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ABSTRACT. The sequence — (;) of real binomial coefficients is studied in two main cases:
a > n andn > a. In the first case a uniform approximation with high accuracy is obtained, in
contrast to DeMoivre-Laplace approximation, which has essentially local character and is good

only forn ~ %. In the second case, for evetyc R \ (NU {—1,0} ), the functionsA(a, m)

g
andB(a,m) are determined, such thdim ;‘EZ;’}& =1,and

m— oo
a
n
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—(a+1)

Ala,m) - (n—a)” T < < B(a,m)-(n—a)

for integersm andn, obeyingn > m > |a|.

1. INTRODUCTION

Binomial coefficients(Z), wherea € R andn € N, occur frequently, for example, in analysis
[11,[13,15], in combinatorics and discrete mathematics and computer scieénce [7, 8, 14], and
in probability [3,[4]. Computing(z) directly by computer is not problematic as long @as
andn stay within reasonable limits. However, for very larger n the computation of binomial
coefficients becomes difficult, even in the case wihandn are positive integers. An interesting
discussion on computing the binomial coefficients in this particular case can be found in [6]. In
this note we are interested in the estimats{fgffor a or n being very large, where € R and

n € N.
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2 VITO LAMPRET

We observe that the sequence— (fL) converges in some cases but in the other cases it
diverges, depending an We want to determine exactly when the sequence of binomial coeffi-
cients does converge, i.e. we wish to show that

(a> B oo, If a< -1

n 0, if a>—-1.

Moreover, we also want to estimate precisely the rate of divergence/convergence of the sequence
of binomial coefficients. For example, we are searching for estimates like

lim
neN

—T

0.436 - (n + )" ! < ’( ) ‘ <0438 (n+ 7)™ *

n

™
(2
valid for n > 9000. In addition, we wish to estimate the binomial coefficiefft for large
a and positive integers < a. It turns out, in this case, that the construction of a binomial
coefficient approximation, based on Taylor’s formula, similar to the treatment in [4, pp. 174-
190], is less accurate than the construction based on the Euler-Maclaurin summation formula.

The latter produces two main resuli$)eorenj 4/landTheorenj 4 2presented on pagep 8 and
[12, respectively.

and

0.983 - (n — 7)™t < < 0.985- (n —m)~ 1),

2. PRELIMINARIES

Fora € R andn € N we define the binomial coefficients(a, n) as

_fa\ a-(a—1)-----(a—n+1)
(2.1) C(a,n) = (n) = o -
1 n—1
=0
a S a—i
(2.3) :a_n-il_Il - for a #n.
Due to [2.2) we have recursion and addition relations, respectively,
a—n
(2.4) Cla,n+1) = T -Cla,n),
(2.5) C(a,n)+C(a,n+1)=C(a+1,n+1).
Substitutingn + 1 = m in (2.4), we obtain the equality
(2.6) mC(a,m)=(a—m+1)C(a,m—1),

which holds for every: € R andm € N, if, in addition, we define&’(a,0) := 1.
From [2.3) we obtain the relation

a—1

— 1 =
C(a,n) :C’(a,m—l)-%~n

i=m

?
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Hence, by|[(2.6),
1 a—i
(2.7) C(a,n) =mC(a,m) (a_n-il;[n : > ,
and, consequently,
. 1 Si—a
(2'8) (j(avn)'_ C‘l) Tn(j(a77n) (71—-@ ;[1; i ) )

valid for integersn andn such that £ n > m > 1.
For anyn € N anda € R, using [2.2), we read the equivalence

(2.9) Cla,n) =0<=a€{0,1,...,n—1}.

We find, using induction andl (2.5), th&fa, n) are positive integers, provided thatndn are
positive integers as well andl,< n < a. Further,C(a,n) = 0 fora € N andn > a.

3. MONOTONY
If C'(a,n) # 0, we have, according td (2.6), the following equivalences
(3.1) |C(a,n+1)| <|C(a,n)| = la—n|<n+le -1<a<2n+1
and
(3.2) |IC(a,n+1)| =|C(a,n)] & ]la—n|=n+1sa=—-10ra=2n+1.

3.1. Referring to[(2.D), we hav€'(0,n) = 0 for every positive integet.

3.2.Considering[(2]2), the equality(—k,n) = (—1)"-C(k+n—1,n) holds for anyk, n € N.
3.3. Letn anda be integers and < n < a. Then, according td (2.9); (3.1), arid (3.2), the
sequencer — |C(a,n)| = C(a,n) strictly increases fon < %* and strictly decreases for
n > %1, while forn = ** the equalityC'(a, n + 1) = C(a, n) holds. This means:

(i) If a is an even positive integer, then the sequenee C(a,n) strictly increases on the
set{1,..., | % |} and strictly decreases op| 2t | ,... a}, where| %! | denotes the
integer part of“:t.

(i) If a is an odd positive integer and > 3, then the sequence — C'(a,n) strictly in-
creasesonthe sét, ..., %1} and strictly decreases offt!, ... a}, whereC (a, %52) =
C (a,%5).

From the considerations above we conclude that

(3.3) max C(a,n) = C (a, |2]),

1<n<a

if the conditions, quoted in this subsection, are satisfied.
3.4. Leta ¢ {—1,0} UN. Then, by[(2.P), alC(a,n) are different from zero. Consequently,
considering[(2/9)] (3]1), and (3.2), we find for the sequenee |C(a, n)| the following result:

() a« < —1 = The sequence strictly increases on the entiré\set
(i) a € (—1,0) U (0,3) = The sequence strictly decreases on the entir&set
(i) a > 3= The sequence strictly increases on the §&t..., | %]} and strictly de-

creases fom > |t |. (Here |z] means the integer part of.) Consequently,
— a+l
(3.4) 132§<|C(a,n)| =[C (a, |*£])].

2

Figureq 3.1l £ 35 illustrate the sequenges |C/(a,n)| for several values of.
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2000 - 2 -
1 000 -----..' 1 . 6 ............. a=_ ?
500 .- " 1.4 7

{020 30 40 50 1. 2~~50—20 60 80

Figure 3.1: The sequences— |C(a,n)|.

0.2° 0.8
' 1 0.75 - 7
0.15 ", N 05 as- L
0.1 - VIS 8
e 0. 65 o
0.05 e 0.6 e
| | .
Figure 3.2: The sequences— |C(a,n)|.
0.02 . 1 0. 004 .
0.015 ° a=— 0.003 - a=-/2
0.01 - 0.002 °
0.005 .. 0.001 .
1 ittt 10 2600...% 40
Figure 3.3: The sequences— |C(a,n)|.
2.5 ° 3 .
2 2.5 -
1.5 a=e 1 %
1 1 .
0.5 ‘ 0.5
1 72 3 4 56 1 2 3 4%

Figure 3.4: The sequences— |C(a,n)|.

4. APPROXIMATING THE BINOMIAL COEFFICIENTS

Concerning the method of approximating binomial coefficients, we consider two main cases:
the case when is very large and < n < a, and the case whemis any real number and
integern > a. The corresponding results for the first and for the second case, respectively, are

presented iMheoreny 4JandTheoren 42pp.[§ and IR.
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. 200
0. 002 .
150 .
a=rr .
0.001! . 100 .
. 50 . a:37T .
® 00 . ° N
5 10 15 20 2 4 6 8 10

Figure 3.5: The sequences— |C(a,n)|.

40 80
30 o a=7 60 . a=8
20 . . 40
10 . . 200 )
) n . . n
2 4 6 8 2 4 6 8

Figure 3.6: The sequences— C/(a,n).

In the caser > 1 andn < a we use the expressioh (2.7), and in the case a, we use
the equation(2]8). In both cases we can obtain for the last factor on the rightjof (2.7) and (2.8),
respectively, some product with all factors positive. Surely, this can be achieved in the first case
by choosing form any positive integer and, in the second case, by selecting any positive integer
m > a. In the sequel we shall see that parameteplays an important role concerning the
accuracy of the obtained approximation; the largeis, the more accurate the approximation
is. Therefore, we demand that at least,> 2 and,m — a > 2, in the first and in the second
case, respectively. However, to computé:, m) directly, using[(2.]7) and (2.8), both and
m — a should not be large.

Since all factors in the above mentioned product are positive, we can use the real logarith-
mic function to transform it into a sum, which could be approximated easily using the Euler-
Maclaurin summation formula[2; 7,9,111,/112]. For example, from [12, p. 117 - items (21a) and
(21b)], settingy = 3, we obtain the Euler-Maclaurin formdifof the third order

4.1) Zf(j) :/”f(x) gz 4 L)+ f() () = fi(m) + R(m, ),

2 12

having the remainder
1 n
(4.2) R(m,n) := p3(m,n) = —g/ Pg(—x)f(3) (x) dx,

wherem andn are integersyn < n, andf € C3[m,n|. P3(x) stands for the third Bernoulli
1-periodic function[[12, p. 114 - items (13) and (14)]

(i) Py(z)=z(z—3%)(x—1) forzel0,1]
(4.3)
(||) P3<l’+1) :Pg(l’) forr e R.

1In 2007 we shall be celebrating the third-centenary of Euler’s birth: April 15, 1707.
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Therefore, due to

(4.4) Py(—z) = P3(1 — x) = —P3(x),
we have, referring td (4.2),
(4.5) R(m,n) = é /m npg(x) O (x) d.

We wish to obtain a better estimate of the remainéeén., n). Indeed, due td (4}3), we have

1 1 1
P+t t2__)t‘:_.
(o)l (-0 = s
Hence, using (4]5), we estimate

@) Rlmn)| < ——= [ /9]

for integersn > m. Moreover, if f*)(z) is a monotonic function, not necessarily keeping its
sign, then, for integers > m:

(i) R(m,n) <0 if f®(x)grows

max |P3(z)| = max
1is

= max
0<z<1 _ % t<

1 — 1
2 ="=12

(4.7)
(i) R(m,n)>0 if fO(z)decreases.

Indeed, substituting = ¢ + ¢, i being an integer, and considering the periodidityi +t) =
P5(t), we have

1

(4.8) / Hng(x) fO(x)de = /0 1/2133(75) fOG ) dt+ /1 /2P3(t) fOG+t)dt.

Additionally, substituting = 1 — 7 and referring to the identity (4.4), we obtain

1 1/2
/Pg( VO + 1) di = —/ Py(r) fO (i + 1 — ) dr.
1/2 0

Therefore, usind (4]8), we find

(4.9) /mnpg( dx—Z/ Pt [fPi+t) - fOi+1-1)]dt.

Because +¢ <i+1—tfort € [0,1], the differencef® (i +¢) — f® (i +1—t), occurring in
(4.9), is non-positive or non- negatweﬁf”( ) grows or decreases, respectively. Byt) > 0
fort € [0, 1], due to [4:B). Hence, all the mtegrands in the right hand side df (4.9) keep their

sign over the entire intervdD, 1], provided thatf¥(z) is monotonous. According t§ (4.5),
this confirms the assertion (4.7).

4.1. Casea > 1, 2 <m < n < a—m. Inthis section we are supposing that the real number
a and the integers: andn satisfy the following conditions:

(4.10) a>1, 2<m<n<a-—-m

Using the logarithmic function we can transform the last produgt in (2.7) into the sum

1nH“;i=Zf<z'>,
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wheref(z) = In “-*. Unfortunately the second and the fourth derivatives of the fungtido
not keep their respective sign fore [m, a — m|, which has some disadvantage for estimating
the remainder in the summation formula. However,

a—1 a—1
H _Hnm—l—n—z

Thus,
(4.11) 1nf[ ot :if 10!
i=m Z i=m " ’
where
a—xT
(4.12) fap(z) == 1In 2 = In(a — z) — In(b — x),
— T
b=m+n,and0) <z < b < a.
We have the derivatives
1 1
(4.13) @) = - + >0

(2)
(4.14) @) =~ e 2
(3) _ 2 2
(4.15) j;ﬁ(aﬁ = "la—ap +_(b-—-z)3 >0
and
), \ _ 6 6
(4.16) fab (x) = _(a — ) + b— ) >0,
for0 <z < a.

Formula [(4.1), applied to the functiofy ,, determines the remainder, denotedg$m, n).
Referring to[(4.6),[(4.14) and (4.]15), we have

1 e)
|Ra<m,n>|sw- | s
- f () = 13 m)

< e fm)

mf((a:ln) +<b—1n>2>
1 —1 1

NG ((a—n) +W)’

that is
1
4.17 Ro(m,n)| < ———.
(4.17) [Ralm )| < e
Moreover, due td (4]7) and (4]16), we have
R,(m,n) <0.
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Therefore, considering (4.1.7), we conclude thatdom andn, as determined by (4.1L0), there
exists some) € [0, 1], depending om, m andn, such that

v

(418) Ra(m, n) = —m,

forn € [m,a —m.
After the remainder has been uniformly estimated, the summation forfnuja (4.1) can be ap-
plied. According to[(4.1]2), we find

n B (b _ x)b—x n B mm<a _ m)a—m
(419) /rn fa,b(x) d.CE = |:hl m} N = h’l ( nn<a — n)afn )
and
(4.20) £ asm) + Fup(n)] = In \/ =z mia=n),
Referring to[(4.1B), and recalling thiat= m + n, defined below (4.12), we have
(4.21) = [ — 1) = 2 <m<a1_ - n<a1_ n>> .

From [4.11) and (4]1), usinf (4]19)—(4.21), we obtain the expression
ra—i (a—m)(a—n) m"(a—m)* ™"
lnil;[n i =hn (\/ m-n n"(a —n)e"

a 1 1
M) (m(a —m) nla— n)) + Ra(m,n).
Consequently, we conclude, according[to](2.7) and {4.18), that the following theorem holds.

Theorem 4.1. For any integersm and n, obeying condition(4.10) there exists somé =
Y(a,m,n) € [0, 1], depending om, m andn, such that

Y
4.22 C(a,n) = B(a,m,n) - —,
( ) (a,n) (a,m,n) exp( 72m2\/§)
where
B(a,m,n) :mC(a,m)-m —
nm a—n“" mna—n

| P [E (m<a—m> n<a1—n>>] ’
l.e.

(4.23) B(a,m,n) :C(a,m)-m U (a=m
n" a—n“ n a—n

P [E m<a—m> n(al—m)]'

For everya andm, satisfying[(4.1D), the function — B(a, m, x) has the symmetric property

B(a,m,g—x> EB(a,m,g—i-x)
2 2
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and, moreover, strictly increases/decreases on the inte(t@@% and [g, a) respectively. In-
deed, due td (4.23) we have

d
o B(a,m,z) = B(a,m,x) - ¢p(x),

wherep(r) = ¥(a — z) — ¢ (z) andy(z) = 1/(2z) — 1/(122%) + In z. Because

;o 6P —=3x+1
for z > 0 and consequently’(z) = —¢/'(a — x) — ¢’ (x) < 0, functionp(z) strictly decreases.

Thus, p(z) > ¢(%) = 0forz € (0,%) andp(z) < ¢(4) = 0forz € (%,a). Hence
%B(a,m,x) > (0 forz e (O, %) and%B(a,m,x) <0Oforzxz e (%,a).

The expression foB(a, m,n) can be further simplified. Namely, thanks to the estimate
0 < n < a, the relative deviation
t— @

—2 = ol 4

5 a

lies within the open interval-1, 1) and generates the equalities

(4.24) d(a,t) :=

(4.25) ta—t) = (g)2 [1— d?(a,t)]
and
(4.26) t(a — 1)t = (%) (14 2)" (1 —2)*]% = =d(a,t).
Using (4.25) and (4.26), the equatipn (4.23) can be written in a more compact form as
a,m,n) =C(a,m .D(a,,u)
(4:27) Blam.n) =Cla;m)- ooy
_ F(p)F(-p)]*? 1=y 3( 1 1
(4.28) ~cm | pres) Vo o (e )|
)

wherey = d(a,m), v = d(a,n), F(t) = (1 +¢)'** and

D(a,t) = [F(t) F(—)]* V1 — 2 exp (ﬁ) .

The graphs of the functions— 1/D(a, z), for a = 3w anda = 33, are shown in Figure 4.1,
and the graphs of the sequenees> C(a,n) and the functions — B(a, 2, z) are illustrated

in Figure[4.2.

0. 57 a=3nr 0. 57 a=33r

-1 0 1 -1 0 1
Figure 4.1: Graphs of functions — 1/D(a, x).

Figure[4.2 indicates that the approximati®fa,m,n) is very close toC(a,n), even for
smallm, for example,m = 2. Here, "to be close" has its meaning in the absolute sense, i.e.
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1 29
150 1 12x10
100 + 1 8x10%°
50 1 1 4%10%° a=33r
1 5 10 20 40 60 80 100

Figure 4.2: Approximation®(a, 2, z) to sequences — C(a,n).

proportionally tomax{C'(a,n) : 1 < n < a}. The curves in these figures are reminiscent of
the Gauss (normal) bell-shaped curves arising from the funatien exp(—z?). Indeed, in
probability theory we have the well known DeMoivre-Laplace local approximation [4, pp. 174-

190]
2
1" /1\“" 1 1(n-2
O<a=">'(§) (5) N T P —§< ) ’

from which we obtain a DeMoivre-Laplace approximation to the sequence of binomial coeffi-

cients
at3 N2
Cla,n) = M(a,n) = 2 - exp (_M> :

=~

vam 2a

A figure representing the graphs of the sequemces C(a,n) and the functiorx: — M (a, z)
for a = 37 anda = 33, is not shown because it is indistinguishable from Figurg 4.2. Conse-
quently, it seems that the approximatioiia, n) ~ M (a,n) should be very good fox andn
obeying [(4.1ID). Unfortunately, this approximation is good relativeiyte{C'(a,n) : 1 <n <
a}. Itis true that the relative error
o C(&a 77,) B M(a7 TL)

p(aan) T M(am)

is small forn ~ 2. However, it can approach even to the numbeérforn ~ 1 orn ~ a, asis

g
evident from Figure 43, which shows the sequences of epfars:) for a = 3w anda = 33r.

0.0 . . L 30 60 90
. . 3x107%. . s !
o e A 40 +50 60 0.3 : g
0.1 _3x1078 0.6 -
- . _ a=33r ]
-0.1 a=3r _6x10-3 a=33r . -0.9; ¢ .

Figure 4.3: The graphs of sequences— p(a,n).

Fortunately, the situation is quite different concerning the approximétienn) ~ B(a, m, n).
Indeed, due td (4.22), the absolute value of the relative error

e = (o)

(4.29) r(a,m,n) :=

J. Inequal. Pure and Appl. Math?(5) Art. 166, 2006 http://jipam.vu.edu.au/
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becomes small uniformly for large:. Because the functiop(z) := e* — 1 4 z strictly
increases oifD, oo) andy(0) = 0, we havelexp(—x) — 1| < x for > 0. Thus, considering
(4.29), we find the uniform estimate
1

124 m?
for a, m andn, which obey conditior{ (4.10). For exampléa, 2, n)| < 2.1x1073, |r(a,10,n)| <
8.4x107°, |r(a,100,n)| < 8.4 x 1077, and|r(a, 1000, n)| < 8.4 x 10~?. Direct computations,
using [19], give—3.3 x 107* < r(337,2,50) < —3.2 x 1074, —=2.8 x 1075 < r(337,10,50) <
—2.7x 1075, and—2.8 x 1079 < (333, 100,500) < —2.7 x 1072, Hence, a priori estimate
(4.30) appears as rather rough.

(4.30) < r(a,m,n) <0,

4.2. Casen > a. Let us suppose that the real numbeand the integers: andn satisfy the
following conditions:

(4.31) a e R\(NU{-1,0}) and n>m>|a.
We relate the last product ip (2.8) with a sum
n Z— a n .
(4.32) 1ni1"7[n — = Zm fal),
where
(4.33) fa(z) =1n (x—a) =ln(r—a)—Inz.
i

We shall use formulg (4].1) for the functigfy, which determines the remainder, denoted as
R,(m,n). To this effect we need the derivatives

(4.3) file) = —— -,

(4.35) fl(x) = (9;:—1@2 + % ,
B 2 2

(4.36) L P R

and

(4.37) ()= — 0

a (I):m+g7

for x > a. Itis evident from these expressions that,dar 0, all derivatives of odd/even orders
are positive/negative and, far < 0, all derivatives of odd/even orders are negative/positive.
Thus, using the function signunsgn(a) := —1 for a < 0 andsgn(a) = 1 for a > 0, we have

(i) sgn(a) - fi(x) <0

(4.38) @) [ @) = sen(a) - £ (@)
(i) sgn(a)- f(z) <0.
According to [4.3B) we get
n _ ((L’ _ a)z—a n B mm(n _ a)n—a
(4.39) /m falx)de = [ln T} = In (n”(m — a)m_a>

J. Inequal. Pure and Appl. Math?(5) Art. 166, 2006 http://jipam.vu.edu.au/
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and
(4.40) % [fa(m) + fa(n)] = In \/ o _TZ).(Z =3
Due to [4.34), we have
1 RN 1 !
(4.41) E [fa(n) - fa(m)] - E (n(n — a) B m(m - &)) ‘
Considering[(4J6)] (4.38)(i) — (ii) and (4.35) we estimate the remaifijém, n) as
|Ra(,m,n)| < 721\/5 - sgn(a) /m : f(@)de
- Tlﬁ - (sen(a) - f1(n) — sgn(a) - f1(m))
—sgn(a) ,
< g dalm)
_ sen(a) ( 1 L)
S 23 \(m—a)  m?
_ sgn(a) 2ma — a?
72/3 (m — a)*m?’
le.
(4.42) | Ro(m,n)| u

= 36v3m(m —a)?’
However, from|(4.]7) and (4.88)(iii) we conclude that

sgn(a) - Ry(m,n) > 0.
Consequently, according to (4]42), there exists sdra€f0, 1] such that
B Jal
 36v3m(m—a)?’

sgn(a) - Ry(m,n)

Hence, for integers > m > |a|, we have

J-a
36v3m(m — a)?
for somev € [0, 1], depending om, m andn.

Inserting expressionf (4]39)[— (4141), and (4.43) into the summation formula (4.1), we obtain
the expression

I =

L ( 1 B 1 ) N J-a
12 \nn—a) m(m-—a) 36v3m(m —a)?
Hence, considering (2.8), we conclude that the following theorem was proved true.

(4.43) R.(m,n) =

Theorem 4.2. For any integersm and n, which obey(4.31) there exists somé < [0, 1],
depending om, m andn, such that

(4.44) C(a,n) = B*(a,m,n) - exp (36\/§:;(':l — a)2) )
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where
Bamn) = 7 mClam)
=
&P [% (n(n—a) - m(m—@))]

i.e.
mm+1/2

(TTL _ a)m—a—1/2

P {ﬁ (n(nl— a) m<m1— >)]

The rate of convergence

(4.45) B*(a,m,n) = (=1)""™-C(a,m) -

- (n— a)_(aH) )

S
—_
|
3|e
N———

3
—_
|
Sle

lim (1 - 3)” —e" acR,
n—00 n

of the sequence occurring in (4]45), can be estimated using the following lemma:

Lemma 4.3. For any positive real: and¢ > 2x there hold the estimates
(i) exp (—:B — x—:) < ( — %)t < exp (—x — %)

(i) exp (x— §> < (1 + %)t < exp (x — %)

Proof. Indeed, integrating the inequalities

1
14+7< <1+27
1—171
and
1 < L <1 2
TS 1y 37
valid for 7 € (0, %) we obtain the relations
2 Y
Y dr 2
=< =—-In(l—-vy) <
vt /Ol_T n(l-y)<y+y
and ) ,
Y Yodt Y
— =< —— =In(1 <y— =,
s R A T R

true fory € (0,1]. Moreover, forz > 0 andt > 2z the numbery := £ lies in the interval
(0, 1] and the relations above could be applied for thand the lemma is thus verified. [

Remark 4.4. From the above lemma we obtain

x? T\ x?
(4.46) exp (:1: — T) < (1 + ?> < exp (x — g)

for any realr # 0 andt > 2|z|.
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From (4.44) and (4.45), using our Lemma, and considering the inequalites/1 + h <
14 h/2andl —h < /1 —h < 1, true forh € (0, 1), together with the estimate > — =,
valid for positive integers > m, we find that the next proposition is valid.

Proposition 4.5. For a, m andn, which follow(4.31), the following estimates hold
(I) ’C(CL, n)‘ > C*<a, m) . I(CL, m) . (n — a)_(a"’l)

(4.47)
(") ’C(CL, TL)| < C*((l, m) ’ J(CL, m) ’ (Tl — a)i(aJrl)a
where y
* e_a mm+
C*(a,m) = |C(a,m)| - a7
a? lal .
P\ "2m T 56vEmmia)? )’ if a<0
(4.48) I(a,m) = ( 2 SWEQ (m+al) )
(1_%)6)@)(_%—%), if a>0
and
<1+%) exp <%>, if a<0
(4.49) J(a,m) =

exp(W), |f a>0.

We emphasize thaC(a,n)| ~ C*(a,m) - (n — a)~(@*1)) represents a good approximation
for largen. From relations] (4.47)E(4.49) we conclude that the following proposition also holds.
Proposition 4.6. For every|real numbera we have

oo, If a< -1
(4.50) lim [C(a,n)] =< 1, if a=-1

neN

e 0, if a>—-1.

ComputingC*(a,m), |I(a, m)| and|.J(a, m)| directly, using e.g.[[19], we obtain from rela-
tions (4.47)-{(4.49) good estimates of binomial coefficients. For example, because

C*(—m,2099) - I(—,2099) = 0.436029 . .. > 0.436

and
C*(—m,2099) - J(—m,2099) = 0.437382... < 0.438,

we have
0.436 - (n + )" ! < |C(—m,n)| < 0.438 - (n+ 7)™,
true forn > 2100.
Similarly, since

C*(m,8999) - I(m,8999) = 0.983122... > 0.983
and

C*(m,8999) - J(m,8999) = 0.984545 ... < 0.985,
we have

0.983 - (n — )~ < |C(m,n)| < 0.985 - (n — )"+,

valid for n > 9000.

Lobviously(7') = (-1)".
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According to [4.4]), the quotient

o |C(a,n)|
Q(a,n) = C*(a,m) - (n — a)~ (@D
lies close tol and is bounded as
(4.51) I(a,m) < Q(a,n) < J(a,m),

for a, m andn, which obey[(4.311). Figurie 4.4 illustrates the estimate {4.51) fer{—m, 7}
andn=m+1€ {5,6, ..., 101}.

1.4
1
1.2
1 0.8
0.8 . 0.6
0.6~ 0.4 -
0.4 N
0.2 0.2~

20 40 60 80 100 20 40 60 80 100

Figure 4.4: Estimating the sequence of binomial coefficients.

Remark 4.7. Using the Gamma function, the definition of binomial coefficiéfit, ) could
be extended as
['(a+1)
I'b+1)-I'(a—b+1)
for a andb being arbitrary complex numbers, different from any negative integer. From this
expression the symmetric propertyia, b) = C(a,a — b), is evident.

C(a,b) :=

Using Stirling’s approximation to the Gamma function, see €.g. [1],
Mx+1)=zl(z) =V2rx- <£>x e 15
(&

for z € R*™ and some) € (0, 1), which depends on, it is possible to obtain approximations,
which are close to ours. For example, for positive integend reala > n we obtain the
formula

a a® . L9 9 9
2rn(a—n) n"(a—mn)+" PAl2\e 7w a-n/))

true for somey, ', 9" € (0, 1) which depend om andn.

C(a,n) =
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