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ABSTRACT. In this paper, we introduce a new class of functions which are analytic and uni-
valent with negative coefficients defined by using a certain fractional calculus and fractional
calculus integral operators. Characterization property,the results on modified Hadamard product
and integrals transforms are discussed. Further, distortion theorem and radii of starlikeness and

convexity are also determined here.
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1. INTRODUCTION AND PRELIMINARIES

Fractional calculus operators have recently found interesting applications in the theory of
analytic functions. The classical definition of fractional calculus and its other generalizations
have fruitfully been applied in obtaining, the characterization properties, coefficient estimates

and distortion inequalities for various subclasses of analytic functions.
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2 G. MURUGUSUNDARAMOORTHY, THOMAS ROSY, AND MASLINA DARUS

Denote byA the class of functions of the form
(1.1) f(z) = z+Zanz”
n=2

which are analytic and univalent in the open dise= {z : z € C and|z| < 1}. Also denote by
T [11] the subclass aoft consisting of functions of the form

1.2) = ianz . (a, >0).

n=2

A function f € Ais said to be in the class of uniformly convex functions of ordedenoted
by UCV («) [9] if

f'(2) a} 2f"(2)

- Ref1+ 3750 —a} 0|3 -1,

and is said to be in a corresponding subclasS @1/ («) denote byS,(«) if
2f'(2) 2f'(2)

&9 re{ 5t —a 2|3 -1,

where—1 <a <1landz € E.

The class of uniformly convex and uniformly starlike functions has been extensively studied
by Goodmanl([3,4] and Ma and Mindal [6].

If f of the form ) and(z) =z + > -, b,z" are two functions ir4, then the Hadamard
product (or convolution) of andg is denoted byf x g and is given by

(1.5) (f % g)(z —z+Zanbz
Let ¢(a, c; z) be the incomplete beta function defined by

(1.6)

( ;nz", c#0,-1,-2,...,

where(),, is the Pochhammer symbol defined in terms of the Gamma functions, by

) _F()\+n)_ 1 n=0
" T) ] AMAFD)A+2)---(A+n—1), neN}
Further suppose
L(a,c)f(z) = ¢(a,c;2) * f(z), for feA
whereL(a, ¢) is called Carlson - Shaffer operator [2].

For real numbey, (—oco < u < 1) andy (—oco < v < 1) and a positive real numbet we
define the operator

U A —s A
by

o

2 7+7] n— 1(2) —1
1.7 Ul =z + anz",
( ) 0 Z n 1 2_M+7])n 1
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UNIFORMLY CONVEX FUNCTIONS 3

which for f(z) # 0 may be written as
F2-y)F2—-p+)

D0 f(z); 0< <]

[2—~+n)
OB v ey
P (2); —oo<pu <0
L2—7y+mn) 0" I12)

whereJj"" andl; 7" are fractional differential and fractional integral operators [12] respec-
tively.
It is interesting to observe that
Urf(z) =T(2 - )2 Dif(z), —oo<p<l
(1.9) = QL f(2)
andD* is due to Owal[l7]U* is called a fractional integral operator of ordenf —oco < ;1 < 0

and is called fractional differential operator of ordeif 0 < p < 1.
Further note that

Up"f(z) = f(z) i p=7=0
VLI f(2) =2f'(2) I p=nq=1
For—1 < a < 1,afunctionf € Ais said to be inS” _  («), if and only if

H,YsM
AU ()Y AU ()Y
1.10 Red —= -~ - 2 P . LA — | A.
(1.10) { e () “} S TSR T L

where—oco < < 1, —oco < vy < 1,andn € R,.
Now let us writeT' R(y1,v,n, o) = S5, (o) N T
It follows from the statement, that for = v = 0, we have

Surm(@) = 5p(a)

1208y
and fory = v — 1, we have
Sh o n(a) =UCV ().
The classes,(«) andUCV («) are introduced and studied by various authors including [8],

[9] and [1].

2. CHARACTERIZATION PROPERTY

We now investigate the characterization property for the funcfidn belong to the class
S ., »(), by obtaining the coefficient bounds.
Definition 2.1. A function f is in T R(u, v, n, ) if f satisfies the analytic characterization
z U%%W z /! z U%%W z !/
2 Re [ ZUBZIIE) (| 1202 (2)
Up..”" f(2) Us"f(2)
where0 < a <1, —co< pu<1,—oco<vy<1,andn € R.
Theorem 2.1(Coefficient Bounds)A functionf defined by[(1]2) is in the clagsR(u, v, 7, @)
if and only if

_]_7

— =7+ mna1n 20-1-a
2.2 ' o
( ) ; (2_7)11—1(2—/14—7])”_1 1—a |CL | >~

where0 < a <1, —co< pu<1, —oo<~vy<1,andn € R.
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Proof. It suffices to show that

AU f(2)) 1' < Re{w - a},

U f(z) Uy f(2)
and we have
2(Us " f(2)) 2(Us " f(2))
> _ < i — .
UL (2) 1MJ“{ UL (2) 1}+“ *)
That is
U%%W / U#:%ﬁ / Uﬂ Y
S IOV I 1 v (O WML vl (O
U " f(2) U f(2) Uéﬁ?” (2)
< Zagln ~ i)
T 1= d(n)an

where
(2 -7 + 7])n—1(2>n—1
Y(n) = .
S ) NG T
The above expression is bounded(by- /) and hence the assertion of the result.
Now we need to show that € T R(u,~,n, «) satisfies the coefficient inequality. ff €
TR(p, 7,1, a) andz is real then[(2]1) yields

1> np(n)az""! NS L= s, = Dp(n)ayz""!
1- ZZOZQ w(n)anz”*1 ‘= 1— Zn:Q Yﬁ(”)an«z"*l ‘
Letting z — 1 along the real axis leads to the desired inequality
Z(Zn —1—-a)Y(n)a, <1-—a.

n=2

Corollary 2.2. Let a functionf defined by{(1]2) belong to the claB$(, v, n, a). Then

"= (2= +N)n-1(2)n-1 on—1—a’ -

Next we consider the growth and distortion theorem for the claBéu, v, 7, o). We shall
omit the proof as the techniques are similar to various other papers.

Theorem 2.3. Let the functionf defined by[(1]2) be in the clag&?(, v, 7, ). Then

(2—7)2—p+n)(1 -
22=v+n)@B—a)

Q) < e g(z)

2=72—p+n(l—-a)
22 -=7+1)(3 - a)

(2.3) 2] — 2]

<[zl + 2/

and

a1 < g

(2=7)2—pt+nl—a)

L B Sy Ty
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The boundg (2]3) anfl (2.4) are attained for functions given by

2= ptn)d-a)?
@9 M= e e —a

Theorem 2.4. Let a functionf be defined by (1]2) and

(2.6) g(z) =z — Z b, 2"

be in the clas§g"R(u, v,n, «). Then the functiork defined by

(2.7) h(z) = (1 - N F(2)+Ag(z) = 2 - an

whereg, = (1 — AN)a,, + \b,, 0 < X < 1lisalsointhe clas§’ R(u,~,n, ).
Proof. The result follows easily by using (2.2) and (2.7). O
We prove the following theorem by defining functiofigz) (7 = 1,2, ...,m) of the form

) Y

(2.8) fi(z)=2z— Zan,jz” for a,; >0, zeU.

Theorem 2.5(Closure theorem)Let the functions/;(z) (j = 1,2...,m) defined by[(2]8) be
in the classed"R(u, v, n,a;) (j = 1,2,...,m) respectively. Then the functidniz) defined by

is in the class'R(u, v, n, «) where

(2.9) a= 1211111 {o;j} with 0<o; <1.

Proof. Sincef; € TR(u,v,1,a;) (j = 2,...,m) by applying Theorern 2|1, we observe that

;w(n)@n —1—a) (% Zaw) = — Z (Zl/J 2n — 1 — oz)aw)

%il—% <1l-—a,

which in view of Theorerh 2|1, again implies that T R(y, v, 7, «) and the proof is complete.
O

3. RESULTS INVOLVING MODIFIED HADAMARD PRODUCTS
We let

o0

(f*xg)(z)=2z— Zanbnz”

n=2
be the modified Hadamard product of functighandg defined by[(1.R) and (2.6) respectively.
The following results are proved using the techniques of Schild and Silvefmian [10].
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6 G. MURUGUSUNDARAMOORTHY, THOMAS ROSY, AND MASLINA DARUS

Theorem 3.1. For functionsf;(z) (j = 1,2) defined by[(2]8), lef.(z) € TR(x,~,n,«) and
fQ(Z) € TR(Ma Y1, ﬂ) Thenfl * f2 S TR(H’? Y1, S) where

2(1 —a)(1 - P)
3.1 = =1-
R [ IC) I ey
wherey(2) = % The result is the best possible for
1 -« 9
fl(z) =zZ= (S—Oé)w(Q)Z )
L __1=B
RO =2 5 e

— (2=
wherey)(2) = m

Proof. In the view of Theorerp 2]1, it suffices to prove that

oo

2n—1-—
Z n—€¢(n)an 14n,2 S 17
n=2 1 _5 7 7

where¢ is defined by[(3]1) under the hypothesis, it follows frgm|(2.1) and the Cauchy-Schwarz
inequality that

i [2n — 1 —a]?[2n — 1 — B]/?
n=2 \/(1_0'/)(1_6)
Thus we need to find large$tsuch that

271—1—5 [2n — 1 — a]Y22n — 1 — g]V/2
nz; 1—¢ n)an10n2 < Z N () y/an 12 < 1

(3.2) (n)/an g < 1.

or, equivalently that
2n —1—a)'?2n—1- B2  1-¢

n,10n2 < : for > 2.
Vi Vi—ai-5  moi-g o
By virtue of (3.2) it is sufficient to find the largestsuch that
V(I —a)(1-p)

[2n — 1= ] 2[2n — 1= 3]/ (n)
b aY?2n —1 -0V 1-¢

Ji-ai-p  m-i-g o "
which yields
fo1o 2(n = 1)(1 = a)(1 = 9)
T (2n-1-0)2n—-1-0)Y((0n) - (1-a)(l-p)
where
= )a1(2)na
(3.3) Y(n) = B =it for n>2.
Sincey(n) is a decreasing function af (n > 2), we have
_ _q_ 2(1 = a)(1 = B)
wherey(2) = 2=20E5 Thus completes the proof. O
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UNIFORMLY CONVEX FUNCTIONS 7

Theorem 3.2. Let the functiong;(z) (j = 1, 2) defined by[(2]8) be in the clag5?(u, v, 7, ).
Then(f, = f2)(z) € TR(u,v,n,9), where

5—1_ 2(1 — «a)?
o B-a®W@) - (1)
with (2) = 255520
Proof. By taking 3 = « in the above theorem, the results follows. O

Theorem 3.3. Let the functionf defined by[(1]2) be in the clag&?(y, v, 7, «). Also let
g(z) =z — anz” for b, < 1.
n=2

Then(f x g)(z) € TR(u,v,n, a).
Proof. Since

D e(n)2n — 1= a)|apby| =Y ¢(n)(2n — 1 — a)ay|b,|

< Z v(n)(2n —1 - a)a,
n=2
<1—a (by Theoren 2]1),
wherey (n) is defined by[(3.3). Hence it follows théf * ¢)(z) € TR(i, 7,1, ). O

Corollary 3.4. Let the functiory defined by{(1]2) be in the cla8%R(y, v, 7, ). Also letg(z) =
z—= 0 g b,z for0 < b, <1.Then(f *g)(z) € TR(p,7,n, ).

For functions in the clas§ R(y, v, n, o) we can prove the following inclusion property also.

Theorem 3.5. Let the functiong;(z) (j = 1,2) defined by[(2]5) be in the clag5?(u, v, 7, «).
Then the functioh defined by

Bz = 2= Y la s+ a2 )"

is in the class'R(u, v, n, A) where -
N2
v A
2(2 — v+
R e e

Proof. In view of Theoreny 2]1, it is sufficient to prove that
(3.4) ; ¢(n)%(ail + ai,z) <1

wheref;(z) € TR(u,7,n,) (j = 1,2). We find from [2.8) and Theorem 2.1, that

2 00
w} a2 < [w(n)

n=2

2

2n—1—«
T4l <1

(3.5) {wn)

l—«
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8 G. MURUGUSUNDARAMOORTHY, THOMAS ROSY, AND MASLINA DARUS

which would yield

o0

(3.6) Zl e 2(a2 vat,) <1
. n:22 1—a n,1 n,2) — =+

On comparing[(3]5) andl (3.6) it can be seen that inequality (3.4) will be satisfied if
2n—1-—A 1 on—1-al”
bz <5 om0 @ ),

- < =
¢(TL) 1— A (a’n,l + an,2> =9 1—a

That is, if

4(1 — «)?
(3.7) Al G T %) — 21—

wherey(n) is given by [3.B). Hence we conclude from (3.7)

4(1 — a)?
A= Al a) = 1= G eu(2) = 2(1 )
wherey)(2) = (23(72)(% which completes the proof. O

4. INTEGRAL TRANSFORM OF THE CLASS T'R(u, v, 1, @)

For f € TR(u,~,n, «) we define the integral transform

BNE = [ a6 !y,

where\ is a real valued, non-negative weight function normalized sof@wa(t)dt = 1. Since
special cases of(t) are particularly interesting such ag) = (1 + ¢)t¢, ¢ > —1, for which V,
is known as the Bernardi operator, and

(c+1)° 1\
At) = —=—t° | log — -1, 6>0
which gives the Komatu operator. For more details see [5].

First we show that the clagsR(u, v, n, ) is closed undeV,(f).

Theorem 4.1.Let f € TR(u,~,n,«). ThenVi(f) € TR(u,~,n, ).
Proof. By definition, we have

c ot =
Wi (f) = ( )\4(_51)) /0 (—1)"¢(log t)°~ (z—Zanz"t”_1> dt

n=2

and a simple calculation gives

We need to prove that

“m—1—a 2=+ 7)n1(2)n1 c+1\°
(4.1) nZ:; l—a . (2_7)n—1(2_ﬂ+77)n—1 ( ) i< 1
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On the other hand by Theorém R/l T'R(p, v, 7, «) if and only if
i 2n—1-a (2=7+1n1(2)n

< 1.
~ l-a (2=7)n1(2—p+ )
Hencej—}t < 1. Therefore) holds and the proof is complete. O

Next we provide a starlike condition for functionsR(u, v, n, o) andV,(f).

Theorem 4.2.Let f € T R(u,7,n, ). ThenV,(f) is starlike of orderd < v < 1in |z| < R;
where

. c+n\’ 1—~2n—1-a) m
=y Qe&)' m—wa—a>¢m4
Proof. It is sufficient to prove
zN)=) -
(4.2) () II<1l—17.
For the left hand side of (4.2) we have
Yool =) (55 an2"!

awqxay_qz
VA(f)(2)

1— 2202(0 )anz”—l
ra(n = 1)(EE) a2

Tl (ER ) an

This last expression is less théh— ) since
§
1 c+1\" (1 —9)2n—1-q]
o < () S e
Therefore the proof is complete. O

Using the fact thaf is convex if and only ifz /" is starlike, we obtain the following:

Theorem 4.3.Let f € T R(u,v,n,«). ThenV,(f) is convex of ordep < v < 1in |z| < Ry
where

1

c+n\’ (1=9)2n—1-aq] o
(1) S o)

We omit the proof as it is easily derived.

R2 = inf

n
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