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ABSTRACT. In this paper, we introduce a new class of functions which are analytic and uni-
valent with negative coefficients defined by using a certain fractional calculus and fractional
calculus integral operators. Characterization property,the results on modified Hadamard product
and integrals transforms are discussed. Further, distortion theorem and radii of starlikeness and
convexity are also determined here.
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1. I NTRODUCTION AND PRELIMINARIES

Fractional calculus operators have recently found interesting applications in the theory of
analytic functions. The classical definition of fractional calculus and its other generalizations
have fruitfully been applied in obtaining, the characterization properties, coefficient estimates
and distortion inequalities for various subclasses of analytic functions.
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2 G. MURUGUSUNDARAMOORTHY, THOMAS ROSY, AND MASLINA DARUS

Denote byA the class of functions of the form

(1.1) f(z) = z +
∞∑

n=2

anz
n

which are analytic and univalent in the open discE = {z : z ∈ C and |z| < 1}. Also denote by
T [11] the subclass ofA consisting of functions of the form

(1.2) f(z) = z −
∞∑

n=2

anz
n, (an ≥ 0).

A functionf ∈ A is said to be in the class of uniformly convex functions of orderα, denoted
byUCV (α) [9] if

(1.3) Re

{
1 +

zf ′′(z)

f ′(z)
− α

}
≥ β

∣∣∣∣zf ′′(z)f ′(z)
− 1

∣∣∣∣ ,
and is said to be in a corresponding subclass ofUCV (α) denote bySp(α) if

(1.4) Re

{
zf ′(z)

f(z)
− α

}
≥ β

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ,
where−1 ≤ α ≤ 1 andz ∈ E.

The class of uniformly convex and uniformly starlike functions has been extensively studied
by Goodman [3, 4] and Ma and Minda [6].

If f of the form (1.1) andg(z) = z +
∑∞

n=2 bnz
n are two functions inA, then the Hadamard

product (or convolution) off andg is denoted byf ∗ g and is given by

(1.5) (f ∗ g)(z) = z +
∞∑

n=2

anbnz
n.

Let φ(a, c; z) be the incomplete beta function defined by

(1.6) φ(a, c; z) = z +
∞∑

n=2

(a)n

(c)n

zn, c 6= 0,−1,−2, . . . ,

where(λ)n is the Pochhammer symbol defined in terms of the Gamma functions, by

(λ)n =
Γ(λ+ n)

Γ(λ)
=

{
1 n = 0

λ(λ+ 1)(λ+ 2) · · · (λ+ n− 1), n ∈ N}

}
Further suppose

L(a, c)f(z) = φ(a, c; z) ∗ f(z), for f ∈ A
whereL(a, c) is called Carlson - Shaffer operator [2].

For real numberµ (−∞ < µ < 1) andγ (−∞ < γ < 1) and a positive real numberη, we
define the operator

Uµ,γ,η
0,z : A −→ A

by

(1.7) Uµ,γ,η
0,z = z +

∞∑
n=2

(2− γ + η)n−1(2)n−1

(2− γ)n−1(2− µ+ η)n−1

anz
n,
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UNIFORMLY CONVEX FUNCTIONS 3

which forf(z) 6= 0 may be written as

(1.8) Uµ,γ,η
0,z f(z) =


Γ(2− γ)Γ(2− µ+ γ)

Γ(2− γ + η)
zγJµ,γ,η

0,z f(z); 0 ≤ µ < 1

Γ(2− γ)Γ(2− µ+ γ)

Γ(2− γ + η)
zγI−µ,γ,η

0,z f(z); −∞ ≤ µ < 0

whereJµ,γ,η
0,z andI−µ,γ,η

0,z are fractional differential and fractional integral operators [12] respec-
tively.

It is interesting to observe that

Uµ
z f(z) = Γ(2− µ)zµDµ

z f(z), −∞ < µ < 1

= Ωµ
zf(z)(1.9)

andDµ
z is due to Owa [7].Uµ

z is called a fractional integral operator of orderµ, if −∞ < µ < 0
and is called fractional differential operator of orderµ if 0 ≤ µ < 1.

Further note that

Uµ,γ,η
0,z f(z) = f(z) if µ = γ = 0

Uµ,γ,η
0,z f(z) = zf ′(z) if µ = γ = 1.

For−1 ≤ α < 1, a functionf ∈ A is said to be inS∗µ,γ,η(α), if and only if

(1.10) Re

{
z(Uµ,γ,η

0,z f(z))′

Uµ,γ,η
0,z f(z)

− α

}
≥
∣∣∣∣z(Uµ,γ,η

0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

∣∣∣∣ , z ∈ ∆.

where−∞ < µ < 1, −∞ < γ < 1, andη ∈ R+.
Now let us writeTR(µ, γ, η, α) = S∗µ,γ,η(α) ∩ T.
It follows from the statement, that forµ = γ = 0, we have

S∗µ,γ,η(α) = Sp(α)

and forµ = γ −→ 1, we have
S∗µ,γ,η(α) = UCV (α).

The classesSp(α) andUCV (α) are introduced and studied by various authors including [8],
[9] and [1].

2. CHARACTERIZATION PROPERTY

We now investigate the characterization property for the functionf to belong to the class
S∗µ,γ,η(α), by obtaining the coefficient bounds.

Definition 2.1. A functionf is in TR(µ, γ, η, α) if f satisfies the analytic characterization

(2.1) Re

{
z(Uµ,γ,η

0,z f(z))′

Uµ,γ,η
0,z f(z)

− α

}
>

∣∣∣∣z(Uµ,γ,η
0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

∣∣∣∣ ,
where0 ≤ α < 1, −∞ < µ < 1, −∞ < γ < 1, andη ∈ R.

Theorem 2.1(Coefficient Bounds). A functionf defined by (1.2) is in the classTR(µ, γ, η, α)
if and only if

(2.2)
∞∑

n=2

(2− γ + η)n−1(2)n−1

(2− γ)n−1(2− µ+ η)n−1

· 2n− 1− α

1− α
|an| ≤ 1

where0 ≤ α < 1, −∞ < µ < 1, −∞ < γ < 1, andη ∈ R.

J. Inequal. Pure and Appl. Math., 6(3) Art. 86, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 G. MURUGUSUNDARAMOORTHY, THOMAS ROSY, AND MASLINA DARUS

Proof. It suffices to show that∣∣∣∣z(Uµ,γ,η
0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

∣∣∣∣ ≤ Re

{
z(Uµ,γ,η

0,z f(z))′

Uµ,γ,η
0,z f(z)

− α

}
,

and we have ∣∣∣∣z(Uµ,γ,η
0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

∣∣∣∣ ≤ Re

{
z(Uµ,γ,η

0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

}
+ (1− α).

That is ∣∣∣∣z(Uµ,γ,η
0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

∣∣∣∣− Re

{
z(Uµ,γ,η

0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

}
≤ 2

∣∣∣∣z(Uµ,γ,η
0,z f(z))′

Uµ,γ,η
0,z f(z)

− 1

∣∣∣∣
≤
∑∞

n=2(n− 1)ψ(n)|an|
1−

∑∞
n=2 ψ(n)|an|

where

ψ(n) =
(2− γ + η)n−1(2)n−1

(2− γ)n−1(2− µ+ η)n−1

.

The above expression is bounded by(1− α) and hence the assertion of the result.
Now we need to show thatf ∈ TR(µ, γ, η, α) satisfies the coefficient inequality. Iff ∈

TR(µ, γ, η, α) andz is real then (2.1) yields

1−
∑∞

n=2 nψ(n)anz
n−1

1−
∑∞

n=2 ψ(n)anzn−1
− α ≥ 1−

∑∞
n=2(n− 1)ψ(n)anz

n−1

1−
∑∞

n=2 ψ(n)anzn−1
.

Letting z → 1 along the real axis leads to the desired inequality
∞∑

n=2

(2n− 1− α)ψ(n)an ≤ 1− α.

�

Corollary 2.2. Let a functionf defined by (1.2) belong to the classTR(µ, γ, η, α). Then

an ≤
(2− γ)n−1(2− µ+ η)n−1

(2− γ + η)n−1(2)n−1

· 1− α

2n− 1− α
, n ≥ 2.

Next we consider the growth and distortion theorem for the classTR(µ, γ, η, α). We shall
omit the proof as the techniques are similar to various other papers.

Theorem 2.3.Let the functionf defined by (1.2) be in the classTR(µ, γ, η, α). Then

|z| − |z|2 (2− γ)(2− µ+ η)(1− α)

2(2− γ + η)(3− α)
≤ |Uµ,γ,η

0,z f(z)|(2.3)

≤ |z|+ |z|2 (2− γ)(2− µ+ η)(1− α)

2(2− γ + η)(3− α)

and

1− |z|(2− γ)(2− µ+ η)(1− α)

(2− γ + η)(3− α)
≤ |(Uµ,γ,η

0,z f(z))′|(2.4)

≤ 1 + |z|(2− γ)(2− µ+ η)(1− α)

(2− γ + η)(3− α)
.
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UNIFORMLY CONVEX FUNCTIONS 5

The bounds (2.3) and (2.4) are attained for functions given by

(2.5) f(z) = z − (2− γ)(2− µ+ η)(1− α)z2

2(2− γ + η)(3− α)
.

Theorem 2.4.Let a functionf be defined by (1.2) and

(2.6) g(z) = z −
∞∑

n=2

bnz
n

be in the classTR(µ, γ, η, α). Then the functionh defined by

(2.7) h(z) = (1− λ)f(z) + λg(z) = z −
∞∑

n=2

qnz
n

whereqn = (1− λ)an + λbn, 0 ≤ λ ≤ 1 is also in the classTR(µ, γ, η, α).

Proof. The result follows easily by using (2.2) and (2.7). �

We prove the following theorem by defining functionsfj(z) (j = 1, 2, . . . ,m) of the form

(2.8) fj(z) = z −
∞∑

n=2

an,jz
n for an,j ≥ 0, z ∈ U.

Theorem 2.5(Closure theorem). Let the functionsfj(z) (j = 1, 2 . . . ,m) defined by (2.8) be
in the classesTR(µ, γ, η, αj) (j = 1, 2, . . . ,m) respectively. Then the functionh(z) defined by

h(z) = z − 1

m

∞∑
n=2

(
m∑

j=1

)
an,jz

n

is in the classTR(µ, γ, η, α) where

(2.9) α = min
1≤j≤m

{αj} with 0 ≤ αj < 1.

Proof. Sincefj ∈ TR(µ, γ, η, αj) (j = 2, . . . ,m) by applying Theorem 2.1, we observe that

∞∑
n=2

ψ(n)(2n− 1− α)

(
1

m

m∑
j=1

an,j

)
=

1

m

m∑
j=1

(
∞∑

n=2

ψ(n)(2n− 1− α)an,j

)

≤ 1

m

m∑
j=1

(1− αj) ≤ 1− α,

which in view of Theorem 2.1, again implies thath ∈ TR(µ, γ, η, α) and the proof is complete.
�

3. RESULTS I NVOLVING M ODIFIED HADAMARD PRODUCTS

We let

(f ∗ g)(z) = z −
∞∑

n=2

anbnz
n

be the modified Hadamard product of functionsf andg defined by (1.2) and (2.6) respectively.
The following results are proved using the techniques of Schild and Silverman [10].
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6 G. MURUGUSUNDARAMOORTHY, THOMAS ROSY, AND MASLINA DARUS

Theorem 3.1. For functionsfj(z) (j = 1, 2) defined by (2.8), letf1(z) ∈ TR(µ, γ, η, α) and
f2(z) ∈ TR(µ, γ, η, β). Thenf1 ∗ f2 ∈ TR(µ, γ, η, ξ) where

(3.1) ξ = ξ(µ, γ, η, β) = 1− 2(1− α)(1− β)

(3− α)(3− β)ψ(2)− (1− α)(1− β)
,

whereψ(2) = (2−γ+η)(2)
(2−γ)(2−µ+η)

. The result is the best possible for

f1(z) = z − 1− α

(3− α)ψ(2)
z2,

f2(z) = z − 1− β

(3− β)ψ(2)
z2,

whereψ(2) = (2−γ+η)(2)
(2−γ)(2−µ+η)

.

Proof. In the view of Theorem 2.1, it suffices to prove that
∞∑

n=2

2n− 1− ξ

1− ξ
ψ(n)an,1an,2 ≤ 1,

whereξ is defined by (3.1) under the hypothesis, it follows from (2.1) and the Cauchy-Schwarz
inequality that

(3.2)
∞∑

n=2

[2n− 1− α]1/2[2n− 1− β]1/2√
(1− α)(1− β)

ψ(n)
√
an,1an,2 ≤ 1.

Thus we need to find largestξ such that
∞∑

n=2

2n− 1− ξ

1− ξ
ψ(n)an,1an,2 ≤

∞∑
n=2

[2n− 1− α]1/2[2n− 1− β]1/2√
(1− α)(1− β)

ψ(n)
√
an,1an,2 ≤ 1

or, equivalently that

√
an,1an,2 ≤

[2n− 1− α]1/2[2n− 1− β]1/2√
(1− α)(1− β)

· 1− ξ

2n− 1− ξ
for n ≥ 2.

By virtue of (3.2) it is sufficient to find the largestψ such that√
(1− α)(1− β)

[2n− 1− α]1/2[2n− 1− β]1/2ψ(n)

≤ [2n− 1− α]1/2[2n− 1− β]1/2√
(1− α)(1− β)

· 1− ξ

2n− 1− ξ
for n ≥ 2

which yields

ξ ≤ 1− 2(n− 1)(1− α)(1− β)

(2n− 1− α)(2n− 1− β)ψ(n)− (1− α)(1− β)
,

where

(3.3) ψ(n) =
(2− γ + η)n−1(2)n−1

(2− γ)n−1(2− µ+ η)n−1

for n ≥ 2.

Sinceψ(n) is a decreasing function ofn (n ≥ 2), we have

ξ = ξ(µ, γ, η, α, β) = 1− 2(1− α)(1− β)

(3− α)(3− β)ψ(2)− (1− α)(1− β)
,

whereψ(2) = (2−γ+η)(2)
(2−γ)(2−µ+η)

. Thus completes the proof. �
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UNIFORMLY CONVEX FUNCTIONS 7

Theorem 3.2.Let the functionsfj(z) (j = 1, 2) defined by (2.8) be in the classTR(µ, γ, η, α).
Then(f1 ∗ f2)(z) ∈ TR(µ, γ, η, δ), where

δ = 1− 2(1− α)2

(3− α)2ψ(2)− (1− α)2
,

with ψ(2) = (2−γ+η)(2)
(2−γ)(2−µ+η)

.

Proof. By takingβ = α in the above theorem, the results follows. �

Theorem 3.3.Let the functionf defined by (1.2) be in the classTR(µ, γ, η, α). Also let

g(z) = z −
∞∑

n=2

bnz
n for |bn| ≤ 1.

Then(f ∗ g)(z) ∈ TR(µ, γ, η, α).

Proof. Since
∞∑

n=2

ψ(n)(2n− 1− α)|anbn| =
∞∑

n=2

ψ(n)(2n− 1− α)an|bn|

≤
∞∑

n=2

ψ(n)(2n− 1− α)an

≤ 1− α (by Theorem 2.1),

whereψ(n) is defined by (3.3). Hence it follows that(f ∗ g)(z) ∈ TR(µ, γ, η, α). �

Corollary 3.4. Let the functionf defined by (1.2) be in the classTR(µ, γ, η, α). Also letg(z) =
z −

∑∞
n=2 bnz

n for 0 ≤ bn ≤ 1. Then(f ∗ g)(z) ∈ TR(µ, γ, η, α).

For functions in the classTR(µ, γ, η, α) we can prove the following inclusion property also.

Theorem 3.5.Let the functionsfj(z) (j = 1, 2) defined by (2.5) be in the classTR(µ, γ, η, α).
Then the functionh defined by

h(z) = z −
∞∑

n=2

(a2
n,1 + a2

n,2)z
n

is in the classTR(µ, γ, η,∆) where

∆ = 1− 4(1− α)2

(3− α)2ψ(2)− 2(1− α)2
with

ψ(2) =
2(2− γ + η)

(2− γ)(2− µ+ η)
.

Proof. In view of Theorem 2.1, it is sufficient to prove that

(3.4)
∞∑

n=2

ψ(n)
2n− 1−∆

1−∆
(a2

n,1 + a2
n,2) ≤ 1

wherefj(z) ∈ TR(µ, γ, η, α) (j = 1, 2). We find from (2.8) and Theorem 2.1, that

(3.5)
∞∑

n=2

[
ψ(n)

2n− 1− α

1− α

]2

a2
n,j ≤

∞∑
n=2

[
ψ(n)

2n− 1− α

1− α
an,j

]2

≤ 1,
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8 G. MURUGUSUNDARAMOORTHY, THOMAS ROSY, AND MASLINA DARUS

which would yield

(3.6)
∞∑

n=2

1

2

[
ψ(n)

2n− 1− α

1− α

]2

(a2
n,1 + a2

n,2) ≤ 1.

On comparing (3.5) and (3.6) it can be seen that inequality (3.4) will be satisfied if

ψ(n)
2n− 1−∆

1−∆
(a2

n,1 + a2
n,2) ≤

1

2

[
ψ(n)

2n− 1− α

1− α

]2

(a2
n,1 + a2

n,2).

That is, if

(3.7) ∆ ≤ 1− 4(1− α)2

(2n− 1− α)2ψ(n)− 2(1− α)2
,

whereψ(n) is given by (3.3). Hence we conclude from (3.7)

∆ = ∆(µ, γ, η, α) = 1− 4(1− α)2

(3− α)2
ψ(2)− 2(1− α)2,

whereψ(2) = 2(2−γ+η)
(2−γ)(2−µ+η)

which completes the proof. �

4. I NTEGRAL TRANSFORM OF THE CLASS TR(µ, γ, η, α)

Forf ∈ TR(µ, γ, η, α) we define the integral transform

Vλ(f)(z) =

∫ 1

0

λ(t)
f(tz)

t
dt,

whereλ is a real valued, non-negative weight function normalized so that
∫ 1

0
λ(t)dt = 1. Since

special cases ofλ(t) are particularly interesting such asλ(t) = (1 + c)tc, c > −1, for whichVλ

is known as the Bernardi operator, and

λ(t) =
(c+ 1)δ

λ(δ)
tc
(

log
1

t

)δ−1

, c > −1, δ ≥ 0

which gives the Komatu operator. For more details see [5].
First we show that the classTR(µ, γ, η, α) is closed underVλ(f).

Theorem 4.1.Letf ∈ TR(µ, γ, η, α). ThenVλ(f) ∈ TR(µ, γ, η, α).

Proof. By definition, we have

Vλ(f) =
(c+ 1)δ

λ(δ)

∫ 1

0

(−1)δ−1tc(log t)δ−1

(
z −

∞∑
n=2

anz
ntn−1

)
dt

=
(−1)δ−1(c+ 1)δ

λ(δ)
lim

r→0+

[∫ 1

r

tc(log t)δ−1

(
z −

∞∑
n=2

anz
ntn−1

)
dt

]
,

and a simple calculation gives

Vλ(f)(z) = z −
∞∑

n=2

(
c+ 1

c+ n

)δ

anz
n.

We need to prove that

(4.1)
∞∑

n=2

2n− 1− α

1− α
· (2− γ + η)n−1(2)n−1

(2− γ)n−1(2− µ+ η)n−1

(
c+ 1

c+ n

)δ

an < 1.
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UNIFORMLY CONVEX FUNCTIONS 9

On the other hand by Theorem 2.1,f ∈ TR(µ, γ, η, α) if and only if
∞∑

n=2

2n− 1− α

1− α
· (2− γ + η)n−1(2)n−1

(2− γ)n−1(2− µ+ η)n−1

< 1.

Hencec+1
c+n

< 1. Therefore (4.1) holds and the proof is complete. �

Next we provide a starlike condition for functions inTR(µ, γ, η, α) andVλ(f).

Theorem 4.2. Let f ∈ TR(µ, γ, η, α). ThenVλ(f) is starlike of order0 ≤ γ < 1 in |z| < R1

where

R1 = inf
n

[(
c+ n

c+ 1

)δ

· 1− γ(2n− 1− α)

(n− γ)(1− α)
φ(n)

] 1
n−1

.

Proof. It is sufficient to prove

(4.2)

∣∣∣∣z(Vλ(f)(z))′

Vλ(f)(z)
− 1

∣∣∣∣ < 1− γ.

For the left hand side of (4.2) we have∣∣∣∣z(Vλ(f)(z))′

Vλ(f)(z)
− 1

∣∣∣∣ =

∣∣∣∣∣
∑∞

n=2(1− n)( c+1
c+n

)δanz
n−1

1−
∑∞

n=2(
c+1
c+n

)δanzn−1

∣∣∣∣∣
≤
∑∞

n=2(n− 1)( c+1
c+n

)δan|z|n−1

1−
∑∞

n=2(
c+1
c+n

)δan|z|n−1
.

This last expression is less than(1− γ) since

|z|n−1 <

(
c+ 1

c+ n

)δ
(1− γ)[2n− 1− α]

(n− γ)(1− α)
φ(n).

Therefore the proof is complete. �

Using the fact thatf is convex if and only ifzf ′ is starlike, we obtain the following:

Theorem 4.3. Let f ∈ TR(µ, γ, η, α). ThenVλ(f) is convex of order0 ≤ γ < 1 in |z| < R2

where

R2 = inf
n

[(
c+ n

c+ 1

)δ
(1− γ)[2n− 1− α]

n(n− γ)(1− α)
φ(n)

] 1
n−1

.

We omit the proof as it is easily derived.
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