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ABSTRACT. The Implicit Function Theorem asserts that there exists a ball of nonzero radius
within which one can express a certain subset of variables, in a system of analytic equations, as
analytic functions of the remaining variables. We derive a nontrivial lower bound on the radius
of such a ball. To the best of our knowledge, our result is the first bound on the domain of validity
of the Implicit Function Theorem.
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1. THE SIZE OF THE ANALYTIC DOMAIN

TheImplicit Function Theoremis one of the fundamental theorems in multi-variable analysis
[1, 4, 5, 6, 7]. It asserts thatif ϕi(x, z) = 0, i = 1, . . . ,m, x ∈ Cn, z ∈ Cm are complex analytic

functions in a neighborhood of a point(x(0), z(0)) and J
(
ϕ1,...,ϕm

z1,...,zm

)∣∣∣
(x(0),z(0))

6= 0, whereJ is

the Jacobian determinant, then there exists anε > 0 and analytic functionsg1(x), . . . , gm(x)
defined in the domainD = {x | ‖x−x(0)‖ < ε} such thatϕi(x, g1(x), . . . , gm(x)) = 0, for i =
1, . . . ,m in D. Besides its central role in analysis the theorem also plays an important role
in multi-dimensional nonlinear optimization algorithms [2, 3, 8, 9]. Surprisingly, despite its
overarching importance and widespread use, a nontrivial lower bound on the size of the domain
D has not been reported in the literature and in this note, we present the first lower bound on the
size ofD. The bound is derived in two steps. First we use Roche’s Theorem to derive a lower
bound for the case of one dependent variable –i.e.,m = 1 – and then extend the result to the
general case.
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Theorem 1.1. Letϕ(x, z) be an analytic function ofn+ 1 complex variables,x ∈ Cn, z ∈ C

at (0, 0). Let ∂ϕ(0,0)
∂z

= a 6= 0, and let|ϕ(0, z)| ≤ M onB whereB = {(x, z)| ‖(x, z)‖ ≤ R}.
Thenz = g(x) is an analytic function ofx in the ball

‖x‖ ≤ Θ1(M,a,R;ϕ) :=
1

M

(
|a| r − Mr2

R2 − rR

)
, where r = min

(
R
2
, |a|R

2

2M

)
.

Proof. Sinceϕ(x, z) is an analytic function of complex variables, by the Implicit Function
Theoremz = g(x) is an analytic function in a neighborhoodU of (0, 0). To find the domain
of analyticity of g we first find a numberr > 0 such thatϕ(0, z) has (0,0) as its unique zero
in the disc{(0, z) : |z| ≤ r}. Then we will find a numbers > 0 so thatϕ(x, z) has a unique
zero(x, g(x)) in the disc{(x, z) : |z| ≤ r} for |x| ≤ s with the help of Roche’s theorem. Then
we show that in the domain{x :‖ x ‖≤ s} the implicit functionz = g(x) is well defined and
analytic.

Note that if we expand the Taylor series of the functionϕ with respect to the variablez, we
get

ϕ(0, z) =
∂ϕ(0, 0)

∂z
z +

∞∑
j=2

∂jϕ(0,0)
∂zj zj

j!
.

Let us assume that|∂ϕ(0,0)
∂z

| = a > 0. |ϕ(0, z)| ≤M onB whereB = {(x, z) :‖ (x, z) ‖≤ R} .
Then by Cauchy’s estimate, we have∣∣∣∣∣ ∂

jϕ(0,0)
∂zj zj

j!

∣∣∣∣∣ ≤ |z|j

Rj
M.

This implies that

|ϕ(0, z)| ≥ |a| · |z| −
∞∑
j=2

M

(
|z|
R

)j

= |a| · |z| − M |z|2

R2 − |z|R
.(1.1)

Since our goal is to have|ϕ(0, z)| > 0, it is sufficient to have|a| · |z| − M |z|2
R2−|z|R > 0. Dividing

both sides by|z| we get

|a| > M |z|
R2 − |z|R

⇐⇒ |a|(R2 − |z|R)−M |z| > 0 ⇐⇒ |z|(|a|R +M) < |a|R2

⇐⇒ |z| < |a|R2

|a|R +M
=

R

1 + M
|a|R

.

We next choose

r = min

(
R

1+1
, R

M
|a|R + M

|a|R

)
= min

(
R
2
, |a|R

2

2M

)
.

To computes we need Roche’s Theorem.

Theorem 1.2(Roche’s Theorem). [1] Let h1 andh2 be analytic on the open setU ⊂ C, with
neitherh1 nor h2 identically0 on any component ofU . Letγ be a closed path inU such that
the winding numbern(γ, z) = 0, ∀z /∈ U . Suppose that

|h1(z)− h2(z)| < |h2(z)|, ∀z ∈ γ.
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Thenn(h1 ◦ γ, 0) = n(h1 ◦ γ, 0). Thush1 and h2 have the same number of zeros insideγ,
counting multiplicity and index.

Let h1(z) := ϕ(0, z), andh2 := ϕ(x, z). We can treatx as a parameter, so our goal is to find
s > 0 such that if|x| < s, then

|ϕ(0, z)− ϕ(x, z)| < |ϕ(0, z)|, ∀z ∈ γ,
whereγ = {z : |z| = r}. We know|ϕ(0, z) − ϕ(x, z)| < Ms if γ ⊂ B and we also have
|ϕ(0, z)| > |a| · |z| − M |z|2

R2−|z|R from (1.1). It is sufficient to have

Ms < |a| · |z| − M |z|2

R2 − |z|R
.

Onγ, we know|z| = r, and therefore as long as

s <
1

M

(
|a|r − Mr2

R2 − rR

)
,

we can apply the Roche’s theorem and guarantee that the functionϕ(x, z) has a unique zero,
call it g(x). That is,ϕ(x, g(x)) = 0 andg(x) is hence a well defined function ofx.

Note that in Roche’s theorem, the number of zeros includes the multiplicity and index. There-
fore all the zeros we get are simple zeros since(0, 0) is a simple zero forϕ(0, z). This is because
ϕ(0, 0) = 0 andϕz(0, 0) 6= 0. Hence we can conclude that for anyx such that|x| < s, we can
find a uniqueg(x) so thatϕ(x, g(x)) = 0 andϕz(x, g(x)) 6= 0. �

We use Theorem 1.1 to derive a lower bound form ≥ 1 below. Letϕi(x, z) = 0, i =
1, . . . ,m, x ∈ Cn, z ∈ Cm be analytic functions at (x(0), z(0)). Let

Jm(x(0), z(0)) :=

∣∣∣∣∣∣∣∣
∂ϕ1(x(0),z(0))

∂z1
· · · ∂ϕ1(x(0),z(0))

∂zm
...

...
∂ϕm(x(0),z(0))

∂z1
· · · ∂ϕm(x(0),z(0))

∂zm

∣∣∣∣∣∣∣∣ = am 6= 0(1.2)

and let ∣∣ϕi(x(0), z1, . . . , zm)
∣∣ ≤M, for i = 1, . . . ,m(1.3)

on

B = {(x, z1, . . . , zm) | ‖(x, z)− (x(0), z(0))‖ ≤ R}.(1.4)

SinceJm(x(0), z(0)) 6= 0, some(m− 1)× (m− 1) sub-determinant in the matrix corresponding
to Jm(x(0), z(0)) must be nonzero. Without loss of generality, we may assume that

Jm−1(x
(0), z(0)) :=

∣∣∣∣∣∣∣∣
∂ϕ2(x(0),z(0))

∂z2
· · · ∂ϕ2(x(0),z(0))

∂zm
...

...
∂ϕm(x(0),z(0))

∂z2
· · · ∂ϕm(x(0),z(0))

∂zm

∣∣∣∣∣∣∣∣(1.5)

= am−1 6= 0.

By induction we conclude that there exist analytic functionsψ2(x, z1), . . . , ψm(x, z1) and that
we can compute aΘm−1(x

(0), z
(0)
1 ;ϕ2, . . . , ϕm) > 0 such that

ϕi(x, z1, ψ2(x, z1), . . . , ψm(x, z1)) = 0, i = 2, . . . ,m

in
Dn+1 := {(x, z1) | ‖(x, z1)− (x(0), z

(0)
1 )‖ ≤ Θm−1(x

(0), z
(0)
1 ;ϕ2, . . . , ϕm)}.
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Define

Γ(x, z1) := ϕ1(x, z1, ψ2(x, z1), . . . , ψm(x, z1)).(1.6)

Then we have

∂Γ

∂z1

=
∂ϕ1

∂z1

+
m∑
i=2

∂ϕ1

∂zi
· ∂ψi
∂z1

.(1.7)

Sinceϕ2(x, z1, ψ2, . . . , ψm) = 0, . . . , ϕm(x, z1, ψ2, . . . , ψm) = 0 in Dn+1, differentiating with
respect toz1 we have

∂ϕi
∂z1

=
∂ϕi
∂z1

+
m∑
j=2

∂ϕi
∂zj

· ∂ψj
∂z1

= 0; i = 2, . . . ,m

or in other words 
∂ϕ2

∂z2
· · · ∂ϕ2

∂zm
...

...
∂ϕm

∂z2
· · · ∂ϕm

∂zm




∂ψ2

∂z1
...

∂ψm

∂z1

 = −


∂ϕ2

∂z1
...

∂ϕm

∂z1

 .(1.8)

Using Cramer’s rule and (1.8) we have

(1.9)
∂ψi
∂z1

= −

∣∣∣∣∣∣∣
∂ϕ2

∂z2
· · · ∂ϕ2

∂zi−1

∂ϕ2

∂z1

∂ϕ2

∂zi+1
· · · ∂ϕ2

∂zm

...
...

...
...

...
∂ϕm

∂z2
· · · ∂ϕm

∂zi−1

∂ϕm

∂z1

∂ϕm

∂zi+1
· · · ∂ϕm

∂zm

∣∣∣∣∣∣∣
Jm−1

; i = 2, . . . ,m.

Substituting (1.9) into (1.7) and simplifying we get

∂Γ(x(0), z
(0)
1 )

∂z1

=

∣∣∣∣∣∣∣∣
∂ϕ1(x(0),z(0))

∂z1
· · · ∂ϕ1(x(0),z(0))

∂zm
...

...
∂ϕm(x(0),z(0))

∂z1
· · · ∂ϕm(x(0),z(0))

∂zm

∣∣∣∣∣∣∣∣
Jm−1(x(0), z(0))

=
Jm(x(0), z(0))

Jm−1(x(0), z(0))
=

am
am−1

6= 0.

Therefore we can apply Theorem 1.1 toΓ(x, z1) and conclude that there exists an implicit
functionz1 = g1(x) in

Dn :=

{
x ∈ Cn

∣∣‖x− x(0)‖

≤ Θ1

(
M,

am
am−1

,min
(
R,Θm−1(x

(0), z
(0)
1 ;ϕ2, . . . , ϕm)

)
;ϕ1

)}
such that inDn,ϕi(x, g1(x), g2(x), . . . , gm(x)) = 0, i = 1, . . . ,mwheregj(x) := ψj(x, g1(x)),

j = 2, . . . ,m.
In summary, the sought lower bound on the size of the analytic domain of implicit functions

is expressed recursively as

(1.10) Θm(x(0), z(0);ϕ1, . . . , ϕm)

= Θ1

(
M,

am
am−1

,min(R,Θm−1(x
(0), z

(0)
1 ;ϕ2, . . . , ϕm));ϕ1

)
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using the definition ofΘ1 in Theorem 1.1 and ofM,am, am−1 andR in equations (1.3), (1.2),
(1.5) and (1.4) respectively.

REFERENCES

[1] R.B. ASH,Complex Variables, Academic Press, 1971.

[2] D.P. BERTSEKAS,Nonlinear Programming, Athena Scientific Press, 1999.

[3] R. FLETCHER,Practical Methods of Optimization, John Wiley and Sons, 2000.

[4] R.C. GUNNING, Introduction to Holomorphic Functions of Several Variables: Function The-
ory, CRC Press, 1990.

[5] L. HORMANDER, Introduction to Complex Analysis in Several Variables,Elsevier Science
Ltd., 1973.

[6] S.G. KRANTZ,Function Theory of Several Complex Variables, Wiley-Interscience, 1982.

[7] R. NARASIMHAN, Several Complex Variables,University of Chicago Press, 1974.

[8] S. NASH AND A. SOFER,Linear and Nonlinear Programming,McGraw-Hill, 1995.

[9] J. NOCEDAL AND S.J. WRIGHT,Numerical Optimization, Springer Verlag, 1999.

J. Inequal. Pure and Appl. Math., 4(1) Art. 12, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/

	1. The Size of the Analytic Domain
	References

