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Abstract

Over the last couple of decades, significant progress for the spectral variation
of a matrix has been made in partially extending the classical Weyl and Lidskii
theory [11, 7] to normal matrices and even to diagonalizable matrices for exam-
ple. Recently these theories have been established for relative perturbations.
In this paper, we shall establish relative perturbation theorems for generalized
normal matrix. Some well-known perturbation theorems for normal matrix are
extended. As applying, some perturbation theorems for positive definite matrix
(possibly non-Hermitian) are established.

2000 Mathematics Subject Classification: 15A18, 15A42, 65F15.
Key words: Spectral variation; Unitarily invariant norm; Hadamard product; Relative

perturbation theorem.
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1. Introduction
The set of allλ ∈ C that are eigenvalues ofA ∈ Mn(C) is called the spectrum
of A and is denoted byσ(A). The spectral radius ofA is the nonnegative real
numberρ(A) = max{|λ| : λ ∈ σ(A)}. We shall use‖|·|‖ to denote a unitar-
ily invariant norm (see [5, 9, 13, 3, 20, 21]). ‖X‖2, the largest singular value
of X, is a frequently used unitarily invariant norm. LetX ◦ Y = (xijyij) be
the Hadamard product ofX = (xij) andY = (yij). A matrix A ∈ Mn(C) is
said to be a generalized normal matrix with respect toH (It is called “general-
ized normal matrix” for short) orH+-normal if there exists a positive definite
Hermitian matrixH such thatA∗HA = AHA∗, where “*” denotes the con-
jugate transpose. The definition was given first by [19, 18]. A generalized
normal matrix is a very important kind of matrix which contains two subclasses
of important matrices: normal matrices and positive definite matrices (possibly
non-Hermitian), where a matrixA is called normal ifA∗A = AA∗ and positive
definite ifRe(x∗Ax) > 0 for any non-zerox ∈ Cn (see [5, 6]). In recent years,
the geometric significance, sixty-two equivalent conditions and many properties
have been established for generalized normal matrices in [19, 17, 18]. We have

Lemma 1.1 (see [19]). SupposeA ∈ Mn(C). Then

1. A is a generalized normal matrix with respect toH if and only ifH1/2AH1/2

is normal.

2. A is a generalized normal matrix with respect toH if and only if there
exists a nonsingular matrixP such thatH = (PP ∗)−1 and

(1.1) A = PΛP ∗,
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whereΛ = diag(λ1, λ2, . . . , λn). Furthermore,λ1, λ2, . . . , λn aren eigen-
values ofHA.

Remark 1. (1.1) is equivalent toHA = P−∗ΛP ∗ with P−∗ = (P−1)∗, so we
say thatA has generalized eigen-decomposition (1.1), andλ1, λ2, . . . , λn are
the generalized eigenvalues of matrixA.

The spectral variation of a matrix has recently been a very active research
subject in both matrix theory and numerical linear algebra. Over the last cou-
ple of decades significant progress has been made in partially extending the
classical Weyl and Lidskii theory [11, 16] to normal matrices and even to diag-
onalizable matrices for example. This note will show how certain perturbation
problems can be reformulated as simple matrix optimization problems involv-
ing Hadamard products. WhenA and Ã are normal, we have shown one of
many perturbation theorems that can be interpreted as bounding the norms of
Q ◦ Z whereQ is unitary andZ is a special matrix defined by the eigenalues
(see [10]). In this paper, we shall extend the above result, and shall show how
certain perturbation problems can be reformulated as generalized normal ma-
trix optimization problems involving Hadamard products. Also, we study how
generalized eigenvalues of a generalized normal matrixA change when it is per-
turbed toÃ = D∗AD, whereD is a nonsingular matrix. As applications, some
perturbation theorems for positive definite matrices (possibly non-Hermitian)
are established.
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2. Main Result
Suppose thatA andÃ are generalized normal matrices with respect to a com-
mon positive definite matrixH, and have generalized eigen-decompositions

(2.1) A = PΛP ∗ and Ã = P̃ Λ̃P̃ ∗,

where

(2.2) Λ = diag(λ1, λ2, . . . , λn) and Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n)

andλi are the generalized eigenvalues ofA, andλ̃i are the generalized eigen-
values ofÃ (i = 1, 2, . . . , n).

NoticeH = (PP ∗)−1 andH = (P̃ P̃ ∗)−1, so(P−1P̃ )∗(P−1P̃ ) = P̃ ∗HP̃ =
I, thenQ = P−1P̃ is unitary and

(2.3) P̃ = PQ

Define

(2.4) Z1 =
(
λi − λ̃j

)n

i,j=1
.

We have the following result.

Theorem 2.1. SupposeA and Ã are H+-normal with generalized eigen-
decomposition (2.1), Then

(2.5) ρ(H)−1 ‖|Q ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ ρ(H−1) ‖|Q ◦ Z1|‖ ,

whereQ = P−1P̃ is unitary andZ1 is defined in Eq.(2.4).
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Proof. ForA andÃ having generalized eigen-decomposition (2.1), noticing that
P̃ = PQ, whereQ = P−1P̃ is unitary,‖|WY |‖ ≤ ‖W‖2 ‖|Y |‖ and‖|Y Z|‖ ≤
‖|Y |‖ ‖Z‖2 (see [9, p. 961]), we have∥∥∥∣∣∣PΛP ∗ − PQΛ̃Q∗P ∗

∣∣∣∥∥∥ ≤ ‖P‖2

∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥ ‖P ∗‖2 ,

then ∥∥∥∣∣∣A− Ã
∣∣∣∥∥∥ ≤

∥∥H−1
∥∥

2

∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥ .

Since ∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥ =

∥∥∥∣∣∣ΛQ−QΛ̃
∣∣∣∥∥∥ = ‖|Q ◦ Z1|‖

and‖H−1‖2 = ρ(H−1),

(2.6)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ ρ(H−1) ‖|Q ◦ Z1|‖ .

On the other hand, we have∥∥P−1
∥∥

2

∥∥∥∣∣∣PΛP ∗ − PQΛ̃Q∗P ∗
∣∣∣∥∥∥ ∥∥P−∗∥∥

2
≥

∥∥∥∣∣∣Λ−QΛ̃Q∗
∣∣∣∥∥∥

= ‖|Q ◦ Z1|‖ .

Similarly for H = (PP ∗)−1 and‖P−1‖2 = ‖P−∗‖2 =
√

ρ(H), we obtain

ρ(H)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≥ ‖|Q ◦ Z1|‖ ,

hence

(2.7)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≥ ρ(H)−1 ‖|Q ◦ Z1|‖ .

The inequality (2.5) completes the proof by inequalities (2.6) and (2.7).
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In particular, ifH = I is the identity matrix, thenH+-normal matricesA
andÃ are normal matrices, henceA andÃ have eigen-decomposition

(2.8) A = UΛU∗ and Ã = Ũ Λ̃Ũ∗,

whereU andŨ are unitary, and

Λ = diag(λ1, λ2, . . . , λn), Λ̃ = diag(λ̃1, λ̃2, . . . , λ̃n).

By Theorem2.1, we have

Corollary 2.2 (see [10]). If A andÃ are normal matrices, then

(2.9)
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ = ‖|Q ◦ Z1|‖ ,

whereQ = U∗Ũ andZ1 =
(
λi − λ̃j

)n

i,j=1
.

We denote the Cartesian decompositionX = H(X)+K(X), whereH(X) =
1
2
(X + X∗), andK(X) = 1

2
(X − X∗). Let σ (H (A)) = {h1, h2, . . . , hn} be

ordered so thath1 ≥ h2 ≥ · · · ≥ hn. Then we have some perturbation theorems
for positie definite matrices which are discussed as follows.

Corollary 2.3. If A = H(A) + K(A) and Ã = H(Ã) + K(Ã) are positive
definite with generalized eigen-decomposition (2.1), andQ = P−1P̃ is unitary,
then

(2.10) hn ‖|Q ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ h1 ‖|Q ◦ Z1|‖ ,

whereZ1 is defined in Eq.(2.4).
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Proof. SinceQ = P−1P̃ is unitary,H(A) = H(Ã). It is easy to see that

A∗H(A)−1A = AH(A)−1A∗

and
Ã∗H(Ã)−1Ã = ÃH(Ã)−1Ã∗.

So A and Ã are generalized normal matrices with respect toH(A)−1. It is
easy to see thatρ(H(A)−1)−1 = hn, ρ(H(A)) = h1. Applying Theorem2.1,
inequality (2.10) completes the proof.

Let B, C ∈ Mn(C). Then [B, C] = BC − CB is called a commutator
and[B, C]H = BHC − CHB is called a commutator with respect toH. The
matricesB andC are said to commute with respect toH iff [B, C]H = 0. ‖X‖F

is the Frobenius norm.

Corollary 2.4. LetA andÃ beH+-normal matrices. IfA andÃ commute with
respect toH, then

(2.11) ρ(H)−1 ‖|I ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ ρ(H−1) ‖|I ◦ Z1|‖ ,

whereI is the identity matrix, andZ1 is defined in Eq.(2.4).

Proof. [A, Ã]H = 0 if and only if there exists a nonsingular matrixP , such that
A = PΛP ∗ andÃ = P Λ̃P ∗, whereQ = P−1P = I (see [17, Theorem 3] and
Theorem2.1). SoQ is taken as the identity matrixI in Theorem2.1, hence Eq.
(2.11) holds.

Applying Corollary2.3and Corollary2.4, we have
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Corollary 2.5. Let the hypotheses of Corollary2.3hold. Moreover if matrices
A andÃ commute with respect toH(A)−1, then

(2.12) hn ‖|I ◦ Z1|‖ ≤
∥∥∥∣∣∣A− Ã

∣∣∣∥∥∥ ≤ h1 ‖|I ◦ Z1|‖ ,

whereh1 = max1≤i≤n λi(H(A)), hn = min1≤i≤n λi(H(A)) andZ1 is defined
in Eq.(2.4).

In the following, we shall study how generalized eigenvalues of a generalized
normal matrixA change when it is perturbed tõA = D∗AD, whereD is a
nonsingular matrix. Thep−relative distance betweenα, α̃ ∈ C is defined as

(2.13) %p (α, α̃) =
|α− α̃|

p
√
|α|p + |α̃|p

for 1 ≤ p ≤ ∞.

Theorem 2.6. SupposeA and Ã are H+-normal matrices andÃ = D∗AD,
whereD is nonsingular. LetA and Ã have generalized eigen-decomposition
(2.1). Then there is a permutationτ of {1, 2, . . . , n} such that

(2.14)
n∑

i=1

[%2(λi, λ̃τ(i))]
2 ≤ c(‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F
)

wherec = max1≤i≤n λi(H)/ min1≤i≤n λi(H).

Proof. Notice that

A− Ã = A−D∗AD = A(I −D) + (D−∗ − I)Ã.
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Pre- and postmultiply the equations byP−1andP̃−∗ respectively, to get

(2.15) ΛP ∗P̃−∗ − P−1P̃ Λ̃ = ΛP ∗(I −D)P̃−∗ + P−1(D−∗ − I)P̃ Λ̃.

SetQ = P−1P̃ = (qij), thenQ is unitary andQ = P ∗P̃−∗. Let

(2.16) E = P ∗(I −D)P̃−∗ = (eij), Ẽ = P−1(D−∗ − I)P̃ = (ẽij).

Then (2.15) implies thatΛQ − QΛ̃ = ΛE + ẼΛ̃ or componentwiseλiqij −
qijλ̃j = λieij + ẽijλ̃j, so∣∣∣(λi − λ̃j)qij

∣∣∣2 =
∣∣∣λieij + ẽijλ̃j

∣∣∣2 ≤ (|λi|2 +
∣∣∣λ̃j

∣∣∣2)(|eij|2 + |ẽij|2),

which yields[%2(λi, λ̃j)]
2 |qij|2 ≤ |eij|2 + |ẽij|2 . Hence

n∑
i,j=1

[%2(λi, λ̃j)]
2 |qij|2

≤
∥∥∥P ∗(I −D)P̃−∗

∥∥∥2

F
+

∥∥∥P−1(D−∗ − I)P̃
∥∥∥2

F

≤ ‖P ∗‖2
2 ‖I −D‖2

F

∥∥∥P̃−∗
∥∥∥2

2
+

∥∥P−1
∥∥2

2

∥∥D−∗ − I
∥∥2

F

∥∥∥P̃
∥∥∥2

2
.

Notice that

‖P ∗‖2
2 = max

1≤i≤n
λi(H) and

∥∥P−1
∥∥2

2
=

(
min

1≤i≤n
λi(H)

)−1
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by σ(PP ∗) = σ(P ∗P ) = σ(H). Similarly, we have
∥∥∥P̃

∥∥∥2

2
= max1≤i≤n λi(H)

and ∥∥∥P̃−∗
∥∥∥2

2
= max1≤i≤nλi(H

−1) =

(
min

1≤i≤n
λi(H)

)−1

,

so
n∑

i,j=1

[
%2

(
λi, λ̃j

)]2

|qij|2 ≤ c
(
‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F

)
,

wherec = max1≤i≤n λi(H)/min1≤i≤nλi(H).
The matrix

(
|qij|2

)
n×n

is a doubly stochastic matrix. The above inequality
and [9, Lemma 5.1] imply inequality (2.14).

If A andÃ are normal matrices, then they are generalized normal matrices
with respect toH andH = I. Applying Theorem2.6, it is easy to get

Corollary 2.7. If A, Ã ∈ Mn(C) are normal matrices withA = UΛU∗ and
Ã = Ũ Λ̃Ũ∗ where bothU and Ũ are unitary, andÃ = D∗AD, whereD is
nonsingular, then

(2.17)
n∑

i=1

[%2(λi, λ̃τ(i))]
2 ≤ ‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F
.

Corollary 2.8. Let A = H(A) + K(A) and Ã = H(Ã) + K(Ã) be positive
definite matrices with generalized eigen-decomposition (2.1), andÃ = D∗AD,
whereD is nonsingular. IfQ = P−1P̃ is unitary, then

(2.18)
n∑

i,=1

[
%2

(
λi, λ̃τ(i)

)]2

≤ c
(
‖I −D‖2

F +
∥∥D−∗ − I

∥∥2

F

)
,
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wherec = max 1≤i≤nλi(H(A))/ min 1≤i≤nλi(H(A)).

Proof. By the proof of Corollary2.3, A andÃ are generalized normal matrices
with respect toH(A)−1, and

max
1≤i≤n

λi(H(A)−1)/ min
1≤i≤n

λi(H(A)−1) = max
1≤i≤n

λi(H(A))/min1≤i≤nλi(H(A)).

Inequality (2.18) is proved by Theorem2.6.
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