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ABSTRACT. By using Bottema’s inequality and several identities in triangles, we prove a
weighted inequality concerning the distances between a mobile pointP and three vertexes
A,B,C of4ABC. As an application, a conjecture with regard to Fermat’s sumPA+PB+PC
is proved.
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1. I NTRODUCTION AND M AIN RESULTS

For4ABC, let a, b, c denote the side-lengths,A, B, C the angles,∆ the area,p the semi-

perimeter,R the circumradius andr the inradius, respectively. In addition, supposing thatP is

a mobile point in the plane containing4ABC, let PA, PB, PC denote the distances between

P andA, B, C, respectively. We will customarily use the cyclic symbol, that is:
∑

f(a) =

f(a) + f(b) + f(c),
∑

f(a, b) = f(a, b) + f(b, c) + f(c, a),
∏

f(a) = f(a)f(b)f(c), etc.
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The following inequality can be easily proved by making use ofBottema’s inequality:

(1.1) (PB + PC) cos
A

2
+ (PC + PA) cos

B

2
+ (PA + PB) cos

C

2
≥ p · p

2 + 2Rr + r2

4R2
.

Here we choose to omit the details. From inequality (1.1) and the following known inequality

(1.2) and identity (1.3) (see [3, 4, 6]):

(1.2) PA cos
A

2
+ PB cos

B

2
+ PC cos

C

2
≥ p,

and

(1.3) q1 = cos2 B − C

2
+ cos2 C − A

2
+ cos2 A−B

2
=

p2 + 4R2 + 2Rr + r2

4R2
,

we easily get

(1.4) PA + PB + PC ≥ p ·
cos2 B−C

2
+ cos2 C−A

2
+ cos2 A−B

2

cos A
2

+ cos B
2

+ cos C
2

.

Considering the refinement of inequality (1.4), Chu [2] posed a conjecture as follows.

Conjecture 1.1. For any4ABC,

(1.5) PA + PB + PC ≥ p ·
cos B−C

2
+ cos C−A

2
+ cos A−B

2

cos A
2

+ cos B
2

+ cos C
2

.

The main object of this paper is to prove Conjecture 1.1, which is easily seen to follow from

the following stronger result.

Theorem 1.2. In4ABC, we have

(1.6) (PB + PC) cos
A

2
+ (PC + PA) cos

B

2
+ (PA + PB) cos

C

2

≥ p ·
[
cos

B − C

2
+ cos

C − A

2
+ cos

A−B

2
− 1

]
.

2. PRELIMINARY RESULTS

In order to prove our main result, we shall require the following four lemmas.

Lemma 2.1. In4ABC, we have that

(2.1) q2 = cos
B − C

2
· cos

C − A

2
· cos

A−B

2
=

p2 + 2Rr + r2

8R2
,

(2.2) cos
A

2
· cos

B

2
· cos

C

2
=

p

4R
,

q3 =
∑

cos
B

2
cos

C

2
cos

B − C

2

(
b2 + c2 − a2

)
(2.3)

=
p4 + 2Rrp2 − r (2R + r) (4R + r)2

4R2
,
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q4 =
1

2

∑ (
cos2 B

2
+ cos2 C

2

) (
b2 + c2 − a2

)
(2.4)

=
(2R + 3r) p2 − r (4R + r)2

2R
,

and

Q =
∑ (

cos
B − C

2
− cos

C − A

2
cos

A−B

2

)
(2.5)

= q1 − 3q2 −
p∆4

∏
(b− c)2

a2b2c2
∏

(X + x)
,

where

X = a
√

bc (p− b) (p− c), Y = b
√

ca (p− c) (p− a),(2.6)

Z = c
√

ab (p− a) (p− b),

and

x = (b + c) (p− b) (p− c) , y = (c + a) (p− c) (p− a) ,(2.7)

z = (a + b) (p− a) (p− b) .

Proof. The proofs of identities (2.1) and (2.2) were given in [6]. Now, we present the proofs of

identities (2.3) – (2.5). By utilizing the formulas

cos
A

2
=

√
p (p− a)

bc
, sin

A

2
=

√
(p− b) (p− c)

bc
,

cos
B − C

2
=

b + c

a

√
(p− b) (p− c)

bc
,

and (see [5, pp.52])∏
a = 4Rrp,

∑
a = 2p and

∑
bc = p2 + 4Rr + r2,

we get that

q3 = p
∑ (b + c) (p− b) (p− c)

a2bc

(
b2 + c2 − a2

)
=

p

4a2b2c2

∑
bc (b + c) (c + a− b) (a + b− c)

(
b2 + c2 − a2

)
=

p

4a2b2c2
[6(ab + bc + ca)2(a + b + c)3 − 8(ab + bc + ca)3(a + b + c)

− (ab + bc + ca)(a + b + c)5 − 2abc(ab + bc + ca)(a + b + c)2

+ 8abc(ab + bc + ca)2 − abc(a + b + c)4 − 4(a + b + c)a2b2c2]

=
p4 + 2Rrp2 − r (2R + r) (4R + r)2

4R2
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and

1

2

∑(
cos2 B

2
+ cos2 C

2

) (
b2 + c2 − a2

)
=

∑
a2 cos2 A

2

=
p

abc

(
p
∑

a3 −
∑

a4
)

=
p

abc

[
5

2
(ab + bc + ca)(a + b + c)2 − 2(ab + bc + ca)2

−1

2
(a + b + c)4 − 5

2
(a + b + c)abc

]
=

(2R + 3r) p2 − r (4R + r)2

2R
.

Thus, identities (2.3) and (2.4) hold true.

With (1.3), (2.1) and the formulas of half-angles, we obtain that

q1 − 3q2 =
−p2 + 8R2 − 2Rr − r2

8R2

=
1

a2b2c2

∑
x [bc (b + c)− (c + a) (a + b) (s− a)],

and

Q =
∑ (

cos
B − C

2
− cos

C − A

2
cos

A−B

2

)
=

∑
X [bc (b + c)− (c + a) (a + b) (s− a)]

a2b2c2
.

It is easy to see that

X − x =
∆2 (b− c)2

X + x
, Y − y =

∆2 (c− a)2

Y + y
, and Z − z =

∆2 (a− b)2

Z + z
.

Then

a2b2c2[Q− (q1 − 3q2)]

=
∑

[bc(b + c)− (c + a)(a + b)(p− a)](X − x)

=
∑

[bc(b + c)− (c + a)(a + b)(p− a)]
∆2(b− c)2

X + x

=
∑

p∆2 (a− b)(a− c)(b− c)2

(X + x)
.

Therefore,

Q− (q1 − 3q2) =
∑

p∆2 (a− b)(a− c)(b− c)2

a2b2c2(X + x)

=
p∆2(a− b)(a− c)(b− c)

a2b2c2

∑ b− c

X + x
,
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where

b− c

X + x
+

c− a

Y + y
+

a− b

Z + z

=
(b− c) (Y −X + y − x)

(X + x) (Y + y)
+

(a− b) (Y − Z + y − z)

(Z + z) (Y + y)

=
p (p− c) (b− c) (b− a)

(X + x) (Y + y)
+

pabc (p− c) (b− c) (b− a)

(X + x) (Y + y) (X + Y )

+
p (p− a) (a− b) (b− c)

(Z + z) (Y + y)
+

pabc (p− a) (a− b) (b− c)

(Z + z) (Y + y) (Z + Y )

=
p (b− c) (a− b)∏

(X + x)
[(p− a) (X + x)− (p− c) (Z + z)]

+
pabc (b− c) (a− b)

(X + Y ) (Y + Z)
∏

(X + x)

× [(p− a) (X + x) (X + Y )− (p− c) (Z + z) (Y + Z)]

=
−∆2 (b− c) (a− b) (a− c)∏

(X + x)

+
p (b− c) (a− b) (a− c)

(Z + X)
∏

(X + x)

[
abc

∏
(p− a)− ca (p− b) Y

]
+

pabc (b− c) (a− b) (a− c)

(X + Y ) (Z + Y )
∏

(X + x)

[
abc

∏
(p− a)− Y

∏
(p− a)

+
abc (Y − abc)

∏
(p− a)

Z + X

+
abc (pb + ca) (p− b)

∏
(p− a)− ca (p− b) Y

∏
(p− a)

Z + X

]
=
−∆2(b− c)(a− b)(a− c)∏

(X + x)
+

pabc(b− c)(a− b)(a− c)

(X + Y )(Z + Y )
∏

(X + x)

·
{[∏

(p− a)− (p− b)
√

ca(p− c)(p− a)
]
(X + Y )(Y + Z)

+ abc
∏

(p− a)
[
Y − abc + pb(p− b) + ca(p− b)− (p− b)

√
ca(p− c)(p− a)

]
+(Z + X)(abc− Y )

∏
(p− a)

}
=
−∆2(b− c)(a− b)(a− c)∏

(X + x)
,

which implies the assertion (2.5). �

Lemma 2.2. For any4ABC,

(2.8)

√
cos

A

2
cos

B

2
cos

C

2

(
cos

A

2
+ cos

B

2
+ cos

C

2

)
≥ p

2R
.
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Proof. FromEuler’s inequality R ≥ 2r, abc = 4Rrp, a + b + c = 2p and the law of sines, we

obtain that

2R2p ≥ 4Rrp⇐⇒ R2(a + b + c) ≥ abc(2.9)

⇐⇒ sin A + sin B + sin C ≥ 4 sin A sin B sin C.

Taking

A→ π − A

2
, B → π −B

2
, and C → π − C

2
,

we easily get

(2.10) cos
A

2
+ cos

B

2
+ cos

C

2
≥ 4 cos

A

2
cos

B

2
cos

C

2
.

Inequality (2.8) follows immediately in view of (2.10) and (2.2). �

Lemma 2.3. In4ABC, we have

(2.11)
∑

cos
B

2
cos

C

2

(
b2 + c2 − a2

)
≥ p4 + 2Rrp2 − r (2R + r) (4R + r)2

4R2
.

Proof. By employing (2.3) and the formulas of half-angles, inequality (2.11) is equivalent to

(2.12)
∑

cos
B

2
cos

C

2

(
b2 + c2 − a2

)
≥

∑
cos

B

2
cos

C

2
cos

B − C

2

(
b2 + c2 − a2

)
,

or

(2.13)
∑ (b2 + c2 − a2)

a2bc

[
a
√

bc (s− b) (s− c)− (b + c) (s− b) (s− c)
]
≥ 0,

that is

(2.14)
∑ ∆2

abc
· (b

2 + c2 − a2)

a (X + x)
(b− c)2 ≥ 0,

whereX, Y, Z and x, y, z are given, just as in the proof of Lemma 2.1, by (2.6) and (2.7),

respectively.

Without loss of generality, we can assume thata ≥ b ≥ c to obtain

a (X + x) ≥ b (Y + y) ≥ c (Z + z) ,

and

(a− c)2 ≥ (b− c)2 ,

and thus
(b− c)2

a (X + x)
≤ (c− a)2

b (Y + y)
.

Hence, in order to prove inequality (2.14), we only need to prove that

(2.15)
∆2

abc

[
(b2 + c2 − a2)

a(X + x)
(b− c)2 +

(c2 + a2 − b2)

b(Y + y)
(c− a)2

]
≥ 0.

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 79, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


A GEOMETRIC INEQUALITY 7

We readily arrive at the following result fora ≥ b ≥ c,

∆2

abc

[
(b2 + c2 − a2)

a(X + x)
(b− c)2 +

(c2 + a2 − b2)

b(Y + y)
(c− a)2

]
≥ ∆2

abc

(
b2 + c2 − a2 + c2 + a2 − b2

) (c− a)2

b (Y + y)

= 2c2 · ∆2

abc
· (c− a)2

b (Y + y)
≥ 0.

This shows that the inequality (2.15) or (2.11) holds true. The proof of Lemma 2.3 is thus

complete. �

Lemma 2.4(Bottema’s inequality, see [1, pp. 118, Theorem 12.56]). Let∆′ denote the area of

4A′B′C ′, anda′, b′, c′ the side-lengths of4A′B′C ′, respectively. Then

(2.16) (a′PA + b′PB + c′PC)
2

≥ 1

2
[a′2(b2 + c2 − a2) + b′2(c2 + a2 − b2) + c′2(a2 + b2 − c2)] + 8∆∆′.

3. THE PROOF OF THEOREM 1.2

Proof. It is easy to show that

a′ = cos
B

2
+ cos

C

2
, b′ = cos

C

2
+ cos

A

2
, and

c′ = cos
A

2
+ cos

B

2

are three side-lengths of a certain triangle. By usingBottema’s inequality (2.16), in order to

prove inequality (1.6), we only need to prove that

8∆

√∏
cos

A

2

∑
cos

A

2
+

1

2

∑ (
cos

B

2
+ cos

C

2

)2 (
b2 + c2 − a2

)
≥ p2

[∑
cos

B − C

2
− 1

]2

or

(3.1) 8∆

√∏
cos

A

2

∑
cos

A

2
+ q4

+
∑

cos
B

2
cos

C

2

(
b2 + c2 − a2

)
+ 2p2Q ≥ p2 (q1 + 1) .
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With identities (1.3), (2.4), (2.5), together with Lemma 2.2 and Lemma 2.3, in order to prove

inequality (3.1), we only need to prove that

8∆ · p

2R
+

(2R + 3r) p2 − r (4R + r)2

2R
+

p4 + 2Rrp2 − r (2R + r) (4R + r)2

4R2

+ 2p2

[
−p2 + 8R2 − 2Rr − r2

8R2
− p∆4

∏
(b− c)2

a2b2c2
∏

(X + x)

]

≥ p2

(
p2 + 4R2 + 2Rr + r2

4R2
+ 1

)
or

(3.2)
−p4 + (4R2 + 20Rr − 2r2) p2 − r (4R + r)3

4R2
≥ 2p3∆4

∏
(b− c)2

a2b2c2
∏

(X + x)
.

From the known identities (see [5])

∆ = rp and

(b− c)2(c− a)2(a− b)2 = 4r2[−p4 + (4R2 + 20Rr − 2r2)p2 − r(4R + r)3],

inequality (3.2) is equivalent to

(3.3)
∏

(X + x) ≥ 2r4p5.

ForX ≥ x, and with the following two known identities (see [5, pp.53])∏
(b + c) = 2p(p2 + 2Rr + r2),

∏
(p− a) = r2p,

we obtain ∏
(X + x) ≥ 8

∏
x = 8

∏
(b + c)

∏
(p− a)2

= 16r4p3(p2 + 2Rr + r2) > 16r4p5 > 2r4p5.

Therefore, inequality (3.3) holds. This completes the proof of Theorem 1.2. �

4. REMARKS

Remark 1. From inequalities (1.2) and (1.6), it is easy to see that inequality (1.5) holds.

Remark 2. In view of∑
cos

B − C

2
≥

∑
cos2 B − C

2
=

p2 + 4R2 + 2Rr + r2

4R2

⇐⇒
∑

cos
B − C

2
− 1 ≥ p2 + 2Rr + r2

4R2
,

it follows that inequality (1.6) is a refinement of inequality (1.1).
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