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Abstract

Weighted versions of Griiss type inequalities of Dragomir and Fedotov are
given. Some related results are also obtained.
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In 1935, G. Gruss proved the following inequality:
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Then we have the inequality

x)du(x)—u(bl))T/f dt‘ %L(M m) (b—a),

and the constany is sharp, in the sense that it cannot be replaced by a smaller
one.
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So, in this paper we shall show that corresponding weighted versiords5f (
and (L.6) are also valid. Some related results will be also given.
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Theorem 2.1.Let f,u : [a,b] — R be such thatf is Riemann integrable on
la, b] andwu is L—Lipschitzian ona, b}, i.e. (1.3) holds true. Ifw : [a,b] — R is
a positive weight function, then

b
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That is, @.1) is valid. Furthermore, from an application of Cauchy’s inequality
we have:
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If in the previous result we set (x) = 1, then we can obtain the following

corollary:
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Theorem 2.4.Let f,u : [a,b] — R be such that: is L—Lipschitzian ona, b],
and f is a function of bounded variation da, b]. If w : [a,b] — R is a positive
weight function, then the following inequality holds:

b b
T (u, f;w)] < ML\/ g < WML\/ f,

a

whereT (u, f;w) is defined byZ4.2), g : [a,b] — R is the functiong (z) =
Jo w (@) df (2),

W = Supefo w0 (2) Mzmax{f‘fw(t)(b_t)dt ffw(t)(t—a)dt}

[P (t)dt [P (t)dt
and \/Z g and VZ f denote the total variation of and f on [a, b], respectively.

Proof. We have
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Using the fact that, is L—Lipschitzian ona, b], we can state that:
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then the first derivative of this function is:
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and the second derivative is:
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That is:
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