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Abstract: In the present paper, the authors investigate a differential inequality defined by
multiplier transformation in the open unit diskE = {z : |z| < 1}. As conse-
quences, sufficient conditions for starlikeness and convexity of analytic functions
are obtained.
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1. Introduction

LetAp denote the class of functions of the formf(z) = zp +
∑∞

k=p+1 akz
k, p ∈ N =

{1, 2, . . . }, which are analytic in the open unit discE = {z : |z| < 1}. We write
A1 = A. A functionf ∈ Ap is said to bep-valent starlike of orderα (0 ≤ α < p)
in E if

<
(
zf ′(z)

f(z)

)
> α, z ∈ E.

We denote byS∗p(α), the class of all such functions. A functionf ∈ Ap is said to be
p-valent convex of orderα (0 ≤ α < p) in E if

<
(

1 +
zf ′′(z)

f ′(z)

)
> α, z ∈ E.

Let Kp(α) denote the class of all those functionsf ∈ Ap which are multivalently
convex of orderα in E. Note thatS∗1(α) andK1(α) are, respectively, the usual
classes of univalent starlike functions of orderα and univalent convex functions of
orderα, 0 ≤ α < 1, and will be denoted here byS∗(α) andK(α), respectively. We
shall useS∗ andK to denoteS∗(0) andK(0), respectively which are the classes of
univalent starlike (w.r.t. the origin) and univalent convex functions.

Forf ∈ Ap, we define the multiplier transformationIp(n, λ) as

(1.1) Ip(n, λ)f(z) = zp +
∞∑

k=p+1

(
k + λ

p+ λ

)n

akz
k, (λ ≥ 0, n ∈ Z).

The operatorIp(n, λ) has recently been studied by Aghalary et.al. [1]. Earlier,
the operatorI1(n, λ) was investigated by Cho and Srivastava [3] and Cho and Kim
[2], whereas the operatorI1(n, 1) was studied by Uralegaddi and Somanatha [11].

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Starlikeness and Convexity
of Analytic Functions

Sukhwinder Singh, Sushma Gupta
and Sukhjit Singh

vol. 9, iss. 3, art. 81, 2008

Title Page

Contents

JJ II

J I

Page 4 of 14

Go Back

Full Screen

Close

I1(n, 0) is the well-known S̆alăgean [10] derivative operatorDn, defined as:Dnf(z) =
z +

∑∞
k=2 k

nakz
k, n ∈ N0 = N ∪ {0} andf ∈ A.

A functionf ∈ Ap is said to be in the classSn(p, λ, α) for all z in E if it satisfies

(1.2) <
(
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

)
>
α

p
,

for someα (0 ≤ α < p, p ∈ N). We note thatS0(1, 0, α) andS1(1, 0, α) are the
usual classesS∗(α) andK(α) of starlike functions of orderα and convex functions
of orderα, respectively.

In 1989, Owa, Shen and Obradovic̆ [8] obtained a sufficient condition for a func-
tion f ∈ A to belong to the classSn(1, 0, α) = Sn(α).

Recently, Li and Owa [4] studied the operatorI1(n, 0).
In the present paper, we investigate the differential inequality

<
(

(1− α)Ip(n+ 1, λ)f(z) + αIp(n+ 2, λ)f(z)

(1− β)Ip(n, λ)f(z) + βIp(n+ 1, λ)f(z)

)
> M(α, β, γ, λ, p)

whereα andβ are real numbers andM(α, β, γ, λ, p) is a certain real number given in
Section2, for starlikeness and convexity off ∈ Ap. We obtain sufficient conditions
for f ∈ Ap to be a member ofSn(p, λ, γ), for someγ (0 ≤ γ < p, p ∈ N). Many
known results for starlikeness appear as corollaries to our main result and some new
results regarding convexity of analytic functions are obtained.
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2. Main Result

We shall make use of the following lemma of Miller and Mocanu to prove our result.

Lemma 2.1 ([6, 7]). LetΩ be a set in the complex planeC and letψ : C2×E → C.
For u = u1 + iu2, v = v1 + iv2, assume thatψ satisfies the conditionψ(iu2, v1; z) /∈
Ω, for all u2, v1 ∈ R, with v1 ≤ −(1 + u2

2)/2 and for all z ∈ E. If the functionp,
p(z) = 1 + p1z + p2z

2 + · · · , is analytic inE and if ψ(p(z), zp′(z); z) ∈ Ω, then
< p(z) > 0 in E.

We, now, state and prove our main theorem.

Theorem 2.2. Letα ≥ 0, β ≤ 1, λ ≥ 0 and0 ≤ γ < p be real numbers such that
β(1− γ

p
) < 1

2
andβ ≤ α. If f ∈ Ap satisfies the condition

(2.1) <
(

(1− α)Ip(n+ 1, λ)f(z) + αIp(n+ 2, λ)f(z)

(1− β)Ip(n, λ)f(z) + βIp(n+ 1, λ)f(z)

)
> M(α, β, γ, λ, p),

then

<
(
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

)
>
γ

p

i.e.,f(z) ∈ Sn(p, λ, γ) where,

M(α, β, γ, λ, p) =

(1−α)γ
p

+ αγ2

p2 − α(1− γ
p )

2(p+λ)

1− β
(
1− γ

p

) .

Proof. Since0 ≤ γ < p, let us writeµ = γ
p
. Thus, we have0 ≤ µ < 1.

Now we define,

(2.2)
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)
= µ+ (1− µ)r(z), z ∈ E.
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Thereforer(z) is analytic inE andr(0) = 1.
Differentiating (2.2) logarithmically, we obtain

(2.3)
zI

′
p(n+ 1, λ)f(z)

Ip(n+ 1, λ)f(z)
−
zI

′
p(n, λ)f(z)

Ip(n, λ)f(z)
=

(1− µ)zr
′
(z)

µ+ (1− µ)r(z)
, z ∈ E.

Using the fact that

zI
′

p(n, λ)f(z) = (p+ λ)Ip(n+ 1, λ)f(z)− λIp(n, λ)f(z).

Thus (2.3) reduces to

Ip(n+ 2, λ)f(z)

Ip(n+ 1, λ)f(z)
= µ+ (1− µ)r(z) +

(1− µ)zr
′
(z)

(λ+ p)[µ+ (1− µ)r(z)]
.

Now, a simple calculation yields

(1− α)Ip(n+ 1, λ)f(z) + αIp(n+ 2, λ)f(z)

(1− β)Ip(n, λ)f(z) + βIp(n+ 1, λ)f(z)

=
(1− α) + α

(
µ+ (1− µ)r(z) + (1−µ)zr

′
(z)

(λ+p)[µ+(1−µ)r(z)]

)
(1− β) + β[µ+ (1− µ)r(z)]

[µ+ (1− µ)r(z)]

=
(1− α)[µ+ (1− µ)r(z)] + α

(
[µ+ (1− µ)r(z)]2 + (1−µ)zr

′
(z)

(λ+p)

)
(1− β) + β[µ+ (1− µ)r(z)]

= ψ(r(z), zr
′
(z); z)(2.4)

where,

ψ(u, v; z) =
(1− α)[µ+ (1− µ)u] + α

(
(µ+ (1− µ)u)2 + (1−µ)v

(λ+p)

)
(1− β) + β[µ+ (1− µ)u]

.
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Let u = u1 + iu2 andv = v1 + iv2, whereu1, u2, v1, v2 are reals withv1 ≤ −1+u2
2

2
.

Then, we have

< ψ(iu2, v1; z)

=
[(1− α)µ+ αµ2][1− β(1− µ)]

[1− β(1− µ)]2 + β2(1− µ)2u2
2

+
(1− µ)2[(1− α)β − α(1− β(1− µ)) + 2αβµ]u2

2 + α(1−µ)[1−β(1−µ)]v1

p+λ

[1− β(1− µ)]2 + β2(1− µ)2u2
2

≤

[
(1− α)µ+ αµ2 − α(1−µ)

2(λ+p)

]
[1− β(1− µ)]

[1− β(1− µ)]2 + β2(1− µ)2u2
2

+

[
(1− µ)2[(1− α)β − α(1− β(1− µ)) + 2αβµ]− α(1−µ)[1−β(1−µ)]

2(p+λ)

]
u2

2

[1− β(1− µ)]2 + β2(1− µ)2u2
2

=
A+Bu2

2

[1− β(1− µ)]2 + β2(1− µ)2u2
2

= φ(u2), say

≤ maxφ(u2)(2.5)

where,

A =

[
(1− α)µ+ αµ2 − α(1− µ)

2(λ+ p)

]
[1− β(1− µ)]

and

B = (1− µ)2[(1− α)β − α(1− β(1− µ)) + 2αβµ]− α(1− µ)[1− β(1− µ)]

2(p+ λ)
.
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It can be easily verified thatφ
′
(u2) = 0 implies thatu2 = 0. Under the given

conditions, we observe thatφ
′′
(0) < 0. Therefore,

(2.6) maxφ(u2) = φ(0) = M(α, β, γ, λ, p).

Let
Ω = {w : < w > M(α, β, γ, λ, p)}.

Then from (2.1) and (2.4), we haveψ(r(z), zr′(z); z) ∈ Ω for all z ∈ E, but
ψ(iu2, v1; z) /∈ Ω, in view of (2.5) and (2.6). Therefore, by Lemma2.1and (2.2), we
conclude that

<
(
Ip(n+ 1, λ)f(z)

Ip(n, λ)f(z)

)
>
γ

p
.

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Starlikeness and Convexity
of Analytic Functions

Sukhwinder Singh, Sushma Gupta
and Sukhjit Singh

vol. 9, iss. 3, art. 81, 2008

Title Page

Contents

JJ II

J I

Page 9 of 14

Go Back

Full Screen

Close

3. Corollaries

By takingp = 1 andλ = 0 in Theorem2.2. We have the following corollary.

Corollary 3.1. Let α ≥ 0, β ≤ 1 and 0 ≤ γ < 1 be real numbers such that
β(1− γ) < 1

2
andβ ≤ α. If f ∈ A satisfies the condition

<
(

(1− α)Dn+1f(z) + αDn+2f(z)

(1− β)Dnf(z) + βDn+1f(z)

)
> M(α, β, γ, 0, 1),

then

<D
n+1f(z)

Dnf(z)
> γ,

i.e. f(z) ∈ Sn(γ), where,

M(α, β, γ, 0, 1) =
(1− α)γ + αγ2 − α(1−γ)

2

1− β(1− γ)
.

By taking p = 1, n = 0 andλ = 0 in Theorem2.2. We have the following
corollary.

Corollary 3.2. Let α ≥ 0, β ≤ 1 and 0 ≤ γ < 1 be real numbers such that
β(1− γ) < 1

2
andβ ≤ α. If f ∈ A satisfies the condition

<
(

zf ′(z) + αz2f ′′(z)

(1− β)f(z) + βzf ′(z)

)
> M(α, β, γ, 0, 1),

then

<zf
′(z)

f(z)
> γ,
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i.e. f(z) ∈ S∗(γ), where,

M(α, β, γ, 0, 1) =
(1− α)γ + αγ2 − α(1−γ)

2

1− β(1− γ)
.

By takingp = 1, n = 0, λ = 0 andβ = 1 in Theorem2.2. We have the following
corollary.

Corollary 3.3. Letα ≥ 1 and 1
2
< γ < 1 be real numbers. Iff ∈ A satisfies the

condition

<
(

1 + α
zf ′′(z)

f ′(z)

)
> M(α, 1, γ, 0, 1),

then

<zf
′(z)

f(z)
> γ,

i.e. f(z) ∈ S∗(γ), where

M(α, 1, γ, 0, 1) = 1− α(1− γ)

(
1 +

1

2γ

)
By takingp = 1, n = 0, λ = 0 andβ = 0 in Theorem2.2, we have the following

result of Ravichandran et. al. [9].

Corollary 3.4. Let α ≥ 0 and0 ≤ γ < 1 be real numbers. Iff ∈ A satisfies the
condition

<zf
′(z)

f(z)

(
1 + α

zf ′′(z)

f ′(z)

)
> M(α, 0, γ, 0, 1),

then

<zf
′(z)

f(z)
> γ,
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i.e. f(z) ∈ S∗(γ), where,

M(α, 0, γ, 0, 1) = (1− α)γ + αγ2 − α(1− γ)

2
.

Remark1. In the case whenγ = α
2
, Corollary3.4 reduces to the result of Li and

Owa [5].

By taking p = 1, n = 0 andλ = 1 in Theorem2.2, we have the following
corollary.

Corollary 3.5. Let α ≥ 0, β ≤ 1 and 0 ≤ γ < 1 be real numbers such that
β(1− γ) < 1

2
andβ ≤ α. If f ∈ A satisfies the condition

<1

2

(
(2− α)f(z) + (2 + α)zf ′(z) + αz2f ′′(z)

(2− β)f(z) + βzf ′(z)

)
> M(α, β, γ, 1, 1),

then

<1

2

(
1 +

zf ′(z)

f(z)

)
> γ,

where,

M(α, β, γ, 1, 1) =
(1− α)γ + αγ2 − α(1−γ)

4

1− β(1− γ)
.

By taking p = 1, n = 1 andλ = 0 in Theorem2.2, we have the following
corollary.

Corollary 3.6. Let α ≥ 0, β ≤ 1 and 0 ≤ γ < 1 be real numbers such that
β(1− γ) < 1

2
andβ ≤ α. If f ∈ A satisfies the condition

<
(
zf ′(z) + (2α+ 1)z2f ′′(z) + αz3f

′′′
(z)

zf ′(z) + βz2f ′′(z)

)
> M(α, β, γ, 0, 1),
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then

<
(

1 +
zf ′′(z)

f ′(z)

)
> γ,

i.e. f(z) ∈ K(γ), where,

M(α, β, γ, 0, 1) =
(1− α)γ + αγ2 − α(1−γ)

2

1− β(1− γ)
.

By takingp = 1, n = 1, λ = 0 andβ = 0 in Theorem2.2, we have the following
corollary.

Corollary 3.7. Let α ≥ 0 and0 ≤ γ < 1 be real numbers. Iff ∈ A satisfies the
condition

<
(

1 + (2α+ 1)
zf ′′(z)

f ′(z)
+ α

z2f
′′′
(z)

f ′(z)

)
> M(α, 0, γ, 0, 1),

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> γ,

i.e.,f(z) ∈ K(γ), where,

M(α, 0, γ, 0, 1) = (1− α)γ + αγ2 − α(1− γ)

2
.

Remark2. In the main result, the real numberM(α, β, γ, λ, p) may not be the best
possible as authors have not obtained the extremal function for it. The problem is
still open for the best possible real numberM(α, β, γ, λ, p).
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