrices A and \tilde{A} are normal matrices, hence A and \tilde{A} have eigen-decomposition

$$
\begin{equation*}
A=U \Lambda U^{*} \quad \text { and } \quad \tilde{A}=\tilde{U} \tilde{\Lambda} \tilde{U}^{*} \tag{2.8}
\end{equation*}
$$

where U and \tilde{U} are unitary, and

$$
\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \quad \tilde{\Lambda}=\operatorname{diag}\left(\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots, \tilde{\lambda}_{n}\right)
$$

By Theorem 2.1, we have
Corollary 2.2 (see [10]). If A and \tilde{A} are normal matrices, then

$$
\begin{equation*}
\left\|\left\|A-\tilde{A}|\|=\|| Q \circ Z_{1} \mid\right\|,\right. \tag{2.9}
\end{equation*}
$$

where $Q=U^{*} \tilde{U}$ and $Z_{1}=\left(\lambda_{i}-\tilde{\lambda}_{j}\right)_{i, j=1}^{n}$.
We denote the Cartesian decomposition $X=H(X)+K(X)$, where $H(X)=$ $\frac{1}{2}\left(X+X^{*}\right)$, and $K(X)=\frac{1}{2}\left(X-X^{*}\right)$. Let $\sigma(H(A))=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be ordered so that $h_{1} \geq h_{2} \geq \cdots \geq h_{n}$. Then we have some perturbation theorems for positie definite matrices which are discussed as follows.

Corollary 2.3. If $A=H(A)+K(A)$ and $\tilde{A}=H(\tilde{A})+K(\tilde{A})$ are positive definite with generalized eigen-decomposition (2.1), and $Q=P^{-1} \tilde{P}$ is unitary, then

$$
\begin{equation*}
h_{n}\left\|\left|Q \circ Z_{1}\right|\right\| \leq\| \| A-\tilde{A}\left|\left\|\leq h_{1}\right\|\right| Q \circ Z_{1} \mid \|, \tag{2.10}
\end{equation*}
$$

where Z_{1} is defined in Eq.(2.4).

Proof. Since $Q=P^{-1} \tilde{P}$ is unitary, $H(A)=H(\tilde{A})$. It is easy to see that

$$
A^{*} H(A)^{-1} A=A H(A)^{-1} A^{*}
$$

and

$$
\tilde{A}^{*} H(\tilde{A})^{-1} \tilde{A}=\tilde{A} H(\tilde{A})^{-1} \tilde{A}^{*} .
$$

So A and \tilde{A} are generalized normal matrices with respect to $H(A)^{-1}$. It is easy to see that $\rho\left(H(A)^{-1}\right)^{-1}=h_{n}, \rho(H(A))=h_{1}$. Applying Theorem 2.1, inequality (2.10) completes the proof.

Let $B, C \in M_{n}(C)$. Then $[B, C]=B C-C B$ is called a commutator and $[B, C]_{H}=B H C-C H B$ is called a commutator with respect to H. The matrices B and C are said to commute with respect to H iff $[B, C]_{H}=0 .\|X\|_{F}$ is the Frobenius norm.

Corollary 2.4. Let A and \tilde{A} be H^{+}-normal matrices. If A and \tilde{A} commute with respect to H, then

$$
\begin{equation*}
\rho(H)^{-1}\left\|\left|I \circ Z_{1}\right|\right\| \leq\||A-\tilde{A}|\| \leq \rho\left(H^{-1}\right)\left\|\left|I \circ Z_{1}\right|\right\|, \tag{2.11}
\end{equation*}
$$

where I is the identity matrix, and Z_{1} is defined in Eq.(2.4).
Proof. $[A, \tilde{A}]_{H}=0$ if and only if there exists a nonsingular matrix P, such that $A=P \Lambda P^{*}$ and $\tilde{A}=P \tilde{\Lambda} P^{*}$, where $Q=P^{-1} P=I$ (see [17, Theorem 3] and Theorem 2.1). So Q is taken as the identity matrix I in Theorem 2.1, hence Eq. (2.11) holds.

Applying Corollary 2.3 and Corollary 2.4 , we have

Corollary 2.5. Let the hypotheses of Corollary 2.3 hold. Moreover if matrices A and \tilde{A} commute with respect to $H(A)^{-1}$, then

$$
\begin{equation*}
h_{n}\left\|\left|I \circ Z_{1}\right|\right\| \leq\||A-\tilde{A}|\| \leq h_{1}\left\|\left|I \circ Z_{1}\right|\right\| \tag{2.12}
\end{equation*}
$$

where $h_{1}=\max _{1 \leq i \leq n} \lambda_{i}(H(A)), h_{n}=\min _{1 \leq i \leq n} \lambda_{i}(H(A))$ and Z_{1} is defined in Eq.(2.4).

In the following, we shall study how generalized eigenvalues of a generalized normal matrix A change when it is perturbed to $\tilde{A}=D^{*} A D$, where D is a nonsingular matrix. The p-relative distance between $\alpha, \tilde{\alpha} \in C$ is defined as

$$
\begin{equation*}
\varrho_{p}(\alpha, \tilde{\alpha})=\frac{|\alpha-\tilde{\alpha}|}{\sqrt[p]{|\alpha|^{p}+|\tilde{\alpha}|^{p}}} \text { for } 1 \leq p \leq \infty \tag{2.13}
\end{equation*}
$$

Theorem 2.6. Suppose A and \tilde{A} are H^{+}-normal matrices and $\tilde{A}=D^{*} A D$, where D is nonsingular. Let A and \tilde{A} have generalized eigen-decomposition (2.1). Then there is a permutation τ of $\{1,2, \ldots, n\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\varrho_{2}\left(\lambda_{i}, \tilde{\lambda}_{\tau(i)}\right)\right]^{2} \leq c\left(\|I-D\|_{F}^{2}+\left\|D^{-*}-I\right\|_{F}^{2}\right) \tag{2.14}
\end{equation*}
$$

where $c=\max _{1 \leq i \leq n} \lambda_{i}(H) / \min _{1 \leq i \leq n} \lambda_{i}(H)$.
Proof. Notice that

$$
A-\tilde{A}=A-D^{*} A D=A(I-D)+\left(D^{-*}-I\right) \tilde{A}
$$

Pre- and postmultiply the equations by P^{-1} and \tilde{P}^{-*} respectively, to get

$$
\begin{equation*}
\Lambda P^{*} \tilde{P}^{-*}-P^{-1} \tilde{P} \tilde{\Lambda}=\Lambda P^{*}(I-D) \tilde{P}^{-*}+P^{-1}\left(D^{-*}-I\right) \tilde{P} \tilde{\Lambda} \tag{2.15}
\end{equation*}
$$

Set $Q=P^{-1} \tilde{P}=\left(q_{i j}\right)$, then Q is unitary and $Q=P^{*} \tilde{P}^{-*}$. Let

$$
\begin{equation*}
E=P^{*}(I-D) \tilde{P}^{-*}=\left(e_{i j}\right), \tilde{E}=P^{-1}\left(D^{-*}-I\right) \tilde{P}=\left(\tilde{e}_{i j}\right) \tag{2.16}
\end{equation*}
$$

Then (2.15) implies that $\Lambda Q-Q \tilde{\Lambda}=\Lambda E+\tilde{E} \tilde{\Lambda}$ or componentwise $\lambda_{i} q_{i j}-$ $q_{i j} \tilde{\lambda}_{j}=\lambda_{i} e_{i j}+\tilde{e}_{i j} \tilde{\lambda}_{j}$, so

$$
\left|\left(\lambda_{i}-\tilde{\lambda}_{j}\right) q_{i j}\right|^{2}=\left|\lambda_{i} e_{i j}+\tilde{e}_{i j} \tilde{\lambda}_{j}\right|^{2} \leq\left(\left|\lambda_{i}\right|^{2}+\left|\tilde{\lambda}_{j}\right|^{2}\right)\left(\left|e_{i j}\right|^{2}+\left|\tilde{e}_{i j}\right|^{2}\right)
$$

which yields $\left[\varrho_{2}\left(\lambda_{i}, \tilde{\lambda}_{j}\right)\right]^{2}\left|q_{i j}\right|^{2} \leq\left|e_{i j}\right|^{2}+\left|\tilde{e}_{i j}\right|^{2}$. Hence

$$
\begin{aligned}
& \sum_{i, j=1}^{n}\left[\varrho_{2}\left(\lambda_{i}, \tilde{\lambda}_{j}\right)\right]^{2}\left|q_{i j}\right|^{2} \\
& \leq\left\|P^{*}(I-D) \tilde{P}^{-*}\right\|_{F}^{2}+\left\|P^{-1}\left(D^{-*}-I\right) \tilde{P}\right\|_{F}^{2} \\
& \leq\left\|P^{*}\right\|_{2}^{2}\|I-D\|_{F}^{2}\left\|\tilde{P}^{-*}\right\|_{2}^{2}+\left\|P^{-1}\right\|_{2}^{2}\left\|D^{-*}-I\right\|_{F}^{2}\|\tilde{P}\|_{2}^{2}
\end{aligned}
$$

Notice that

$$
\left\|P^{*}\right\|_{2}^{2}=\max _{1 \leq i \leq n} \lambda_{i}(H) \quad \text { and } \quad\left\|P^{-1}\right\|_{2}^{2}=\left(\min _{1 \leq i \leq n} \lambda_{i}(H)\right)^{-1}
$$

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

Go Back
Close
Quit
Page 10 of 15
by $\sigma\left(P P^{*}\right)=\sigma\left(P^{*} P\right)=\sigma(H)$. Similarly, we have $\|\tilde{P}\|_{2}^{2}=\max _{1 \leq i \leq n} \lambda_{i}(H)$ and

$$
\left\|\tilde{P}^{-*}\right\|_{2}^{2}=\max _{1 \leq i \leq n} \lambda_{i}\left(H^{-1}\right)=\left(\min _{1 \leq i \leq n} \lambda_{i}(H)\right)^{-1}
$$

So

$$
\sum_{i, j=1}^{n}\left[\varrho_{2}\left(\lambda_{i}, \tilde{\lambda}_{j}\right)\right]^{2}\left|q_{i j}\right|^{2} \leq c\left(\|I-D\|_{F}^{2}+\left\|D^{-*}-I\right\|_{F}^{2}\right)
$$

where $c=\max _{1 \leq i \leq n} \lambda_{i}(H) / \min _{1 \leq i \leq n} \lambda_{i}(H)$.
The matrix $\left(\left|q_{i j}\right|^{2}\right)_{n \times n}$ is a doubly stochastic matrix. The above inequality and [9, Lemma 5.1] imply inequality (2.14).

If A and \tilde{A} are normal matrices, then they are generalized normal matrices with respect to H and $H=I$. Applying Theorem 2.6, it is easy to get
Corollary 2.7. If $A, \tilde{A} \in M_{n}(C)$ are normal matrices with $A=U \Lambda U^{*}$ and $\tilde{A}=\tilde{U} \tilde{\Lambda} \tilde{U}^{*}$ where both U and \tilde{U} are unitary, and $\tilde{A}=D^{*} A D$, where D is nonsingular, then

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\varrho_{2}\left(\lambda_{i}, \tilde{\lambda}_{\tau(i)}\right)\right]^{2} \leq\|I-D\|_{F}^{2}+\left\|D^{-*}-I\right\|_{F}^{2} \tag{2.17}
\end{equation*}
$$

Corollary 2.8. Let $A=H(A)+K(A)$ and $\tilde{A}=H(\tilde{A})+K(\tilde{A})$ be positive definite matrices with generalized eigen-decomposition (2.1), and $\tilde{A}=D^{*} A D$, where D is nonsingular. If $Q=P^{-1} \tilde{P}$ is unitary, then

$$
\begin{equation*}
\sum_{i,=1}^{n}\left[\varrho_{2}\left(\lambda_{i}, \tilde{\lambda}_{\tau(i)}\right)\right]^{2} \leq c\left(\|I-D\|_{F}^{2}+\left\|D^{-*}-I\right\|_{F}^{2}\right) \tag{2.18}
\end{equation*}
$$

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

Go Back
Close
Quit
Page 11 of 15
J. Ineq. Pure and Appl. Math. 7(3) Art. 116, 2006 http://jipam.vu.edu.au
where $c=\max _{1 \leq i \leq n} \lambda_{i}(H(A)) / \min _{1 \leq i \leq n} \lambda_{i}(H(A))$.
Proof. By the proof of Corollary 2.3, A and \tilde{A} are generalized normal matrices with respect to $H(A)^{-1}$, and
$\max _{1 \leq i \leq n} \lambda_{i}\left(H(A)^{-1}\right) / \min _{1 \leq i \leq n} \lambda_{i}\left(H(A)^{-1}\right)=\max _{1 \leq i \leq n} \lambda_{i}(H(A)) / \min _{1 \leq i \leq n} \lambda_{i}(H(A))$.
Inequality (2.18) is proved by Theorem 2.6.

References

[1] T. ANDO, R.A. HORN AND C.R. JOHNSON, The singular values of a Hadamard product: a basic inequality, Linear and Multilinear Algebra, 87 (1987), 345-365.
[2] S.C. EISENSTAT AND I.C.F. IPSEN, Three absolute perturbation bounds for matrix eigenvalues imply relative bounds, SIAM J. Matrix Anal. Appl., 20 (1999).
[3] F. HIAI AND X. ZHAN, Inequalities involving unitarily invariant norms and operator monotone functions, Linear Algebra Appl., 341 (2002), 151169.
[4] J.A. HOLBROOK, Spectral variation of normal matrices, Linear Algebra Appl., 174 (1992), 131-144.
[5] R.A. HORN and C.R. JOHNSON, Matrix Analysis, Cambridge University Press, 1985.
[6] C.R. JOHNSON, Positive definite matrices, Amer. Math. Monthly, 77 (1970), 259-264.
[7] REN-CANG LI, Spectral variations and Hadamard products: Some problems, Linear Algebra Appl., 278 (1998), 317-326.
[8] C.-K. LI And R. MATHIAS, On the Lidskii-Mirsky-Wielandt theorem, Manuscript, Department of Mathematics, College of William and Mary, 1996.

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

Go Back
Close
Quit
Page 13 of 15
J. Ineq. Pure and Appl. Math. 7(3) Art. 116, 2006 http://jipam.vu.edu.au
[9] REN-CANG LI, Relative perturbation theory: (1) eigenvalue and singular value variations, Technical Report UCB// CSD-94-855, Computer Science Division, Department of EECS, University of California at Berkeley, 1994. Also LAPACK working notes 85 (revised January 1996, available at http://www..netlib.org/lapack/lawns/lawn84.ps).
[10] REN-CANG LI, Spectral varitions and Hadamard products: Some problems, Linear Algebra Appl., 278 (1998), 317-326.
[11] V.B. LIDSKII, The Proper values of the sum and product of symmetric matrices, Dokl. Akad. Nauk SSSR, 75 (1950), 769-772. [In Russian, Translation by C. Benster, available from the National Translation Center of the Library of Congress.]
[12] R. MATHIAS, The singular values of the Hadamard product of a positive semidefinite and a skewsymmetric matrix, Linear and Multilinear Algebra, 31 (1992), 57-70.
[13] L. MIRSKY, Symmetric gauge functions and unitarily invariant norms, Quart. J. Math., 11 (1960), 50-59.
[14] J.-G. SUN, On the variation the spectrum of a normal matrix, Linear Algebra Appl., 246 (1996), 215-223.
[15] N. TRAUHAR AND I. SLAPNICAR, Relative perturbation bound for invariant subspaces of graded indefinite Hermitian matrices, Linear Algebra Appl., 301 (1999), 171-185.

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 14 of 15
J. Ineq. Pure and Appl. Math. 7(3) Art. 116, 2006 http://jipam.vu.edu.au
[16] H. WEYL, Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differential-gleichungen (mit einer anwen dung auf die theorie der hohlraumstrahlung), Math. Ann., 71 (1912), 441-479.
[17] SHILIN ZHAN, The equivalent conditions of a generalized normal matrix, JP Jour. Algebra, Number Theory and Appl., 4(3) (2004), 605-619.
[18] SHILIN ZHAN, Generalized normal operator and generalized normal matrix on the Euclidean Space, Pure Appl. Math., 18 (2002), 74-78.
[19] SHILIN ZHAN AND YANGMING LI, The generalized normal Matrices, JP Jour. Algebra, Number Theory and Appl., 3(3) (2003), 415-428.
[20] X. ZHAN, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl., 20 (1998), 466-470.
[21] X. ZHAN, Inequalities involving Hadamard products and unitarily invariant norms, Adv. Math. (China), 27 (1998), 416-422.

Some Inequalities for Spectral Variations

Shilin Zhan

Title Page
Contents

Go Back
Close
Quit
Page 15 of 15

