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The object of our paper is to determine the order of growth to infinity of some

family of entire functions. For an arbitrary > 0 we introduce the following
function

ok
z
Q) O(z,a) = E (i) a>0, zeC.
k=0
Note that
O(z,1) = €.

It is easy to show that ifv > 0 then the functionb(z, «) is defined by series
(2) for all z in the complex plané€.

Proposition 1. The radius of convergence of the serigki§ equal to infinity.

Proof. According to the Cauchy formula (see, e.¢., 2.6]) the radius of con-
vergence of the series

Z 2"

n=0

1

lim {/]c,|

n—oo

is equal to

In our case;,, = (n!)~*. We may use the Stirling formula (se& [L2.33]) in the
following form

n 0
(2) n! = 27m<g) (1+ﬁ), 0<6,<1,n=1,2,...
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As a result we get
1

V |cn

= (n!)a/n

- [ 2y (Hfl_nn)r/"

a a/n
— (E) (zﬁ)a/Qnea(lnn)/Qn (1 + i)

e 11n
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Corollary 2. The function®(z, «), a > 0, is entire function ot.

The function®(z, ) with a = _ arises in estimates of the solutions of some Title Page
Volterra type integral equations with kernel frofy, Where]l) + é = 1. We Contents
mention also the equation with convolution on the circle which these functions <« NS
satisfy. For two arbitrargr-periodical functionsf(¢) andg(6) introduce their
convolution ) < >

1 Y
(Fe9)6) = 5= | 16 - ola(e)de. Go Back
0
If we denote Close
3) fa(0) = B, a), 2
Page 3 of 15

then it is easy to check that this function satisfies the following equation
(4) (fa % fﬁ) (9) = fa—i—ﬁ(e)) fl (9) fd exp 67;9. J. Ineq. Pure and Appl. Math. 5(3) Art. 67, 2004

http://jipam.vu.edu.au



http://jipam.vu.edu.au/
mailto:
mailto:shavkat_alimov@hotmail.com
mailto:
mailto:
mailto:onuralp@sarkor.uz
http://jipam.vu.edu.au/

It easy to show that every solution of equatid ifas the formg).
It is well known that for®(z, ) the following formula

In®(z,a) = azt/* + o (xl/o‘) , T — 400

is valid (see, e.g.1l, 4.1, Th. 68]). However, in some applications, an explicit

estimate for the error of the above asymptotic approximation is desirable.
We are going to prove the following inequality.

Theorem 3. Let0 < o < 1. Then for allx > 1 the inequality

11—«

(5) In®(z, o) < '/ + Inz + In(12a72)

«

is valid.

Remark 1. The order in estimates] is precise, at least whem = 1/¢, where
¢ is natural, because in this case for all> 1 the inequality

(6) In®(z, a) > az'/®
is true. As it easy to verify, far = 1 the inequality §) becomes equality.

At first we prove the inequalityS) for o = é whereq is natural, and after
that we use the interpolation technique to prove it fonal) < o < 1.

Lemma 4. Letq be a natural number an@(z) be the following polynomial

q—1 ok
@) Qz) = (k+ Vg i
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Then there exists a constant< 2 so that

(8) / e ' Qt)dt < c1g>

0
Proof. It follows from (7) that the inequality

: ! k—1
9 t) = k kt
(9) Q) kX_j [ w_Z

is valid for allt > 0. Then

1 1 q
(10) / e”d" Q(t)dt < / e a" > kttdt
0 0 k=1

gik/ltk_ldt:ilzq.
k=1 v0 k=1

Further, fort > 1 it follows from (9) that
<Zk,tkz 1<tq 1Zk qqu_'_l)

Using this estimate we get

(11) / e Q(t)dt < @/ e~ a1 gt
1 1
_alg+1) iy _ qlq+1)
2 2
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Taking into considerationl() and (L1) we may write

/OOO e " Q(t)dt = /01 e a" Q(t)dt + /loo e i Q(t)dt

q(qg+1) <28,
2
and this inequality proves Lemnda ]

<q+

We consider the auxiliary function

An Inequality Associated with
Some Entire Functions

© k: q+1
12 > 0. Shavkat A. Ali d
( ) kZ:q l/q a\Cl)n?Jr Alp :mgx -
Lemma 5. Letq € N. Then with some constant < 2 the following inequality
) Title Page
(13) Fy(z) < ag’er”, x>0, Contents
is valid. 44 (S
Proof. Consider the derivative of the functiohZ), which equals to < >
° rk—a > zk Go Back
14 Fl(x) = k—q+1 = E4+1)———.
A9 Pl =2 ko Vg = L0+ D gy Close
By introducing the following polynomial Qi
o1 i Page 6 of 15
X
1 = 1
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and comparingi4) and (L5) we get

[e.e] :Ck
Fl(z) = Qx) =) (k+ DW

Further we use the following equality

o) k o0 mquJrl

a8 S+ D~ kG g

k=q k=q

k q+1

— 9 IZBk 1/q

where
k+1

B = .
M) = G D0+ kol
Hence, according to definitiod ?) and equality 16),

k q+1

/ o 1
(17) F'(z) — Qz) = a9~ ZBk (ORG

It is clear, thatB,(¢) < 1. Then it follows from equality {7) that
(18) F'(z) = Q(z) <2 'F(z), x>0.

In as much as .
q _1.4q
ea” [e a” F(x)} = F'(z) — 27 'F(2),
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we get from the inequalityl@®) that
[(féqu(x)} <e d™Q(z), >0

By integrating this inequality and taking into consideration théh) = 0 we
get
eféqu(x) < / eiétqQ(t)dt, x> 0.
0

According to Lemmat

and consequently

q

F(z) < 01q2e%z ,  x>0.
]

Lemma 6. Letq be a natural number ané(z) be the following polynomial

g—1 ok
k=0
Then the estimate
(20) Py(z)e i <q, x>0,

is valid.
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Proof. It is clear that for any > 0 the maximum of the function
fp(x> - Ip 9 x > 0

equals to
max f,(v) = f,(p) = p’e".
Then
- k k/q
maxzFe 1% = qk/qmaxyk/qe V=g k/q (_) e~ kla — Lklap=k/a
>0 y>0 q
Hence,
21) T e R

IR I
Taking into account the Stirling formul&)
Ok

(k!)l/q _ (27rk)1/2qkk/q€—k/q [1 + _} (QWk)lﬂqkk/qe—k/q’

11k

and using estimate?() we get
xk —lazq k‘k/q€7k/q

G07a " S (k) alklae K
Then according to definitiorLQ)
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Lemma?7. Leta = % andq € N. Then with some constant < 3 the following
inequality

1
(22) ¢ (37’ _> < efrt e, 1>,
q

is valid.

Proof. Obviously,

1 2.k i 2 gh-atl
Z) = — q—1
*(#) =3 = St X T

(]

x> 1.

Hence, taking into account definitions4j and (L9), we may write

(23) o (a: é) — P(x) + 27 Ey(2).

We may estimate the function in the right hand side2d) py inequalities 20)
and (3):

1
i) (x _) < ger™ + ot eter™ < (L4 a)gfatled™, x> 1,
q

wherec; < 2, according to Lemma. O

We proved estimate?@) for integersy; > 1 only. Using this estimate we may
prove it for an arbitrary; > 1 by complex interpolation. For this purpose we
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introduce the following function

(24) F(Q) = F(G0) =" -bfz k,c,

where¢ =& +in, £ >0, —oco <n < o0, b > 1.

Lemma 8. Let0 < £ < 1. Then with some constanf < 12 the inequality

(25)  |f(E+in) <

0<éEL<], —co<n< oo, b>0,

52’
is valid.

Proof. According to definition 24),

- O pk(E+in)
JE+im) = Fe IO S ey
k:O

and hence
. 1 e bFE 4
|f(€+in)| < b te bEZW = b e (i, ),
k=0

where the functiorb is defined by equalityl().
Putting¢ = 1/q we get

(26) 'f <1 + m) ‘ < p1=D/a,=b/ag (bl/q, l) .
1 q
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According to Lemm& for all integersg > 1 the following inequality

(27) ) <bl/q7 1) < 02q2b(q—1)/q6b/q’ b> 1,
q

is fulfilled. Hence, ifg € N then it follows from @6) and ¢7) that

1
(28) F(bam)| e x<n<m
q
An Inequality Associated with
WheI’ECQ < 3. Some Entire Functions
Let us suppose now thay (¢ + 1) < £ < 1/q. We may use the Phragmen- Shavkat A. Alimov and
Lindelof theorem (see3 XI11.1.1]) and applying it to 28) we get for some, Onur Alp tihan
0 < t < 1, the following estimate
1t ¢ Title Page

(29) |f(€+in)| < ea(1+ ) g, ¢ = 1 + 7 —00 <1 < 0. Contents

44 44
In as much ag + ¢ < 2¢ andgq < 1/¢ we have

< >

1+ 201-1) 2t « 92(1-1) (2 « 4 /¢2.
(I+¢) Vg < g <4/¢ o Back
In that case it follows from the inequalitg 9) that Close
. 462 Quit
|f(E+in)| < —
3 Page 12 of 15
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Proof of Theoren3. Follows immediately from Lemma& and from definitions

(1) and @4):
© k
O(z,0) = Z (/j')a - x(lfa)/aeml/af(a, fﬂl/a) < 4coa’2x(1*a)/ae“f”l/a,
k=0 ’

wherec, < 3. Obviously, this inequality is equivalent t&)(
In closing we prove the inequality) (see Remark).

Proposition 9. Letq € N. Then
1 1.9
@(x,—) >ed” 1 >0.
q

Proof. Denote

Obviously,
/ oo k1 o k-1 i k-1
g'(z) = Zk(kl)l/q = Zk(kl)l/q £ Z [(k — q)!]/a
k=1 k=q k=q
-1 - zk -1
=) G
k=0

Hence,
(30) g(z) — 2" g(z) 20, 2>0.

O
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In as much as

1 Y

en” e g(x)] = ¢ (x) — 2
we get from the inequality30) that

-1

g9(),

1

!/
[e_Exqg(x)] >0, z>0.

Then sincey(0) = 1 we have

Hence,
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