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Abstract

New inequalities are investigated for real entire functions in the Laguerre-Pólya
class. These are generalizations of the classical Turán and Laguerre inequali-
ties. They provide necessary conditions for certain real entire functions to have
only real zeros.
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1. Introduction and Notation
Definition 1.1. A real entire functionϕ(x) :=

∑∞
k=0

γk

k!
xk is said to be in the

Laguerre-Pólya class, writtenϕ(x) ∈ L-P, if ϕ(x) can be expressed in the form

(1.1) ϕ(x) = cxne−αx2+βx

ω∏
k=1

(
1 +

x

xk

)
e
− x

xk , 0 ≤ ω ≤ ∞,

wherec, β, xk ∈ R, α ≥ 0, n is a nonnegative integer and
∑∞

k=1 1/x2
k <∞. If

ω = 0, then, by convention, the product is defined to be 1.

The significance of the Laguerre-Pólya class in the theory of entire functions
stems from the fact that functions in this class,and only these, are the uniform
limits, on compact subsets ofC, of polynomials with only real zeros. For var-
ious properties and algebraic and transcendental characterizations of functions
in this class we refer the reader to Pólya and Schur [11, p. 100], [12] or [9,
Kapitel II].

If ϕ(x) :=
∑∞

k=0
γk

k!
xk ∈ L-P, then theTurán inequalitiesγ2

k − γk−1γk+1 ≥
0 and theLaguerre inequalitiesϕ(k)(x)2−ϕ(x)(k−1)ϕ(k+1)(x) ≥ 0 are known to
hold for allk = 1, 2, . . . and for all realx (see [2] and the references contained
therein). In this paper we consider generalizations of both of these inequalities.
For some of these generalizations to hold, we must restrict our investigation to
the following subclass ofL-P.

Definition 1.2. A real entire functionϕ(x) :=
∑∞

k=0
γk

k!
xk in L-P is said to be

in L-P+ if γk ≥ 0 for all k. In particular, this means that all the zeros ofϕ lie
in the interval(−∞, 0].
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Now if ϕ(x) ∈ L-P+, thenϕ can be expressed in the form

(1.2) ϕ(x) = cxneβx

ω∏
k=1

(
1 +

x

xk

)
, 0 ≤ ω ≤ ∞,

wherec, β ≥ 0, xk > 0, n is a nonnegative integer and
∑∞

k=1
1
xk

< ∞ [9,
Section 9]. Ifϕ(x) =

∑∞
k=0

γk

k!
xk ∈ L-P, then, following the usual convention,

we call the sequence of coefficients,{γk}∞k=0, amultiplier sequence.
In Section2, the Laguerre inequalityϕ′(x)2 − ϕ(x)ϕ′′(x) ≥ 0 is general-

ized to a system of inequalitiesLn(ϕ(x)) ≥ 0 for all n = 0, 1, 2, . . . and for
all x ∈ R, whereL1(ϕ(x)) = ϕ′(x)2 − ϕ(x)ϕ′′(x) andϕ(x) ∈ L-P (cf. [10,
Theorem 1]). This system of inequalities characterizes functions inL-P (The-
orem2.2). We show that the (nonlinear) operatorsLn satisfy a simple recursive
relation (Theorem2.1) and use this fact to give a different proof of a result of
Patrick [10, Theorem 1]. This, together with the converse of Patrick’s theorem
(cf. [5, Theorem 2.9]), yields a necessary and sufficient condition for a real
entire function (with appropriate restrictions on the order and type of the entire
function) to belong to the Laguerre-Pólya class (Theorem2.2).

In Section3, we consider a different collection of inequalities based on the
Laguerre inequality, namely an iterated form of them. Our original proof of the
second iterated inequalities for functions inL-P+ [2, Theorem 2.13] was based
on the study of certain polynomial invariants. In Section3, we give a shorter and
a conceptually simpler proof of these inequalities (Proposition3.1and Theorem
3.2). Moreover, the proof of Proposition3.1 leads to new necessary conditions
for entire functions to belong toL-P+ (Corollary3.3). Evaluating these atx =
0 yields the classical Turán inequalities and iterated forms of them, considered
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in Section4. In Section4, we show that for multiplier sequences which decay
sufficiently rapidlyall the higher iterated Turán inequalities hold (Theorem4.1).
Our main result (Theorem5.4) asserts that the third iterated Turán inequalities
are valid for all functions of the formϕ(x) = x2ψ(x), whereψ(x) ∈ L-P+. An
examination of the proof of Theorem5.4 (see also Lemma5.3) shows that the
restriction thatϕ(x) has a double zero at the origin is merely a ploy to render
the, otherwise very lengthy and involved, computations tractable.
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2. Characterizing L-P via Extended Laguerre In-
equalities

Let ϕ(x) denote a real entire function; that is, an entire function with only real
Taylor coefficients. Following Patrick [10], we define implicitly the action of
the (nonlinear) operators{Ln}∞n=0, takingϕ(x) toLn(ϕ(x)), by the equation

(2.1) |ϕ(x+ iy)|2 = ϕ(x+ iy)ϕ(x− iy) =
∞∑

n=0

Ln(ϕ(x))y2n, (x, y ∈ R) .

In the sequel, it will become clear thatLn(ϕ(x)) is also a real entire function
(cf. Remark2.1). In [10], Patrick shows that ifϕ(x) ∈ L-P, thenLn(ϕ(x)) ≥ 0
for all n = 0, 1, 2, . . . and for allx ∈ R. The novel aspect of our approach to
these inequalities is based on the remarkable fact that the operatorsLn satisfy
a simple recursive relation (Theorem2.1). By virtue of this recursion relation,
we obtain a short proof of Patrick’s theorem. This, when combined with the
known converse result [5, Theorem 2.9], yields a complete characterization of
functions inL-P (Theorem2.2).

We remark that generalizations of the operators defined in (2.1) are given by
Dilcher and Stolarsky in [6]. These authors study the distribution of zeros of
L

(m)
n (ϕ(x)) for their generalized operatorsL(m)

n and certain functionsϕ(x).

Theorem 2.1. Let ϕ(x) be any real entire function. Then the operatorsLn

satisfy the following:

(1) Ln((x + a)ϕ(x)) = (x + a)2Ln(ϕ(x)) + Ln−1(ϕ(x)), for a ∈ R and
n = 1, 2, . . . ;
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(2) L0(ϕ) = ϕ2;

Ln(c) = 0 for any constantc andn ≥ 1.

Proof. Parts(2) and(3) are clear from the definition. To check(1), we compute
as follows:

|(x+ a+ iy)ϕ(x+ iy)|2

= ((x+ a)2 + y2)
∞∑

n=0

Ln(ϕ(x))y2n

= (x+ a)2

∞∑
n=0

Ln(ϕ(x))y2n +
∞∑

n=0

Ln(ϕ(x))y2n+2

= (x+ a)2

∞∑
n=0

Ln(ϕ(x))y2n +
∞∑

n=1

Ln−1(ϕ(x))y2n

= (x+ a)2L0(ϕ(x)) +
∞∑

n=1

[(x+ a)2Ln(ϕ(x)) + Ln−1(ϕ(x))]y2n,

from which(1) follows.

Using the recursion of Theorem2.1, we obtain the following characterization
of functions inL-P.

Theorem 2.2. Letϕ(x) 6≡ 0 be a real entire function of the forme−αx2
ϕ1(x),

whereα ≥ 0 andϕ1(x) has genus 0 or 1. Thenϕ(x) ∈ L-P if and only if
Ln(ϕ) ≥ 0 for all n = 0, 1, 2, . . . .
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Proof. First assume that allLn(ϕ) ≥ 0. If ϕ /∈ L-P, thenϕ has a nonreal zero
z0 = x0 + iy0 with y0 6= 0. Hence

0 = |ϕ(z0)|2 =
∞∑

n=0

Ln(ϕ(x0))y
2n
0 .

Since all terms in the sum are nonnegative andy0 6= 0, we must haveLn(ϕ(x0)) =
0 for all n. But this gives|ϕ(x0 + iy)|2 =

∑∞
n=0 Ln(ϕ(x0))y

2n = 0 for any
choice ofy ∈ R, whenceϕ itself must be identically zero.

Conversely, assume thatϕ ∈ L-P. Sinceϕ can be uniformly approximated
on compact sets by polynomials with only real zeros, it will suffice to prove
thatLn(ϕ) ≥ 0 for polynomialsϕ. For this we use induction on the degree of
ϕ. From Theorem2.1(2) and(3), we see thatLn(ϕ) ≥ 0 for anyn if ϕ has
degree0. If the degree ofϕ is greater than zero, we can writeϕ(x) = (x +
a)g(x), wherea ∈ R andg(x) is a polynomial. By the induction hypothesis,
Ln(g(x)) ≥ 0 for all n ≥ 0 and allx ∈ R. Hence, Theorem2.1(1) gives the
desired conclusion forϕ.

Next we show that the explicit form ofLn(ϕ) given in [10] can also be
obtained from Theorem2.1.

Theorem 2.3.For anyϕ ∈ L-P, operatorsLn(ϕ) satisfying the recursion and
initial conditions of Theorem2.1are uniquely determined and are given by

(2.2) Ln(ϕ(x)) =
2n∑

j=0

(−1)j+n

(2n)!

(
2n

j

)
ϕ(j)(x)ϕ(2n−j)(x) .
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Proof. As before, it will suffice to prove the result for polynomials inL-P.
It is clear that the recursion formula of Theorem2.1, together with the initial
conditions given there, uniquely determine the value ofLn on any polynomial
with only real zeros. Thus it will suffice to show that the formula given in (2.2)
satisfies the conditions of Theorem2.1. We do a double induction, beginning
with an induction onn.

If n = 0, thenL0(ϕ) = ϕ2 by Theorem2.1 and this agrees with (2.2).
Assume thatn > 0 and that (2.2) holds forLn−1. Now we begin an induction
on the degree ofϕ.

If ϕ is a constant, thenLn(ϕ) = 0 by Theorem2.1, which agrees with (2.2).
Assume the formula holds for polynomials of degree less thandegϕ. Then we
can writeϕ(x) = (x+a)g(x), wherea ∈ R andLn−1(g) andLn(g) are given by
(2.2). The conclusion now follows from a computation using Theorem2.1(1).
Indeed,

Ln(ϕ(x)) = Ln((x+ a)g(x))

= (x+ a)2Ln(g(x)) + Ln−1(g(x))

= (x+ a)2

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)
g(j)(x)g(2n−j)(x)

+
2n−2∑
j=0

(−1)j+n−1

(2n− 2)!

(
2n− 2

j

)
g(j)(x)g(2n−2−j)(x).
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Also, using Leibniz’s formula for higher derivatives of a product,

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)
ϕ(j)(x)ϕ(2n−j)(x)

=
2n∑

j=0

(−1)j+n

(2n)!

(
2n

j

)[
j(2n− j)g(j−1)g(2n−1−j) + (x+ a)jg(j−1)g(2n−j)

+ (x+ a)(2n− j)g(j)g(2n−1−j) + (x+ a)2g(j)g(2n−j)
]

= (x+ a)2

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)
g(j)(x)g(2n−j)(x)

+
2n−2∑
j=0

(−1)j+n−1

(2n− 2)!

(
2n− 2

j

)
g(j)(x)g(2n−2−j)(x),

because the coefficient of(x+ a) is shown to be zero by

2n∑
j=0

(−1)j+n

(2n)!

(
2n

j

)[
jg(j−1)g(2n−j) + (2n− j)g(j)g(2n−1−j)

]
=

(−1)n

(2n)!

[
2n∑

j=1

(−1)j

(
2n

j

)
jg(j−1)g(2n−j)

+
2n−1∑
j=0

(−1)j

(
2n

j

)
(2n− j)g(j)g(2n−j−1)

]
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=
(−1)n

(2n)!

[
−

2n−1∑
j=0

(−1)j

(
2n

j + 1

)
(j + 1)g(j)g(2n−j−1)

+
2n−1∑
j=0

(−1)j

(
2n

j

)
(2n− j)g(j)g(2n−j−1)

]
= 0

since
(

2n
j+1

)
(j + 1) =

(
2n
j

)
(2n− j).

The main emphasis here has been that the result of Theorem2.2 depends
only on the recursive condition of Theorem2.1, and this seems to be the easiest
way to prove Theorem2.2. However, the operatorsLn(ϕ) can be explicitly
computed more easily than from the recursive condition as was done in Theorem
2.3, as well as in greater generality.

Remark 2.1. For any real entire functionϕ, the operatorsLn(ϕ) defined by
equation (2.1) are given by the formula

Ln(ϕ(x)) =
2n∑

j=0

(−1)j+n

(2n)!

(
2n

j

)
ϕ(j)(x)ϕ(2n−j)(x).

Proof. By Taylor’s theorem, for each fixedx ∈ R,

h(y) := |ϕ(x+ iy)|2 = ϕ(x+ iy)ϕ(x− iy) =
∞∑

n=0

h(2n)(0)

(2n)!
y2n,
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where we have used the fact thath(y) is an even function (ofy). LetDy = d/dy
denote differentiation with respect toy. Then by Leibniz’s formula, for higher
derivatives of a product, we have

h(2n)(0) =
2n∑

k=0

(
2n

k

)(
Dk

yϕ(x+ iy)
)

y=0

(
D2n−k

y ϕ(x− iy)
)

y=0

=
2n∑

k=0

(
2n

k

)
(−1)n+kϕ(k)(x)ϕ(2n−k)(x)

= (2n)!Ln(ϕ(x)),

by the uniqueness of the Taylor coefficients.
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3. Iterated Laguerre Inequalities
Definition 3.1. For any real entire functionϕ(x), set

T (1)
k (ϕ(x)) := (ϕ(k)(x))2 − ϕ(k−1)(x)ϕ(k+1)(x) if k ≥ 1,

and forn ≥ 2, set

T (n)
k (ϕ(x)) := (T (n−1)

k (ϕ(x)))2 − T (n−1)
k−1 (ϕ(x)) T (n−1)

k+1 (ϕ(x)) if k ≥ n ≥ 2.

Remark 3.1. (a) Note that with the notation above, we haveT (n)
k+j(ϕ)

= T (n)
k (ϕ(j)) for k ≥ n andj = 0, 1, 2 . . . .

(b) The authors’ investigations of functions in the Laguerre-Pólya class ([2],
[3]) have led to the following problem.

Open ProblemIf ϕ(x) ∈ L-P+, are the iterated Laguerre inequalities
valid for all x ≥ 0? That is, is it true that

(3.1) T (n)
k (ϕ(x)) ≥ 0 for all x ≥ 0 and k ≥ n?

(c) If we assume only thatϕ(x) ∈ L-P, then the inequalityT (n)
k (ϕ(x)) ≥ 0,

x ≥ 0, need not hold in general, as the following example shows. Con-
sider, for example,ϕ(x) = (x − 2)(x + 1)2 ∈ L-P. ThenT (2)

2 (ϕ(x)) =

216x(−2 + 3x + x3) and so we see thatT (2)
2 (ϕ(x)) is negative for all

sufficiently small positive values ofx.
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(d) There are, of course, certain easy situations for which the iterated La-
guerre inequalities can be shown to always hold. For example, ifϕ(x) =
(x+a)ex, a ≥ 0 or ϕ(x) = (x+a)(x+b)ex, a, b ≥ 0, this is true. Since the
derivative of such a function again has the same form, the remarks above
indicate that it suffices to show thatT (k)

k (ϕ(x)) ≥ 0 for k = 1, 2, . . . and
all x ≥ 0. For the quadratic case, we obtain

T (k)
k (ϕ(x))

=


22k−2e2

kx((a+ x)2 + (b+ x)2

+2(k − 1)(2x+ a+ b+ k2 − k)), for k odd

22k−1e2
kx ((x+ a)(x+ b) + k(2x+ a+ b+ k − 1)) , for k even

and each expression is clearly nonegative for all realx.

(e) A particularly intriguing open problem is the case ofϕ(x) = xm in (3.1).
Special cases, such as the iterated Turán inequalities discussed in the next
section, can be easily established (i.e.T (n)

n (xn) = (n!)2n
), but the general

case ofT (n)
n (xn+k), k = 0, 1, 2, . . . , seems surprisingly difficult.

In [2, Theorem 2.13] it is shown that (3.1) is true whenn = 2; that is the
double Laguerre inequalities are valid. Here we present a somewhat different
and shorter proof (which still depends on Theorems2.2 and2.3) in the hope
that it will shed light on the general case.

Proposition 3.1. If ϕ(x) is a polynomial with only real, nonpositive zeros and
positive leading coefficient (so thatϕ(x) ∈ L-P+ ∩ R[x]), then

(3.2) T (2)
k (ϕ(x)) ≥ 0 for all x ≥ 0 and k ≥ 2.
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Proof. First we prove (3.2) by induction, in the special case whenk = 2. If
degϕ = 0 or 1, thenT (2)

2 (ϕ) = 0. Now suppose that (3.2) holds (withk =
2) for all polynomialsg ∈ L-P+ of degree at mostn. Let ϕ(x) := (x +

a)g(x), wherea ≥ 0. For notational convenience, seth(x) := T (1)
1 (g(x)) =

(g′(x))2 − g(x)g′′(x) and note thath(x) is justL1(g(x)) in Theorem2.3. Then
some elementary, albeit involved, calculations (which can be readily verified
with the aid of a symbolic program) yield

(3.3) ϕ(x)T (2)
2 (ϕ(x))

= ϕ′′(x)
{

(x+ a)4T (1)
1 (h(x)) + ϕ(x) [12ϕ(x)L2(g(x)) + A(x)]

}
,

whereL2(g(x)) is given by (2.2) and

A(x) = 8(g′(x))3 − 12g(x)g′(x)g′′(x) + 4g(x)2g′′′(x).

Sinceϕ(x), ϕ′′(x) ∈ L-P+, ϕ(x) ≥ 0 andϕ′′(x) ≥ 0 for all x ≥ 0. Also, by
Theorem2.2, L2(g(x)) ≥ 0 for all x ∈ R. Now, another calculation shows that

g′′(x)T (1)
1 (h(x)) = g(x)T (2)

2 (g(x))

and soT (1)
1 (h(x)) ≥ 0 for x ≥ 0, since by the induction assumptionT (2)

2 (g(x)) ≥
0 for x ≥ 0. Therefore, it remains to show thatA(x) ≥ 0 for x ≥ 0. Let
g(x) = c

∏n
j=1(x + xj), wherec > 0 andxj ≥ 0 for 1 ≤ j ≤ n. Then using
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logarithmic differentiation and the product rule we obtain

A(x) = 4g(x)3 d
2

dx2

(
g′(x) · 1

g(x)

)
(3.4)

= 4g(x)3

n∑
j=1

2

(x+ xj)3

≥ 0 for all x > 0.

Thus, the right-hand side of (3.3) is nonnegative for allx ≥ 0 and whence
T (2)

2 (ϕ(x)) ≥ 0 if x > 0. But then continuity considerations show thatT (2)
2 (ϕ(x))

≥ 0 for all x ≥ 0. Finally, sinceL-P+ is closed under differentiation and since
T (n)

k+j(ϕ) = T (n)
k (ϕ(j)) for k ≥ n andj = 0, 1, 2 . . . (see Remark3.1(a)), we

conclude that (3.2) holds.

Recall from the introduction, that ifϕ(x) ∈ L-P+, thenϕ(x) can be ex-
pressed in the form

(3.5) ϕ(x) = ceσx

ω∏
j=1

(
1 +

x

xj

)
, 0 ≤ ω ≤ ∞,

wherec ≥ 0, σ ≥ 0, xj > 0 and
∑

1/xj <∞. Now set

ϕN(x) = c
(
1 +

σx

N

)N
min(N, ω)∏

j=1

(
1 +

x

xj

)
.

ThenϕN(x) → ϕ(x) asN → ∞, uniformly on compact subsets ofC. More-
over, the classL-P+ is closed under differentiation, and so the derivatives of
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ϕ(x) can also be expressed in the form (3.5). Therefore, the following theorem
is an immediate consequence of Proposition3.1.

Theorem 3.2. If ϕ(x) ∈ L-P+, then forj = 0, 1, 2 . . . ,

T (2)
k (ϕ(j)(x)) ≥ 0 for all x ≥ 0 and k ≥ 2.

In the course of the proof of Proposition3.1, we have shown (see (3.4)) that
for polynomialsg(x) ∈ L-P+, the following inequality holds

(3.6) 2(g′(x))3 − 3g(x)g′(x)g′′(x) + g(x)2g′′′(x) ≥ 0 for all x ≥ 0.

Next, we employ the foregoing limiting argument (see the paragraph preceding
Theorem3.2) and the fact thatL-P+ is closed under differentiation, to deduce
from (3.6) the following corollary.

Corollary 3.3. If

ϕ(x) =
∞∑

k=0

γk

k!
xk ∈ L-P+,

then forp = 0, 1, 2 . . . and for allx ≥ 0,

(3.7) 2
(
ϕ(p+1)(x)

)3−3ϕ(p)(x)ϕ(p+1)(x)ϕ(p+2)(x)+
(
ϕ(p)(x)

)2
ϕ(p+3)(x) ≥ 0.

The interest in inequality (3.7) stems, in part, from the fact that forx = 0 it
provides a new necessary condition for a real entire function to belong toL-P+.
Indeed, forx = 0, inequality (3.7) may be expressed in the form

(3.8) 2γp+1

(
γ2

p+1 − γpγp+2

)
≥ γp (γp+1γp+2 − γpγp+3) (p = 0, 1, 2, . . . ).
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The Turán inequalitiesγ2
p+1 − γpγp+2 ≥ 0 imply that γp+1γp+2 − γpγp+3 ≥

0. Thus, if γp > 0 for all p ≥ 0, thenγp (γp+1γp+2 − γpγp+3) /(2γp+1) is a
nontrivial positive lower bound for the Turán expressionγ2

p+1 − γpγp+2.
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4. Iterated Turán Inequalities
Let Γ = {γk}∞k=0 be a sequence of real numbers. We define ther-th iter-
ated Turán sequence ofΓ via γ(0)

k = γk, k = 0, . . . , andγ(r)
k = (γ

(r−1)
k )2 −

γ
(r−1)
k−1 γ

(r−1)
k+1 , k = r, r + 1, . . . . Thus, if we writeϕ(x) =

∑
γkx

k/k!, thenγ(r)
k

is just T (r)
k (ϕ(x)) evaluated atx = 0. Under certain circumstances, we can

show thatall of the higher iterated Turán expressions are positive for a mul-
tiplier sequence. In Section3 we mentioned some simple cases in which we
could, in fact, show that all of the iterated Laguerre inequalities hold. In this
section we establish the iterated Turán inequalities for a large class of interesting
multiplier sequences.

Theorem 4.1. Fix c ≥ 1 andd ≥ 0. Consider the setMc of all sequences of
positive numbers{γk}∞k=0 satisfying

(4.1) γ2
k − c γk−1γk+1 ≥ 0,

for all k. Then

(4.2) (γ2
k − γk−1γk+1)

2 − (c+ d)(γ2
k−1 − γk−2γk)(γ

2
k+1 − γkγk+2) ≥ 0

for all k and all sequences inMc if and only ifc ≥ 3+
√

5+4d
2

.

Proof. To see necessity, consider the specific sequenceγ0 = 1, γ1 = 1, γ2 =
1
b
, γ3 = 1

cb2
, γk = 0 for k ≥ 4. This satisfies (4.1) for any b ≥ c. But (4.2)

yields(
1

b2
− 1

cb2

)2

−(c+d)

(
1− 1

b

)(
1

c2b4

)
=

1

c2b4

(
c2 − 3c+ 1 +

c

b
− d+

d

b

)
.
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Sinceb may be made as large as desired, this is only guaranteed to be nonneg-
ative if c ≥ 3+

√
5+4d
2

, the larger root ofc2 − 3c + 1 − d. The other alternative,

1 ≤ c ≤ 3−
√

5+4d
2

does not occur ford > −1 (and, in particular, ford ≥ 0).

Conversely, assume (4.1) holds withc ≥ 3+
√

5+4d
2

. An upper bound forγ(1)
k

is γ2
k. From (4.1), we obtain the lower bound

γ
(1)
k = γ2

k − γk−1γk+1 ≥ (c− 1)γk−1γk+1 .

Estimating the expression in (4.2), we obtain

(γ
(1)
k )2 − (c+ d)γ

(1)
k−1γ

(1)
k+1 ≥ [(c− 1)γk−1γk+1]

2 − (c+ d)γ2
k−1γ

2
k+1

= [c2 − 3c+ 1− d]γ2
k−1γ

2
k+1 ≥ 0

by the condition onc.

The setM4 is of particular interest. Condition (4.1) forces the numbersγk to
decrease rather quickly, leading us to term such sequencesrapidly decreasing
sequences. They are known to be multiplier sequences and were first investi-
gated in some detail in [8]. These interesting sequences are discussed at some
length in [3, Section 4] and [4, Section 4].

Corollary 4.2. For a sequence as in (4.1) with c > 3+
√

5
2

≈ 2.62, the corre-

sponding constant for the sequence of Turán expressionsγ
(1)
k = γ2

k − γk−1γk+1

is strictly greater thanc by the amountd = 2c2−3c+2
2

. If we then iterate this,

forming the sequence{γ(2)
k }, the corresponding constant again increases by

more thand. After a finite number of steps, it will reach4 (in the normalized
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caseγ0 = γ1 = 1) and the sequence of higher Turán expressions{γ(r)
k }∞k=r,

for r fixed and sufficiently large, will be a rapidly decreasing sequence. In par-
ticular, if the original sequence is a rapidly decreasing sequence, the sequence
of Turán inequalities is again a rapidly decreasing sequence and we obtain an
infinite sequence of multiplier sequences by iterating this process.

Although the iterated Turán expressions seem to be positive for all multiplier
sequences (an open question in general), it follows from the Theorem4.1 that
inequality (4.1) with c = 1 is not sufficient to achieve this sinceM1 contains
sequences that fail to satisfy (4.2) for d = 0. But then, the specific sequence
used in the proof is not a multiplier sequence ifc = 1, as it violates condition
(3.8) for p = 1.
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5. The Third Iterated Turán Inequality
In this section we establish the third iterated Turán inequalityγ

(3)
k ≥ 0 (k =

3, 4, 5 . . . ) for multiplier sequences,{γk}∞k=0, of the formγk = k(k − 1)αk,
k = 1, 2, 3 . . . , where{αk}∞k=0 is anarbitrary multiplier sequence. With the
notation adopted in Section4, we have

(5.1) γ
(3)
k = (γ

(2)
k )2 − γ

(2)
k−1γ

(2)
k+1, k = 3, 4, 5, . . . ,

or equivalently

(5.2)
(
T (3)

k (ϕ(x))
)

x=0
=

((
T (2)

k (ϕ(x)
)2

− T (2)
k−1(ϕ(x))T (2)

k+1(ϕ(x))

)
x=0

,

k = 3, 4, 5, . . . ,

where

(5.3) ϕ(x) :=
∞∑

k=0

γk

k!
xk ∈ L-P+.

Before embarking on the proof of the third iterated Turán inequality, we briefly
discuss a representation of the third iterated Turán expressionγ

(3)
k =(

T (3)
k (ϕ(x))

)
x=0

in terms of Wronskians and determinants of Hankel matri-

ces (Proposition5.1). We recall that the (nth order)Wronskian (determinant)
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W (ϕ(x), ϕ′(x), . . . , ϕ(n−1)(x)), whereϕ(x) is an entire function, is defined as

(5.4) W (ϕ(x), ϕ′(x), . . . , ϕ(n−1)(x))

:=

∣∣∣∣∣∣∣∣∣
ϕ(x) ϕ′(x) · · · ϕ(n−1)(x)
ϕ′(x) ϕ(2)(x) · · · ϕ(n)(x)
...

...
...

ϕ(n−1)(x) ϕ(n)(x) · · · ϕ(2n−2)(x)

∣∣∣∣∣∣∣∣∣ ,
and that the (nth order)Hankel matrices, associated with the sequence{γk}∞k=0,
are matrices of the formH(n)

k = (γk+i+j−2)
n
i,j=1, that is

H
(n)
k =


γk γk+1 . . . γk+n−1

γk+1 γk+2 . . . γk+n+1

. . .
γk+n−1 γk+n . . . γk+2n−2

 (n = 1, 2, 3, . . . , k = 0, 1, 2, . . . ).

We note that if we setA(n)
k = detH

(n)
k , then

W (ϕ(k)(0), ϕ(k+1)(0), . . . , ϕ(k+n−1)(0)) = A
(n)
k

and forn = 3 the following relation holds

(5.5) (−γk+2)A
(3)
k = γ

(2)
k+2 k = 0, 1, 2 . . . .

Furthermore, ifϕ(x) ∈ L-P+ is given by (5.3) and ifγk > 0, then by Theorem

3.2,
(
T (2)

k (ϕ(x))
)

x=0
≥ 0 for x ≥ 0 (k = 2, 3, 4 . . . ) and whence, in light of
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(5.5), A(3)
k ≤ 0 for k = 0, 1, 2, . . . . A straightforward, albeit lengthy, calcu-

lation yields the following representation of the third iterated Turán expression
γ

(3)
k .

Letϕ(x) :=
∑∞

k=0
γk

k!
xk be an entire function. Then forx ∈ R,

(5.6) T (3)
k (ϕ(x))

=
(
T (1)

k (ϕ(x))
)(

W
(
ϕ(k−3)(x), ϕ(k−2)(x), ϕ(k−1)(x),

ϕ(k)(x)
)
ϕ(k)(x)2 +

T (2)
k−1(ϕ(x))T (2)

k+1(ϕ(x))

ϕ(k−1)(x)ϕ(k+1)(x)

)
for k = 3, 4, 5 . . . . In particular, if x = 0 andk = 0, 1, 2 . . . , then

γ
(3)
k+3 =

(
T (3)

k+3(ϕ(x))
)

x=0
(5.7)

= (γ2
k+3 − γk+2γk+4)

(
A

(4)
k γ2

k+3 + A
(3)
k A

(3)
k+2

)
,

whereA(n)
k = detH

(n)
k denotes the determinant of the Hankel matrixH

(n)
k .

Remark 5.1.

(a) Since the equalities (5.6) and (5.7) are formal identities, the assumption
thatϕ(x) is an entire function is not needed.

(b) With the aid of some known identities (see, for example, [13, VII, Problem
19]), equation (5.7) can be recast in the following suggestive form

(5.8) γ
(3)
k+3 =

(
A

(3)
k+1

)2

γ2
k+3 − A

(3)
k A

(3)
k+2γk+2γk+4.
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Now, suppose thatϕ(x) :=
∑∞

k=0
γk

k!
xk ∈ L-P+. Then, by virtue of (5.8),

γ
(3)
k+3 ≥ 0 whenever

(
A

(3)
k+1

)2

− A
(3)
k A

(3)
k+2 ≥ 0, k = 0, 1, 2 . . . . However,

this inequality is not valid, in general, as the following example shows.
Letϕ(x) :=

∑∞
k=0

γk

k!
xk = x2(x + 1)11. Here,γ0 = γ1 = 0, γ2 = 2, γ3 =

66, γ4 = 1320, γ5 = 19800 andγ6 = 237600. Then
(
A

(3)
1

)2

−A
(3)
0 A

(3)
2 =

−2718144.

(c) Let ϕ(x) ∈ L-P+ be given by (5.3). SinceA(3)
k A

(3)
k+2 ≥ 0 (cf. (5.5) and

Theorem3.2), (5.7) shows thatγ(3)
k+3 ≥ 0 wheneverA(4)

k ≥ 0. However,

A
(4)
k may be negative, as may be readily verified using the functionϕ(x)

defined in part (b). Examples of this sort are subtle as they depict a hereto-
fore inexplicable phenomenon. The technique used below sheds light on
this and at the end of this paper we provide a sufficient condition which
guarantees thatA(4)

k < 0. In connection with the investigations of a con-
jecture of S. Karlin, additional examples are considered in [7] and [1].
Furthermore, to highlight the intricate nature of Karlin’s conjecture, it
was pointed out in these papers, in particular, thatA

(4)
k ≥ 0 if γk = αk/k!,

k = 0, 1, 2 . . . , where{αk}∞k=0 is any multiplier sequence.

(d) In the sequel we will prove that if

ϕ(x) :=
∞∑

k=0

k(k − 1)αk

k!
xk ∈ L-P+,

where{αk}∞k=0 is any multiplier sequence, thenγ(3)
3 ≥ 0. It is not hard

to see that this is equivalent to proving the result only for multiplier se-
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quences that begin with two zeros. However, the assumption that{αk}∞k=0

is a multiplier sequence is not necessarily required to make the inequali-
ties hold. To see this, we consider once again the example in part (b). Let
α0 = α1 = 0 and fork ≥ 2, setαk = γk

k(k−1)
. We claim that{αk}∞k=0 is

not a multiplier sequence. Indeed, consider the fourth Jensen polynomial
(defined, for example, in [2]) associated with the sequence{αk}∞k=0, that
is,

g4(x) =
4∑

k=0

(
4

k

)
αkx

k = 2x2(3 + 22x+ 55x2).

Sinceg4(x) has two nonreal zeros,{αk}∞k=0 is not a multiplier sequence,
though our main theorem will establish the third iteration of the Turán
inequalities for{γk}∞k=0.

The proof of the main theorem requires that we express
(
T (3)

3 (ϕ(x))
)

x=0
in

terms of sums of powers of the logarithmic derivatives ofϕ(x). Accordingly,
we proceed to establish the following preparatory result.

Lemma 5.2. Let ϕ(x) =
∏n

j=1(x + xj), xj > 0, j = 1, 2, . . . , n, be a poly-
nomial inL-P+. For fixedx ≥ 0 and j = 1, 2, . . . , n, setaj := 1

x+xj
and let

(5.9) A :=
n∑

j=1

aj, B :=
n∑

j=1

a2
j , C :=

n∑
j=1

a3
j , and D :=

n∑
j=1

a4
j .

Then

(5.10)
ϕ′(x)

ϕ(x)
= A,

ϕ′′(x)

ϕ(x)
= A2 −B,

ϕ′′′(x)

ϕ(x)
= A3 − 3AB + 2C
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and
ϕ(4)(x)

ϕ(x)
= A4 − 6A2B + 3B2 + 8AC − 6D.

Proof. Logarithmic differentiation yields

ϕ′(x)

ϕ(x)
=

n∑
j=1

1

x+ xj

and ϕ′′(x) = ϕ′(x)

(
n∑

j=1

1

x+ xj

)
−ϕ(x)

n∑
j=1

1

(x+ xj)2
.

Hence,

ϕ′′(x)

ϕ(x)
=

(
ϕ′(x)

ϕ(x)

)( n∑
j=1

1

x+ xj

)
−

n∑
j=1

1

(x+ xj)2

=

(
n∑

j=1

1

x+ xj

)2

−
n∑

j=1

1

(x+ xj)2
= A2 −B.

Continuing in this manner, similar calculations yield

ϕ′′′(x)

ϕ(x)

=

(
n∑

j=1

1

x+ xj

)3

− 3

(
n∑

j=1

1

x+ xj

)(
n∑

j=1

1

(x+ xj)2

)
+ 2

(
n∑

j=1

1

(x+ xj)3

)
= A3 − 3AB + 2C
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and

ϕ(4)(x)

ϕ(x)

=

(
n∑

j=1

1

x+ xj

)4

− 6

(
n∑

j=1

1

x+ xj

)2( n∑
j=1

1

(x+ xj)2

)
+ 3

(
n∑

j=1

1

(x+ xj)2

)2

+ 8

(
n∑

j=1

1

x+ xj

)(
n∑

j=1

1

(x+ xj)3

)
− 6

(
n∑

j=1

1

x+ xj

)(
n∑

j=1

1

(x+ xj)4

)
= A4 − 6A2B + 3B2 + 8AC − 6D.

The next lemma gives an explicit expression forγ
(3)
3 =

(
T (3)

3 (ϕ(x))
)

x=0
,

whereϕ(x) is of the formϕ(x) = x2ψ(x). While the verification involves only
simple algebraic manipulations, the expression obtained is sufficiently involved
to warrant the use of a computer.

Lemma 5.3. Letψ(x) :=
∑∞

k=0
αk

k!
xk be an entire function. Let

ϕ(x) = x2ψ(x) =
∞∑

k=0

γk

k!
xk,

so thatγ0 = γ1 = 0 andγk = k(k − 1)αk−2, for k = 2, 3, . . . . Then

(5.11) γ
(3)
3 =

(
T (3)

3 (ϕ(x))
)

x=0
= 768

(
3ψ′(0)

2 − 2ψ(0)ψ′′(0)
)
E(0),
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where

E(x) := 729ψ′(x)
6 − 1458ψ(x)ψ′(x)

4
ψ′′(x) + 324ψ(x)2 ψ′(x)

2
ψ′′(x)

2

+ 216ψ(x)3 ψ′′(x)
3
+ 54xψ(x)2 ψ′(x)

3
ψ(3)(x)

− 360ψ(x)3 ψ′(x)ψ′′(x)ψ(3)(x) + 100ψ(x)4 ψ(3)(x)
2

− 90ψ(x)4 ψ′′(x)ψ(4)(x).

Preliminaries aside, we are now in a position to prove the principal result of
this section.

Theorem 5.4.Letψ(x) :=
∑∞

k=0
αk

k!
xk ∈ L-P+. Let

ϕ(x) = x2ψ(x) =
∞∑

k=0

γk

k!
xk,

so thatγ0 = γ1 = 0 andγk = k(k − 1)αk−2, for k = 2, 3, . . . . Then

(5.12) γ
(3)
3 =

(
T (3)

3 (ϕ(x))
)

x=0
≥ 0.

Proof. In view of (5.11) of Lemma5.3, sinceψ(x) ∈ L-P+,
(
T (1)

k (ψ(x))
)

x=0
≥

0 (k = 1, 2, 3 . . . ), we only need to establish thatE(0) ≥ 0. Also, since
ψ(x) ∈ L-P+, ψ(x) can be uniformly approximated, on compact subsets of
C, by polynomials having only real, nonpositive zeros. Therefore, it suffices to
prove inequality (5.12) whenψ(x) =

∏n
j=1(x + xj), (xj ≥ 0), is a polynomial

in L-P+. Now if ψ(0) = 0, thenE(0) = 729ψ′(0)6 ≥ 0 and so in this case
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inequality (5.12) is clear. Thus, henceforth we will assume thatψ(0) 6= 0 and,
for fixedx ≥ 0, considerE(x) as given in Lemma5.3. We will prove a stronger
result, namely, that for allx ≥ 0,

E(x)

(ψ(x))6
=

729ψ′(x)6

ψ(x)6 − 1458ψ′(x)4 ψ′′(x)

ψ(x)5

+
324ψ′(x)2 ψ′′(x)2

ψ(x)4 +
216ψ′′(x)3

ψ(x)3 +
540ψ′(x)3 ψ(3)(x)

ψ(x)4

− 360ψ′(x)ψ′′(x)ψ(3)(x)

ψ(x)3 +
100ψ(3)(x)

2

ψ(x)2 − 90ψ′′(x)ψ(4)(x)

ψ(x)2

≥ 0.

For fixedx ≥ 0, by Lemma5.2with ψ in place ofϕ, we obtain

E(x)

(ψ(x))6
= 729A6 − 1458A4(A2 −B) + 324A2(A2 −B)2

+ 216(A2 −B)3 + 540A3(A3 − 3AB + 2C)

− 360A(A2 −B)(A3 − 3AB + 2C) + 100(A3 − 3AB + 2C)2

− 90(A2 −B)(A4 − 6A2B + 3B2 + 8AC − 6D)

or

E(x)

(ψ(x))6
= A6 + 12A4B − 18A2B2 + 54B3 + 40A3C

+ 240AB C + 400C2 + 540A2D − 540BD
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= A6 + 12B

((
A2 − 3B

4

)2

+
63B2

16

)
+ 40A3C + 240ABC + 400C2 + 540

(
A2 −B

)
D.

Sincexj > 0 for j = 1, 2 . . . , n, we haveA,B,C,D > 0 and all the deriva-
tives of ψ(x) are positive forx ≥ 0. Therefore we also have(A2 −B) =
ψ′′(x)/ψ(x) > 0, and thusE(x) > 0 for x ≥ 0.

Remark 5.2. (a) We wish to point out that in Theorem5.4we introduced the
factor x2 in order to simplify the ensuing algebra. In the absence of this
factor we would have to calculateϕ

(5)(x)
ϕ(x)

as well asϕ(6)(x)
ϕ(x)

(see the proof
of Lemma5.2). Then, as in the proof of Theorem5.4, we would obtain
an expression, analogous toE(x), which has112 terms rather than nine.
Nevertheless, it seems that the technique developed above, should yield the
desired result (5.12) for an arbitrary multiplier sequence rather than one
with the first two terms equal to zero.

(b) We briefly indicate here how the foregoing technique can be used to de-
rive a sufficient condition which guarantees thatA

(4)
0 = detH

(4)
0 < 0.

Let ϕ(x) := x2ψ(x), whereψ(x) =
∏n

j=1(x + xj), xj > 0, is a poly-
nomial inL-P+. Then, the determinant of the4th order Hankel matrix
(ϕ(i+j−2)(0))4

i,j=1 reduces to

A
(4)
0 = W (ϕ(0), ϕ′(0), ϕ′′(0), ϕ′′′(0))

= 48 (27ψ′(0)
4 − 54ψ(0)ψ′(0)

2
ψ′′(0) + 12ψ(0)2 ψ′′(0)

2

+ 20ψ(0)2 ψ′(0)ψ(3)(0)− 5ψ(0)3 ψ(4)(0)).(5.13)
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Guided by (5.13) and the argument used in the proof of Theorem5.4, we
form the expression

K(x) =
27ψ′(x)4

ψ(x)4 − 54ψ′(x)2 ψ′′(x)

ψ(x)3 +
12ψ′′(x)2

ψ(x)2

+
20ψ′(x)ψ(3)(x)

ψ(x)2 − 5ψ(4)(x)

ψ(x)

and with the aid of Lemma5.3, for fixedx ≥ 0, we obtain that

K(x) = 3(10D −B2),

where the quantitiesB =
∑n

j=1 a
2
j andD =

∑n
j=1 a

4
j have the same

meaning as in (5.9). Thus, we readily infer that if the the zeros of the
polynomialψ(x) ∈ L-P+ are distributed such that10D < B2 holds at
x = 0, thenA(4)

0 < 0. By way of illustration, considerϕ(x) = x2ψ(x) =
x2(x + a)12, wherea > 0. Then forx = 0, we find that10D = 120/a4 <

144/a4 = B2, and whence by our criterion,A(4)
0 < 0. Indeed, direct

computation yields thatA(4)
0 = −3456a44.
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