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ABSTRACT. Characterization of quasiconvexity and pseudoconvexity of lower semicontinuous
functions on Banach spaces are presented in terms of abstract subdifferentials relying on a Mean
Value Theorem. We give some properties of the normal cone to the lower level getwé

also obtain necessary and sufficient optimality conditions in quasiconvex and pseudoconvex pro-
gramming via variational inequalities.
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1. INTRODUCTION

Itis natural in convex analysis to search for characterizations of generalized convex functions
in terms of some kind of generalized derivatives or subdifferentials. Several contributions to this
guestion has been made recently. The reader may consult for example [3, 5,/11/ 13, 16, 20] for
guasiconvex functions and [2,/8,/121 23] 25] for pseudoconvex functions.

In this paper, we shall define an abstract subdifferential aslin [1, 23] which allows us to extend
some results in|1,/2, 8, 23] and to give some properties of the normal cone to lower level sets
of a given functionf.

Notice that the conditiof € 0f(z) for z € X, is known to be a necessary but not a sufficient
optimality condition in quasiconvex programming for some subdifferentials. We give, using
some variational inequalities, a necessary and sufficient condition for a point to be either a local
or a global minimum.
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2 A. HASSOUNI AND A. JADDAR

After the introduction of some notations and definitions in Se¢tjon 2, we present in §¢gction 3
some properties of the abstract subdifferential and normal cone to lower level sets of quasicon-
vex and pseudoconvex functions. Then, in Sedtion 4, we give some optimality conditions in-
volving variational inequalities. This should extend our previous results stated for quasiconvex
lower semicontinuous functions on Banach spaces with the Clarke-Rockafellar subdifferential
in [13].

2. PRELIMINARIES

Let X be a real Banach spac¥; its dual and, -) the duality pairing betweex™ and X .
The segmenu, b] is the sef{a+t(b—a); t € [0,1]} while [a, b is the seta, b]\ {b}. The open
ball with centerz and radius- in X is denoted byB(z,r), and the polar cone of a nonempty
subsetA of X is

A ={z" e X", (z%,a) <0, Vaec A}
For an extended real valued functign X — R U {+oc}, the effective domain is defined by
dom(f) ={r e X; f(x)<oo}.

We write |.s.c. for lower semicontinuous, ang— x whenz,, — x and f(z,,) — f(x).
The abstract subdifferential we consider here is defined as follows:

Definition 2.1. An operatord that associates to any |.s.c. functipn X — R U {+o00} and a
pointz € X a subsedf(x) of X* is a subdifferential if the following assertions hold:
(P1) 0f(z) = {2z* € X*; f(y) > f(x)+ (", y—2x) Vye X} whenfisconvex.
(P2) If x € dom f is a local minimum off, then0 € Jf(x).
(P3) 0f(x) = dg(x), foranyg : X — R U {+oc} such thatf — g is constant in a neighbor-
hood ofz.
(P4) 0f(z) = 0, for anyz € X such thatf(z) = +oo.

It is well known that the Clarke-Rockafellar subdifferen@iél” f satisfies Zagrodny’s Mean
value theorem [27]. In order to extend this theorem to our subdifferential, we shall deal with a
particular space associated witltalledo-reliable.

Definition 2.2. [23]. A Banach space is oO-reliable if for each l.s.c. functiorf : X —
R U {+o0}, for any Lipschitz convex functiop and anyz € dom f such thatf + g achieves
its minimum inX and eaclr > 0 we have:

0 € df(u) 4+ dg(v) + eB;(0),
for someu, v € B.(x) such that f(u) — f(v)| < e.

In the case of the Clarke-Rockafellar subdifferentiaf® [26] or lofee subdifferentiad’ [7],
any Banach space isreliable.
In the sequel, we will restrict ourselves to subdifferentials that are included in the dag subd-
ifferential
ONf(x) ={a* € X*; (2% 0v) < fl(x,v) Yoe X},
where
fHa,v) = limsup ¢ (f(y +tv+x —y) = f(y)).
(ty)—(04,x)
This subdifferential was introduced by Penot (see [22]), it is large enough to contain the Clarke-
Rockafellaro®” and Upper Dinb”+ subdifferentials and still has good properties.
Our results rely on the following mean value theorem.
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GENERALIZED MONOTONEMULTIFUNCTIONS 3

Theorem 2.1.[23]. Let X be ao-reliable space andf : X — R U {400} a l.s.c. function.
Foranya € dom f, b € X \ {a}, B < b, there exists a sequenegin X converging to some
c € [a,b) and a sequence; € Jf(c,) such that for any’ = ¢ + t(b — a), witht > 0 we have:
i) iminf,(ci,b—a) > 5 — f(a),
i) liminf, (c},c—c¢,) >0,

i) liminf,, (e, =20 — ) > 6~ ()

Following the methods of [1, 16, 20], we get a similar lemma for our abstract subdifferential,
which is immediate by Theorem 2.1.

Lemma 2.2. Let X be a Banaclp-reliable space,f a |.s.c. function. Let,b € X with
f(a) < f(b) then there exists € [a, b] and two sequences — ¢, ¢ € Jf(c,) with

(¢, x—cp) >0,
foranyz = ¢+ t(b — a) with¢ > 0.
Proof. Leta,b € X with f(a) < f(b), then we can find by Theorem 2.4, [a, b] and two
sequences, — ¢, ¢ € df(c,) with

liminf(c},c—¢,) >0,

and
liminf(c},b—a) > f(b) — f(a) > 0.
Forz = c+t(b— a)witht > 0, we have
(cr,x—cp) = (c,c—cp) + e, b—a).
It follows that
liminf(c;,z — ¢,) > 0.
Hence, fom large enough, we have that
(cy,x—cy) > 0.

3. GENERALIZED CONVEX FUNCTIONS AND GENERALIZED M ONOTONE
M ULTIFUNCTIONS

3.1. Quasiconvex Functions and Quasimonotone MultifunctionsWe recall the character-
ization of quasiconvex functions of [22,123]. It will allow us to extend and generalize some
properties of the normal cone to the lower level set given in[[12, 13] to a more general setting.

Indeed, forf : X — R U {+oc0} al.s.c. function,f is said to be quasiconvex if for every
z,y € X and\ € [0, 1] one has

fOz + (1= N)y) < max{f(z), f(y)}.
And denoting by
Sy(A) ={zeX; f(z) <At
Quasiconvexity is geometrically equivalent to the fact theth) is a convex set for alk € R.
In the above one could use the strict level sets as well.
Recall that a multifunctiom™ : X — X* is said to be quasimonotone if for every pair of
distinct pointsr, y € X:

dz* € A(z), suchthat (z*,y —z) >0 then, Yy* € A(y), (y",y—az) > 0.
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4 A. HASSOUNI AND A. JADDAR

Theorem 3.1.[22,(23] Let X be a Banach space anfl: X — R U {+oc} al.s.c. function.
And consider the following assertions

i) fis quasiconvex.
i) df is quasimonotone.

Theni) impliesii) if 0f c o' f. Andii) impliesi) if X is 0-reliable.
Forzx, € X, set
L(xo) ={z € X5 f(x) = f(zo)}.

Then we have

Proposition 3.2. Let X be a Banacld-reliable space, and a l.s.c. quasiconvex function such
thatof c 0'f. If for 2, € X there exists > 0 with

0¢&of(x), forallze B(xg,r)N L(xo),
then we have

[0.f (20)]*° € N(S5(f(x0)); o),
whereN (S (f(xo)); zo) is the normal cone to the lower level s&i( f(z)) at the pointz.

Proof. Suppose by contradiction that there exissuch that

v € [0f ()] and v & N(S¢(f(x0)); xo)-
We can check that
Cl(R+co(0f (x0))) = [0f (20)]*°.

So, we can suppose without loss of generality that = € J0f(z,). Then, we can find some
x1 € Sy(xg) such that

(3.1) (xg, x1 — x0) > 0.

We claim thatf(z) = f(z;). Otherwise by Lemmf 2.2, there exigtse [z, o[ and two
sequences,— c andc}, € df(c,) with

(e xo—cp) > 0.
By using the quasimonotonicity off we have:

(x5, 0 — ¢p) > 0.
Then, lettingn — +o0o we get

(xg, k9 — ) > 0.
It follows that

(x5, w9 — x1) > 0.

A contradiction with[(3.]L), thug (zo) = f(z1).

Now, set V,, ={zr e X : (z§,x —zo) > 0}.

V., is an open neighborhood ef and using the same argument as above we can check that
x1 1S a minimum off onV,,, and that

xy = To+ Nxy —x9) €'V, and f(x)) = f(xo) forany\ €]0, 1].

Then there exists > 0 and) €]0, 1] such thatc; is a global minimum off on B(zg,7) N V,,.
Therefored € Jf(x5), which is impossible. O
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The former proposition extends some already known results for differentiable functions (see
for instancel[5]). If we denote bY (S;(f(x); x), the tangent cone of the lower level convex set
S¢(f(x)) at the pointr € X, then

T(S;(f(2)); ) = [N(Sp(f(2)); 2)]°.

A sufficient condition that allows us to obtain the equality in Proposition 3.2 is stated in the
following proposition

Proposition 3.3. Under the hypothesis of Propositipn 3.2 and if
[0f (x)]” € T(Ss(f(x)); x).
Then we have
N(Sp(f () x) = [0f ()]
Proof. By the bipolar theorem [4] one has
[0f (@))% D N(S¢(f(2)); 2).
And from Propositiof 3]2, the equality immediately holds. O

The following condition
N(Sp(f(x));x) = [0f (2)]*°,

is in fact a certain kind of regularity condition, which holds only for a subclass of quasiconvex
functions. Another abstract aproach was developed in [15] based on Crouzeix’s representation
theorem|([6] who obtained a similar equality for his quasi-subdifferential.

Consider the multifunctiof’ from X to X* defined by

I(z) = N(S¢(f(x));z), forze X.
Then by using Propositign 3.3, we obtain

Proposition 3.4. Let X be a Banacho-reliable space,f a l.s.c. quasiconvex function. If for
anyz € X, 0f(x) is nonempty such that

(0f(x))° € T(Sy(f(x)); ).
Then, the multifunctioiir is quasimonotone.

Proof. Since f is quasiconvex, by Theorem Bdlf is quasimonotone. Using Proposition 2.8
of [12], it follows easily that the multifunction: — [0f(x)]°° is quasimonotone. Then by
Propositior) 3.8 is also quasimonotone.

It follows thatI" is quasimonotone. O

A particular case of this proposition whércoincides with the Clarke-Rockafellar subdiffer-
ential 9%, was treated i [13], whose exact statement is the following.

Proposition 3.5. Let X be a Banach spac¢,a |.s.c. function fromX to R U {+oc} such that
O°Ff(z) is nonempty and ¢ 9“% f(x) for all z € X.
If fis quasiconvex then the multifunctidris quasimonotone.
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3.2. Pseudoconvexity and Subdifferential Properties.The original definition of pseudocon-
vexity was introduced by Mangazarian In [21] for differentiable functions. This concept was
exended later by many authors (see for instancel[17, 22, 24]) for arbitrary functions. We will
here use the following form:
A function f is said to be pseudoconvex for the subdiffererdidlfor any =,y € X:
Bt €df(x): (@"y—2) =20 = f(z) < [f(y)
A multifunction A : X — X* is said to be pseudomonotone if for every pair of distinct points
rz,y € X
dz* € A(z) : (", y —x) >0 then, Vy* € A(y), (v",y —x) > 0.
As in the differentiable case, every pseudoconvex function satisfies the fundamental properties:

e every local minimum off is global.
e 0 € Of(z) implies thatz is a global minimum off.

Another interesting property extending a result[of [8] where it was stated for the Clarke-
Rockafellar subdifferential is the following.

Proposition 3.6. Let X be a Banaclo-reliable andf : X — R U {+oc0} be al.s.c. function
and pseudoconvex function such thdgtc o' f, letz,y € X. Then the existence of € df(z)

verifying (z*,y — x) > 0 impliesf(z) < f(y).
Proof. Let z,y € X such that{z*,y — z) > 0 for somez* € df(x), then there exists > 0
such that
(z*,y —xz) >0, Vy € B(y,e).

By the pseudoconvexity of, we havef(y') > f(x).

In particular,f(y) > f(x). If we suppose by contradiction théty) = f(z), theny must be
a global minimum. On the other hand, sintéx,y — =) > 0 then, there exist two sequences
x, — x,t, — 07 such that

tn_l [f(xn + tn(y - xn) - f(xn))] > 0.

By the quasiconvexity of the functiofi (see for instance the proof of Proposition 2.2[ih [8]),
we getf(y) > f(z,) which is impossible. O

We use this proposition to prove a known result for the Clarke-Rockafellar subdifferential for
bigger subdifferentials

Theorem 3.7.Let X be ad-reliable space and : X — RU {400} al.s.c. function such that
df c 0'f. And consider the following assertions

1) fis pseudoconvex.
i) Jf is pseudomonotone.

Then,i) impliesii). Andii) impliesi) if f is radially continuous.

Proof. The implicationii) = i) is in [23]. Fori) = ii), suppose by contradiction that there
existz,y € X, such that there exist' € 0f(x) andy* € df(y) verifying

(" y—2)>0 and (y,y—ax)<0.
Then, from Propositiop 35 and the pseudoconvexity ofe have
flx) < fly) and [f(y) < f(z).

A contradiction. O

Now, we state a similar result to Propositjon|3.2 for pseudoconvex functions.
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Proposition 3.8. Let X be a Banacld-reliable space witld C 07, f al.s.c. and pseudoconvex
function fromX to R U {+oc0}. Then we have

[0 ()] € N(Sp(f(2)); ).

Proof. Let z* € df(x) and suppose by contradiction theit ¢ N (S;(f(z));x). Then, there
existsy € S¢(f(x)) such that(z*,y — z) > 0 for somez* € 9f(x). It follows then by
Propositior} 3.6 thaf (y) > f(x), which is impossible. O

4. OPTIMALITY CONDITIONS AND VARIATIONAL |NEQUALITIES

4.1. Quasiconvex Programming. We recall the Minty variational inequality (we use the ter-
minology of Gianness| [9]) that we shall use for our subdifferential. It will be exploited to give
some conditions of optimality in nonlinear programming and necessary and sufficient condi-
tions for optimality in quasiconvex programming.

Let " be a multifunction fromX to X*, S C X andz € S.

A point z is a Minty equilibrium ofT" if the following variational inequality holds

(D) Vees, (y(@),x—1z)>0,  Vy(z)€ ()
Suppose that is al.s.c. function fronX to RU{+oc} and consider the following minimisation
problem
(4.1) minimizef(z), subject tar € C.
Then we have
Proposition 4.1. Let X be a Banacld-reliable space. Ifz is a Minty equilibrium point oD f,
then we have
i) If S = X, thenz is a global minimum of.
i) If S = N, whereN is a convex open neighborhood®thenz is a local minimum of.

Proof. Itis enough to prove (ii). Suppose by contradiction that not a solution of the program
(4.1), then there exists € S such thatf(z) < f(z). By Lemmd 2.2, there existse [z, 7| and
two sequences, — ¢, ¢, € df(c,) with

(cr,d—cy) >0,
foranyd = ¢+ t(z — x) wheret > 0.
SinceS is a convex open neighborhoodothen|z, z] C S. Furthermore, for. large enough
- Ii t%e particular case wherke= z, we have:
(cr, T —cp) > 0.
A contradiction with the variational inequality (D), thads a local minimum off. O
This proposition extends Theorem 2.2[o0f[18] for nondifferentiable optimization problems.

If in the problem [(4.]1), the functiorf to be minimized is |.s.c. and quasiconvex, then we
have

Theorem 4.2. Let X be a Banaclo-reliable, andf be a l.s.c. and quasiconvex function such
thatof c 0'f,andz € S. If S = N, whereN is an open and convex neighborhoodzobr
S = X, then the following assertions are equivalent

i) z is an optimal solution of (4]1).

i) zis a Minty equilibrium point obf.
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Proof. if) =) is obtained from Propositign 4.1. Let us show that
i) = ii). Assume that is a strict minimum of[(4]1), then for all € S such thatz # = we
havef(z) > f(2).
According to Lemma 2]2, there exisk [z, z[, ¢, —; candc;, € df(c,) such that
(¢, d—c,) >0,
foralld = ¢ + t(x — z) wheret > 0.
Whend = x, we obtain that
(cy,x—cy) > 0.
f being quasiconvex, by Theorém 2dl; is quasimonotone. It follows then that
forall z* € 0f(x), (", x —x) > 0.

Hence0f satisfies the variational inequalify|(D).
Suppose that we are in the case wheis not a strict minimum of[ (4]1) and let us consider
the functionf; defined by

fa(z) = max{f(z), f(Z)},
and defineh by

fz(x) forxz#z
(4.2) hz) = {

v forz =12

whererv < f(z). We see easily that is I.s.c. and quasiconvex and thais a strict local
minimum of . Then, we have

Ve#2z (z250—x)>0, Va*eoh(x).
From(P3), we getdf(z) = 0h(x). O

In the case whefi is in the interior ofd f(z), i.e.0 € int(0f(x)), we have the more precise
result

Proposition 4.3. Let X be ao-reliable space and : X — RU{+oc} al.s.c. and quasiconvex
function. If0 € int(0f(z)) thenz is a Minty equilibrium point ob f. Moreoverz is a global
minimum off.

Proof. Assume tha0 € int(0f(x)) then
there exists > 0 such thatBy-(0,¢) C df(x),
where
Bx«(0,e) ={z" e X*: ||z"]| <¢e}.
Letd € X such thatl # 0 and consider the linear mappifgdefined by
ly(z*) = (2", d), forz* € X".
By the open mapping Theoreim [4] one has
(Bx+(0,¢),d) C (0f(x),d).

Sincef is quasiconvex, thedlf is quasimonotone.
We already know by Definition 2.1 of [12] that the multifunctioi, , defined by

Ofza(X) = (0f (z + Ad), d),
iIs quasimonotone, and we can see easily that
(A, 0f (z + Ad)) C Ry,
forall A € Randd € X \ {0}, thus [D) holds foO f. O
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4.2. Pseudoconvex Programming.For the pseudoconvex functigf we shall get necessary
and sufficient conditions for a pointto be a global extremum gf over a convex set'.

First consider the problerp (4.1), withis pseudoconvex, |.s.c. and radially continuous, then
we have

Theorem 4.4.Let X be a Banach spacé-reliable, and f a pseudoconvex l.s.c. such that
of c 0'f, and letz € C. Then the following assertions are equivalent

i) z is an optimal solution of (4]1).

ii) holds.
Proof. Suppose that is a solution of[(4.]), then by Propositipn B.6 fifz) < f(xz), then we
must have

Vz* € 0f(z), (z",z—a)<0.
This means that the variational inequality) holds.
Converesly, let: € C such thatr # z then for some; € (z, x), we have

vyt € 0f(y), (v,z—y) <0
It follows that

vyt € df(y), (y,z—y) <0.
Sincedf(y) is nonempty and from the pseudoconvexityfofrie have

fly) < f(z), Vye(z,2)
But sincef is s.c.i., thenf(z) < f(z). O
We now proceed to the maximisation problem

(4.3) maximizef(x), subject tar € C.
Forz € C, we denote by

C.={zeC; flz)=[f(2)}

Then we have

Theorem 4.5.Let X be ao-reliable space ang a pseudoconvex, |.s.c. and radially continuous
such that for any: in C, f(x) is nonempty andf (z) C ' f(x). Letz € C such that

—o0 < ilclff < f(z).
Thenz is a maximum of on C'if and only if
forall x € Cz, Of(x) C N(C,x).
Proof. Suppose that

fly) < f(z); vyel.
By Propositior) 3.6 we have:

forallz € Cz;, 0f(x) C N(C,z).
Conversely, by contradiction assume that there exisgtS” such that
f(z) > f(z).

Since by hypothesis, we can find some C with f(z) < f(z).
By the radial continuity off, there exists some, € (z, z) such that

f(zo) = f(Z).
It follows then that
forall xj € 0f(xo), (25,2 — z0) = 0.
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Sincef is pseudoconvex therf(z,) < f(z), a contradiction. O
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