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The object of our paper is to determine the order of growth to infinity of some
family of entire functions. For an arbitraryα > 0 we introduce the following
function

(1) Φ(z, α) =
∞∑

k=0

zk

(k!)α
, α > 0, z ∈ C.

Note that
Φ(z, 1) = ez.

It is easy to show that ifα > 0 then the functionΦ(z, α) is defined by series
(1) for all z in the complex planeC.

Proposition 1. The radius of convergence of the series (1) is equal to infinity.

Proof. According to the Cauchy formula (see, e.g., [2, 2.6]) the radius of con-
vergence of the series

∞∑
n=0

cnz
n

is equal to

R =
1

lim
n→∞

n
√
|cn|

.

In our casecn = (n!)−α. We may use the Stirling formula (see [2, 12.33]) in the
following form

(2) n! =
√

2πn
(n

e

)n
(

1 +
θn

11n

)
, 0 < θn < 1, n = 1, 2, . . .
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As a result we get

1
n
√
|cn|

= (n!)α/n

=

[√
2πn

(n

e

)n
(

1 +
θn

11n

)]α/n

=
(n

e

)α

(2π)α/2neα(ln n)/2n

(
1 +

θn

11n

)α/n

=
(n

e

)α

(1 + εn) →∞, n →∞,

whereεn = o(1), n →∞.

Corollary 2. The functionΦ(z, α), α > 0, is entire function ofz.

The functionΦ(z, α) with α = 1
q

arises in estimates of the solutions of some
Volterra type integral equations with kernel fromLp, where 1

p
+ 1

q
= 1. We

mention also the equation with convolution on the circle which these functions
satisfy. For two arbitrary2π-periodical functionsf(θ) andg(θ) introduce their
convolution

(f ∗ g)(θ) =
1

2π

∫ 2π

0

f(θ − ϕ)g(ϕ)dϕ.

If we denote

(3) fα(θ) = Φ(eiθ, α),

then it is easy to check that this function satisfies the following equation

(4) (fα ∗ fβ)(θ) = fα+β(θ), f1(θ) = exp eiθ.
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It easy to show that every solution of equation (4) has the form (3).
It is well known that forΦ(z, α) the following formula

ln Φ(x, α) = αx1/α + o
(
x1/α

)
, x → +∞

is valid (see, e.g. [1, 4.1, Th. 68]). However, in some applications, an explicit
estimate for the error of the above asymptotic approximation is desirable.

We are going to prove the following inequality.

Theorem 3. Let0 < α ≤ 1. Then for allx ≥ 1 the inequality

(5) ln Φ(x, α) ≤ αx1/α +
1− α

α
ln x + ln(12α−2)

is valid.

Remark 1. The order in estimate (5) is precise, at least whenα = 1/q, where
q is natural, because in this case for allx ≥ 1 the inequality

(6) ln Φ(x, α) ≥ αx1/α

is true. As it easy to verify, forα = 1 the inequality (6) becomes equality.

At first we prove the inequality (5) for α = 1
q
, whereq is natural, and after

that we use the interpolation technique to prove it for allα, 0 < α ≤ 1.

Lemma 4. Let q be a natural number andQ(x) be the following polynomial

(7) Q(x) =

q−1∑
k=0

(k + 1)
xk

[(k + q)!]1/q
.
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Then there exists a constantc1 ≤ 2 so that

(8)
∫ ∞

0

e−
1
q
tqQ(t)dt ≤ c1q

2.

Proof. It follows from (7) that the inequality

(9) Q(t) =

q∑
k=1

k
tk−1

[(k + q − 1)!]1/q
≤

q∑
k=1

ktk−1

is valid for all t > 0. Then∫ 1

0

e−
1
q
tqQ(t)dt ≤

∫ 1

0

e−
1
q
tq

q∑
k=1

ktk−1dt(10)

≤
q∑

k=1

k

∫ 1

0

tk−1dt =

q∑
k=1

1 = q.

Further, fort ≥ 1 it follows from (9) that

Q(t) ≤
q∑

k=1

ktk−1 ≤ tq−1

q∑
k=1

k = tq−1 q(q + 1)

2
.

Using this estimate we get∫ ∞

1

e−
1
q
tqQ(t)dt ≤ q(q + 1)

2

∫ ∞

1

e−
1
q
tqtq−1dt(11)

=
q(q + 1)

2
e−1/q <

q(q + 1)

2
.
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Taking into consideration (10) and (11) we may write∫ ∞

0

e−
1
q
tqQ(t)dt =

∫ 1

0

e−
1
q
tqQ(t)dt +

∫ ∞

1

e−
1
q
tqQ(t)dt

≤ q +
q(q + 1)

2
≤ 2q2,

and this inequality proves Lemma4.

We consider the auxiliary function

(12) Fq(x) =
∞∑

k=q

xk−q+1

(k!)1/q
, x ≥ 0.

Lemma 5. Letq ∈ N. Then with some constantc1 ≤ 2 the following inequality

(13) Fq(x) ≤ c1q
2e

1
q
xq

, x ≥ 0,

is valid.

Proof. Consider the derivative of the function (12), which equals to

(14) F ′(x) =
∞∑

k=q

(k − q + 1)
xk−q

(k!)1/q
=

∞∑
k=0

(k + 1)
xk

[(k + q)!]1/q
.

By introducing the following polynomial

(15) Q(x) =

q−1∑
k=0

(k + 1)
xk

[(k + q)!]1/q
,
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and comparing (14) and (15) we get

F ′(x)−Q(x) =
∞∑

k=q

(k + 1)
xk

[(k + q)!]1/q
.

Further we use the following equality

∞∑
k=q

(k + 1)
xk

[(k + q)!]1/q
= xq−1

∞∑
k=q

(k + 1)
xk−q+1

[(k + q)!]1/q
(16)

= xq−1

∞∑
k=q

Bk(q)
xk−q+1

(k!)1/q
,

where

Bk(q) =
k + 1

[(k + 1)(k + 2) · · · (k + q)]1/q
.

Hence, according to definition (12) and equality (16),

(17) F ′(x)−Q(x) = xq−1

∞∑
k=q

Bk(q)
xk−q+1

(k!)1/q
.

It is clear, thatBk(q) ≤ 1. Then it follows from equality (17) that

(18) F ′(x)−Q(x) ≤ xq−1F (x), x > 0.

In as much as
e

1
q
xq

[
e−

1
q
xq

F (x)
]′

= F ′(x)− xq−1F (x),
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we get from the inequality (18) that[
e−

1
q
xq

F (x)
]′
≤ e−

1
q
xq

Q(x), x > 0.

By integrating this inequality and taking into consideration thatF (0) = 0 we
get

e−
1
q
xq

F (x) ≤
∫ x

0

e−
1
q
tqQ(t)dt, x > 0.

According to Lemma4∫ x

0

e−
1
q
tqQ(t)dt ≤ c1q

2, x > 0,

and consequently
F (x) ≤ c1q

2e
1
q
xq

, x > 0.

Lemma 6. Let q be a natural number andP (x) be the following polynomial

(19) Pq(x) =

q−1∑
k=0

xk

(k!)1/q
.

Then the estimate

(20) Pq(x)e−
1
q
xq

≤ q, x > 0,

is valid.
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Proof. It is clear that for anyp > 0 the maximum of the function

fp(x) = xpe−x, x ≥ 0,

equals to
max fp(x) = fp(p) = ppe−p.

Then

max
x≥0

xke−
1
q
xq

= qk/qmax
y≥0

yk/qe−y = qk/q

(
k

q

)k/q

e−k/q = kk/qe−k/q.

Hence,

(21)
xk

(k!)1/q
e−

1
q
xq

≤ kk/qe−k/q

(k!)1/q
.

Taking into account the Stirling formula (2)

(k!)1/q = (2πk)1/2qkk/qe−k/q

[
1 +

θk

11k

]1/q

≥ (2πk)1/2qkk/qe−k/q,

and using estimate (21) we get

xk

(k!)1/q
e−

1
q
xq

≤ kk/qe−k/q

(2πk)1/2qkk/qe−k/q
= (2πk)−1/2q ≤ 1.

Then according to definition (19)

Pq(x)e−
1
q
xq

=

q−1∑
k=0

xk

(k!)1/q
e−

1
q
xq

≤
q−1∑
k=0

1 = q.
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Lemma 7. Letα = 1
q

andq ∈ N. Then with some constantc2 < 3 the following
inequality

(22) Φ

(
x,

1

q

)
≤ c2q

2xq−1e
1
q
xq

, x ≥ 1,

is valid.

Proof. Obviously,

Φ

(
x,

1

q

)
=

∞∑
k=0

xk

(k!)1/q
=

q−1∑
k=0

xk

(k!)1/q
+ xq−1

∞∑
k=q

xk−q+1

(k!)1/q
, x ≥ 1.

Hence, taking into account definitions (12) and (19), we may write

(23) Φ

(
x,

1

q

)
= P (x) + xq−1Fq(x).

We may estimate the function in the right hand side of (23) by inequalities (20)
and (13):

Φ

(
x,

1

q

)
≤ qe

1
q
xq

+ xq−1c1q
2e

1
q
xq

≤ (1 + c1)q
2xq−1e

1
q
xq

, x ≥ 1,

wherec1 ≤ 2, according to Lemma5.

We proved estimate (22) for integersq ≥ 1 only. Using this estimate we may
prove it for an arbitraryq ≥ 1 by complex interpolation. For this purpose we
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introduce the following function

(24) f(ζ) = f(ζ, b) = bζ−1e−bζ

∞∑
k=0

bkζ

(k!)ζ
,

whereζ = ξ + iη, ξ > 0,−∞ < η < ∞, b ≥ 1.

Lemma 8. Let0 < ξ ≤ 1. Then with some constantc0 ≤ 12 the inequality

(25) |f(ξ + iη)| ≤ c0

ξ2
, 0 < ξ ≤ 1, −∞ < η < ∞, b > 0,

is valid.

Proof. According to definition (24),

f(ξ + iη) = bξ+iη−1e−b(ξ+iη)

∞∑
k=0

bk(ξ+iη)

(k!)(ξ+iη)
,

and hence

|f(ξ + iη)| ≤ bξ−1e−bξ

∞∑
k=0

bkξ

(k!)ξ
= bξ−1e−bξΦ(bξ, ξ),

where the functionΦ is defined by equality (1).
Puttingξ = 1/q we get

(26)

∣∣∣∣f (
1

q
+ iη

)∣∣∣∣ ≤ b(1−q)/qe−b/qΦ

(
b1/q,

1

q

)
.
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According to Lemma7 for all integersq ≥ 1 the following inequality

(27) Φ

(
b1/q,

1

q

)
≤ c2q

2b(q−1)/qeb/q, b ≥ 1,

is fulfilled. Hence, ifq ∈ N then it follows from (26) and (27) that

(28)

∣∣∣∣f (
1

q
+ iη

)∣∣∣∣ ≤ c2q
2, −∞ < η < ∞,

wherec2 ≤ 3.
Let us suppose now that1/(q + 1) < ξ < 1/q. We may use the Phragmen-

Lindelöf theorem (see [3, XII.1.1]) and applying it to (28) we get for somet,
0 < t < 1, the following estimate

(29) |f(ξ + iη)| ≤ c2(1 + q)2(1−t)q2t, ξ =
1− t

q + 1
+

t

q
, −∞ < η < ∞.

In as much as1 + q ≤ 2q andq ≤ 1/ξ we have

(1 + q)2(1−t)q2t ≤ 22(1−t)q2 ≤ 4/ξ2.

In that case it follows from the inequality (29) that

|f(ξ + iη)| ≤ 4c2

ξ2
.

This inequality coincides with required inequality (25).
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Proof of Theorem3. Follows immediately from Lemma8 and from definitions
(1) and (24):

Φ(x, α) =
∞∑

k=0

xk

(k!)α
= x(1−α)/αeαx1/α

f(α, x1/α) ≤ 4c0α
−2x(1−α)/αeαx1/α

,

wherec0 < 3. Obviously, this inequality is equivalent to (5).

In closing we prove the inequality (6) (see Remark1).

Proposition 9. Let q ∈ N. Then

Φ

(
x,

1

q

)
≥ e

1
q
xq

, x ≥ 0.

Proof. Denote

g(x) = Φ

(
x,

1

q

)
.

Obviously,

g′(x) =
∞∑

k=1

k
xk−1

(k!)1/q
≥

∞∑
k=q

k
xk−1

(k!)1/q
≥

∞∑
k=q

xk−1

[(k − q)!]1/q

= xq−1

∞∑
k=0

xk

(k!)1/q
= xq−1g(x).

Hence,

(30) g′(x)− xq−1g(x) ≥ 0, x > 0.
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In as much as
e

1
q
xq

[e−
1
q
xq

g(x)]′ = g′(x)− xq−1g(x),

we get from the inequality (30) that[
e−

1
q
xq

g(x)
]′
≥ 0, x > 0.

Then sinceg(0) = 1 we have

e−
1
q
xq

g(x) ≥ 1.

Hence,
g(x) ≥ e

1
q
xq

, x > 0.
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