Journal of Inequalities in Pure and Applied Mathematics

THE ANALYTIC DOMAIN IN THE IMPLICIT FUNCTION THEOREM

H.C. CHANG, W. HE, AND N. PRABHU

prabhu@ecn.purdue. edu
School of Industrial Engineering Purdue University
West Lafayette, IN 47907

Received 30 May, 2002; accepted 12 September, 2002
Communicated by H.M. Srivastava

Abstract

The Implicit Function Theorem asserts that there exists a ball of nonzero radius within which one can express a certain subset of variables, in a system of analytic equations, as analytic functions of the remaining variables. We derive a nontrivial lower bound on the radius of such a ball. To the best of our knowledge, our result is the first bound on the domain of validity of the Implicit Function Theorem.

Key words and phrases: Implicit Function Theorem, Analytic Functions.
2000 Mathematics Subject Classification 30E10.

1. The Size of the Analytic Domain

The Implicit Function Theorem is one of the fundamental theorems in multi-variable analysis [1, 4, 5, 6, 7]. It asserts that if $\varphi_{i}(x, z)=0, i=1, \ldots, m, x \in \mathbf{C}^{n}, z \in \mathbf{C}^{m}$ are complex analytic functions in a neighborhood of a point $\left(x^{(0)}, z^{(0)}\right)$ and $\left.\mathbf{J}\left(\frac{\varphi_{1}, \ldots, \varphi_{m}}{z_{1}, \ldots, z_{m}}\right)\right|_{\left(x^{(0)}, z^{(0)}\right)} \neq 0$, where \mathbf{J} is the Jacobian determinant, then there exists an $\epsilon>0$ and analytic functions $g_{1}(x), \ldots, g_{m}(x)$ defined in the domain $\mathbf{D}=\left\{x \mid\left\|x-x^{(0)}\right\|<\epsilon\right\}$ such that $\varphi_{i}\left(x, g_{1}(x), \ldots, g_{m}(x)\right)=0$, for $i=$ $1, \ldots, m$ in \mathbf{D}. Besides its central role in analysis the theorem also plays an important role in multi-dimensional nonlinear optimization algorithms [2, 3, 8, 9]. Surprisingly, despite its overarching importance and widespread use, a nontrivial lower bound on the size of the domain D has not been reported in the literature and in this note, we present the first lower bound on the size of \mathbf{D}. The bound is derived in two steps. First we use Roche's Theorem to derive a lower bound for the case of one dependent variable - i.e., $m=1$ - and then extend the result to the general case.

[^0]Theorem 1.1. Let $\varphi(x, z)$ be an analytic function of $n+1$ complex variables, $x \in \mathbf{C}^{n}, z \in \mathbf{C}$ at $(0,0)$. Let $\frac{\partial \varphi(0,0)}{\partial z}=a \neq 0$, and let $|\varphi(0, z)| \leq M$ on B where $B=\{(x, z) \mid\|(x, z)\| \leq R\}$. Then $z=g(x)$ is an analytic function of x in the ball

$$
\|x\| \leq \Theta_{1}(M, a, R ; \varphi):=\frac{1}{M}\left(|a| r-\frac{M r^{2}}{R^{2}-r R}\right), \quad \text { where } r=\min \left(\frac{R}{2}, \frac{|a| R^{2}}{2 M}\right)
$$

Proof. Since $\varphi(x, z)$ is an analytic function of complex variables, by the Implicit Function Theorem $z=g(x)$ is an analytic function in a neighborhood U of $(0,0)$. To find the domain of analyticity of g we first find a number $r>0$ such that $\varphi(0, z)$ has $(0,0)$ as its unique zero in the disc $\{(0, z):|z| \leq r\}$. Then we will find a number $s>0$ so that $\varphi(x, z)$ has a unique zero $(x, g(x))$ in the disc $\{(x, z):|z| \leq r\}$ for $|x| \leq s$ with the help of Roche's theorem. Then we show that in the domain $\{x:\|x\| \leq s\}$ the implicit function $z=g(x)$ is well defined and analytic.

Note that if we expand the Taylor series of the function φ with respect to the variable z, we get

$$
\varphi(0, z)=\frac{\partial \varphi(0,0)}{\partial z} z+\sum_{j=2}^{\infty} \frac{\frac{\partial^{j} \varphi(0,0)}{\partial z^{j}} z^{j}}{j!}
$$

Let us assume that $\left|\frac{\partial \varphi(0,0)}{\partial z}\right|=a>0 .|\varphi(0, z)| \leq M$ on B where $B=\{(x, z):\|(x, z)\| \leq R\}$. Then by Cauchy's estimate, we have

$$
\left|\frac{\frac{\partial^{j} \varphi(0,0)}{\partial z^{j}} z^{j}}{j!}\right| \leq \frac{|z|^{j}}{R^{j}} M .
$$

This implies that

$$
\begin{align*}
|\varphi(0, z)| & \geq|a| \cdot|z|-\sum_{j=2}^{\infty} M\left(\frac{|z|}{R}\right)^{j} \\
& =|a| \cdot|z|-\frac{M|z|^{2}}{R^{2}-|z| R} . \tag{1.1}
\end{align*}
$$

Since our goal is to have $|\varphi(0, z)|>0$, it is sufficient to have $|a| \cdot|z|-\frac{M|z|^{2}}{R^{2}-|z| R}>0$. Dividing both sides by $|z|$ we get

$$
\begin{aligned}
|a|>\frac{M|z|}{R^{2}-|z| R} & \Longleftrightarrow|a|\left(R^{2}-|z| R\right)-M|z|>0 \Longleftrightarrow|z|(|a| R+M)<|a| R^{2} \\
& \Longleftrightarrow|z|<\frac{|a| R^{2}}{|a| R+M}=\frac{R}{1+\frac{M}{|a| R}} .
\end{aligned}
$$

We next choose

$$
\begin{aligned}
r & =\min \left(\frac{R}{1+1}, \frac{R}{\sqrt{\mu \mid R}+\frac{M}{|a| R}}\right) \\
& =\min \left(\frac{R}{2}, \frac{|a| R^{2}}{2 M}\right) .
\end{aligned}
$$

To compute s we need Roche's Theorem.
Theorem 1.2 (Roche's Theorem). [1] Let h_{1} and h_{2} be analytic on the open set $U \subset C$, with neither h_{1} nor h_{2} identically 0 on any component of U. Let γ be a closed path in U such that the winding number $n(\gamma, z)=0, \forall z \notin U$. Suppose that

$$
\left|h_{1}(z)-h_{2}(z)\right|<\left|h_{2}(z)\right|, \quad \forall z \in \gamma
$$

Then $n\left(h_{1} \circ \gamma, 0\right)=n\left(h_{1} \circ \gamma, 0\right)$. Thus h_{1} and h_{2} have the same number of zeros inside γ, counting multiplicity and index.

Let $h_{1}(z):=\varphi(0, z)$, and $h_{2}:=\varphi(x, z)$. We can treat x as a parameter, so our goal is to find $s>0$ such that if $|x|<s$, then

$$
|\varphi(0, z)-\varphi(x, z)|<|\varphi(0, z)|, \quad \forall z \in \gamma
$$

where $\gamma=\{z:|z|=r\}$. We know $|\varphi(0, z)-\varphi(x, z)|<M s$ if $\gamma \subset B$ and we also have $|\varphi(0, z)|>|a| \cdot|z|-\frac{M|z|^{2}}{R^{2}-|z| R}$ from 1.1\rangle. It is sufficient to have

$$
M s<|a| \cdot|z|-\frac{M|z|^{2}}{R^{2}-|z| R} .
$$

On γ, we know $|z|=r$, and therefore as long as

$$
s<\frac{1}{M}\left(|a| r-\frac{M r^{2}}{R^{2}-r R}\right),
$$

we can apply the Roche's theorem and guarantee that the function $\varphi(x, z)$ has a unique zero, call it $g(x)$. That is, $\varphi(x, g(x))=0$ and $g(x)$ is hence a well defined function of x.

Note that in Roche's theorem, the number of zeros includes the multiplicity and index. Therefore all the zeros we get are simple zeros since $(0,0)$ is a simple zero for $\varphi(0, z)$. This is because $\varphi(0,0)=0$ and $\varphi_{z}(0,0) \neq 0$. Hence we can conclude that for any x such that $|x|<s$, we can find a unique $g(x)$ so that $\varphi(x, g(x))=0$ and $\varphi_{z}(x, g(x)) \neq 0$.

We use Theorem 1.1 to derive a lower bound for $m \geq 1$ below. Let $\varphi_{i}(x, z)=0, i=$ $1, \ldots, m, x \in \mathbf{C}^{n}, z \in \mathbf{C}^{m}$ be analytic functions at $\left(x^{(0)}, z^{(0)}\right)$. Let

$$
J_{m}\left(x^{(0)}, z^{(0)}\right):=\left|\begin{array}{ccc}
\frac{\partial \varphi_{1}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{1}} & \cdots & \frac{\partial \varphi_{1}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{m}} \tag{1.2}\\
\vdots & & \vdots \\
\frac{\partial \varphi_{m}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{1}} & \cdots & \frac{\partial \varphi_{m}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{m}}
\end{array}\right|=a_{m} \neq 0
$$

and let

$$
\begin{equation*}
\left|\varphi_{i}\left(x^{(0)}, z_{1}, \ldots, z_{m}\right)\right| \leq M, \text { for } i=1, \ldots, m \tag{1.3}
\end{equation*}
$$

on

$$
\begin{equation*}
B=\left\{\left(x, z_{1}, \ldots, z_{m}\right) \mid\left\|(x, z)-\left(x^{(0)}, z^{(0)}\right)\right\| \leq R\right\} . \tag{1.4}
\end{equation*}
$$

Since $J_{m}\left(x^{(0)}, z^{(0)}\right) \neq 0$, some $(m-1) \times(m-1)$ sub-determinant in the matrix corresponding to $J_{m}\left(x^{(0)}, z^{(0)}\right)$ must be nonzero. Without loss of generality, we may assume that

$$
\begin{align*}
J_{m-1}\left(x^{(0)}, z^{(0)}\right) & :=\left|\begin{array}{ccc}
\frac{\partial \varphi_{2}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{2}} & \cdots & \frac{\partial \varphi_{2}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{m}} \\
\vdots & & \vdots \\
\frac{\partial \varphi_{m}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{2}} & \cdots & \frac{\partial \varphi_{m}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{m}}
\end{array}\right| \tag{1.5}\\
& =a_{m-1} \neq 0 .
\end{align*}
$$

By induction we conclude that there exist analytic functions $\psi_{2}\left(x, z_{1}\right), \ldots, \psi_{m}\left(x, z_{1}\right)$ and that we can compute a $\Theta_{m-1}\left(x^{(0)}, z_{1}^{(0)} ; \varphi_{2}, \ldots, \varphi_{m}\right)>0$ such that

$$
\varphi_{i}\left(x, z_{1}, \psi_{2}\left(x, z_{1}\right), \ldots, \psi_{m}\left(x, z_{1}\right)\right)=0, \quad i=2, \ldots, m
$$

in

$$
\mathbf{D}_{n+1}:=\left\{\left(x, z_{1}\right) \mid\left\|\left(x, z_{1}\right)-\left(x^{(0)}, z_{1}^{(0)}\right)\right\| \leq \Theta_{m-1}\left(x^{(0)}, z_{1}^{(0)} ; \varphi_{2}, \ldots, \varphi_{m}\right)\right\} .
$$

Define

$$
\begin{equation*}
\Gamma\left(x, z_{1}\right):=\varphi_{1}\left(x, z_{1}, \psi_{2}\left(x, z_{1}\right), \ldots, \psi_{m}\left(x, z_{1}\right)\right) \tag{1.6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\frac{\partial \Gamma}{\partial z_{1}}=\frac{\partial \varphi_{1}}{\partial z_{1}}+\sum_{i=2}^{m} \frac{\partial \varphi_{1}}{\partial z_{i}} \cdot \frac{\partial \psi_{i}}{\partial z_{1}} \tag{1.7}
\end{equation*}
$$

Since $\varphi_{2}\left(x, z_{1}, \psi_{2}, \ldots, \psi_{m}\right)=0, \ldots, \varphi_{m}\left(x, z_{1}, \psi_{2}, \ldots, \psi_{m}\right)=0$ in \mathbf{D}_{n+1}, differentiating with respect to z_{1} we have

$$
\frac{\partial \varphi_{i}}{\partial z_{1}}=\frac{\partial \varphi_{i}}{\partial z_{1}}+\sum_{j=2}^{m} \frac{\partial \varphi_{i}}{\partial z_{j}} \cdot \frac{\partial \psi_{j}}{\partial z_{1}}=0 ; \quad i=2, \ldots, m
$$

or in other words

$$
\left[\begin{array}{ccc}
\frac{\partial \varphi_{2}}{\partial z_{2}} & \cdots & \frac{\partial \varphi_{2}}{\partial z_{m}} \tag{1.8}\\
\vdots & & \vdots \\
\frac{\partial \varphi_{m}}{\partial z_{2}} & \cdots & \frac{\partial \varphi_{m}}{\partial z_{m}}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial \psi_{2}}{\partial z_{1}} \\
\vdots \\
\frac{\partial \psi_{m}}{\partial z_{1}}
\end{array}\right]=-\left[\begin{array}{c}
\frac{\partial \varphi_{2}}{\partial z_{1}} \\
\vdots \\
\frac{\partial \varphi_{m}}{\partial z_{1}}
\end{array}\right] .
$$

Using Cramer's rule and (1.8) we have

$$
\frac{\partial \psi_{i}}{\partial z_{1}}=-\frac{\left|\begin{array}{ccccccc}
\frac{\partial \varphi_{2}}{\partial z_{2}} & \cdots & \frac{\partial \varphi_{2}}{\partial z_{i-1}} & \frac{\partial \varphi_{2}}{\partial z_{1}} & \frac{\partial \varphi_{2}}{\partial z_{i+1}} & \cdots & \frac{\partial \varphi_{2}}{\partial z_{m}} \tag{1.9}\\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
\frac{\partial \varphi_{m}}{\partial z_{2}} & \cdots & \frac{\partial \varphi_{m}}{\partial z_{i-1}} & \frac{\partial \varphi_{m}}{\partial z_{1}} & \frac{\partial \varphi_{m}}{\partial z_{i+1}} & \cdots & \frac{\partial \varphi_{m}}{\partial z_{m}}
\end{array}\right|}{J_{m-1}} ; i=2, \ldots, m .
$$

Substituting (1.9) into (1.7) and simplifying we get

$$
\begin{aligned}
\frac{\partial \Gamma\left(x^{(0)}, z_{1}^{(0)}\right)}{\partial z_{1}} & =\frac{\left|\begin{array}{ccc}
\frac{\partial \varphi_{1}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{1}} & \cdots & \frac{\partial \varphi_{1}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{m}} \\
\vdots & & \vdots \\
\frac{\partial \varphi_{m}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{1}} & \cdots & \frac{\partial \varphi_{m}\left(x^{(0)}, z^{(0)}\right)}{\partial z_{m}}
\end{array}\right|}{J_{m-1}\left(x^{(0)}, z^{(0)}\right)} \\
& =\frac{J_{m}\left(x^{(0)}, z^{(0)}\right)}{J_{m-1}\left(x^{(0)}, z^{(0)}\right)}=\frac{a_{m}}{a_{m-1}} \neq 0 .
\end{aligned}
$$

Therefore we can apply Theorem 1.1 to $\Gamma\left(x, z_{1}\right)$ and conclude that there exists an implicit function $z_{1}=g_{1}(x)$ in
$\mathbf{D}_{n}:=\left\{x \in \mathbf{C}^{n} \mid\left\|x-x^{(0)}\right\|\right.$

$$
\left.\leq \Theta_{1}\left(M, \frac{a_{m}}{a_{m-1}}, \min \left(R, \Theta_{m-1}\left(x^{(0)}, z_{1}^{(0)} ; \varphi_{2}, \ldots, \varphi_{m}\right)\right) ; \varphi_{1}\right)\right\}
$$

such that in $\mathbf{D}_{n}, \varphi_{i}\left(x, g_{1}(x), g_{2}(x), \ldots, g_{m}(x)\right)=0, i=1, \ldots, m$ where $g_{j}(x):=\psi_{j}\left(x, g_{1}(x)\right)$, $j=2, \ldots, m$.

In summary, the sought lower bound on the size of the analytic domain of implicit functions is expressed recursively as

$$
\begin{align*}
\Theta_{m}\left(x^{(0)}, z^{(0)} ; \varphi_{1}, \ldots, \varphi_{m}\right) & \tag{1.10}\\
& =\Theta_{1}\left(M, \frac{a_{m}}{a_{m-1}}, \min \left(R, \Theta_{m-1}\left(x^{(0)}, z_{1}^{(0)} ; \varphi_{2}, \ldots, \varphi_{m}\right)\right) ; \varphi_{1}\right)
\end{align*}
$$

using the definition of Θ_{1} in Theorem 1.1 and of M, a_{m}, a_{m-1} and R in equations (1.3), (1.2), (1.5) and (1.4) respectively.

References

[1] R.B. ASH, Complex Variables, Academic Press, 1971.
[2] D.P. BERTSEKAS, Nonlinear Programming, Athena Scientific Press, 1999.
[3] R. FLETCHER, Practical Methods of Optimization, John Wiley and Sons, 2000.
[4] R.C. GUNNING, Introduction to Holomorphic Functions of Several Variables: Function Theory, CRC Press, 1990.
[5] L. HORMANDER, Introduction to Complex Analysis in Several Variables, Elsevier Science Ltd., 1973.
[6] S.G. KRANTZ, Function Theory of Several Complex Variables, Wiley-Interscience, 1982.
[7] R. NARASIMHAN, Several Complex Variables, University of Chicago Press, 1974.
[8] S. NASH AND A. SOFER, Linear and Nonlinear Programming, McGraw-Hill, 1995.
[9] J. NOCEDAL and S.J. WRIGHT, Numerical Optimization, Springer Verlag, 1999.

[^0]: ISSN (electronic): 1443-5756
 (C) 2003 Victoria University. All rights reserved.

 The first and third authors were supported in part by ONR grant N00014-96-1-0281 and NSF grant 9800053CCR. The second author was supported in part by ONR grant N00014-96-1-0281.

 We would like to acknowledge the help we received from Professors Lempert and Catlin in the proof of Theorem 1.1
 061-02

